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0. Introduction 
 
 

0.1. Preface 

 

A time series (or a random process in discrete time) is a sequence of observations that are 

arranged according to the time of their outcome. The annual crop yield of sugar-beets and 

their price per ton for example is recorded in agriculture. The newspapers' business sections 

report daily stock prices, weekly interest rates, monthly rates of unemployment and annual 

turnovers. Meteorology records hourly wind speeds, daily maximum and minimum 

temperatures and annual rainfall. Geophysics is continuously observing the shaking or 

trembling of the earth in order to predict possibly impending earthquakes. An 

electroencephalogram traces brain waves made by an electroencephalograph in order to detect 

a cerebral disease, an electrocardiogram traces heart waves. The social sciences survey annual 

death and birth rates, the number of accidents in the home and various forms of criminal 

activities. Parameters in a manufacturing process are permanently monitored in order to carry 

out an on-line inspection in quality assurance. 

 

There are, obviously, numerous reasons to record and to analyze the data of a time series. 

Among these is the wish to gain a better understanding of the data generating mechanism, the 

prediction of future values or the optimal control of a system. The characteristic property of a 

time series is the fact that the data are not generated independently, their dispersion varies in 

time, they are often governed by a trend and they have cyclic components. Statistical 

procedures that suppose independent and identically distributed data are, therefore, excluded 

from the analysis of time series. This requires proper methods that are summarized under time 

series analysis. 

 

0.2. Statistical Data and their Models 

 

This section introduces common types of economic data and describes some basic models 

associated with their use. 

 

 

• Cross-sectional data 

 

Some researchers often work with data that is characterized by individual units. These units 

might refer to companies, people or countries. For instance, a researcher investigating theories 

relating to portfolio allocation might collect data on the return earned on the stocks of many 

different companies. With such cross-sectional data, the method of ordering the data (for 

example, by alphabet or size) usually does not matter. 

 

Typically, for the cross-sectional data the notations 
i

X , 
i

Y , and like are used to indicate an 

observation on variables ,X  Y  etc for the ith individual. Observations in a cross-sectional 

data set run from unit i = 1 to N. By convention, N  indicates the number of cross-sectional 

units (e.g., the number of companies surveyed). For instance, a researcher might collect data 

on the share price of N = 100 companies at a certain point in time. In this case, 1Y  will be 
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equal to the share price of the first company, 2Y  the share price of the second company, and 

so on. 

 

In many cases, a researcher is interested in establishing a relationship between two or more 

cross-sectional variables. Figure 1.1 is a graph of data on Y = executive compensation (i.e., 

the salary paid to the chief executive, expressed in millions of dollars) for 70 companies, 

along with data on the X =  profits of the companies (i.e., profit expressed in millions of 

dollars; the data is available as a file executive.xls). It is commonly thought that there should 

be a relationship between these two variables, either because more profitable companies can 

afford to hire better chief executives (and pay them more) or because executive talent leads to 

higher profits (note that Figure 1.1 confirms this belief). To digitalize this belief one can use 

either the correlation coefficient (in our case corr(Comp,Profit)=0,66) or create a 

regression model   

 

i i i
α β ε= + ⋅ +Comp Profit . 

 

For the sake of brevity and generality, we rewrite this model as  

 

i i i
Y Xα β ε= + + , 
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Figure 0.1.  XY-plot (or scatter diagram) of profits against executive compensation 

 

where Y is referred to as the dependent variable, X the independent or explanatory variable, 

ε  the error term of the model, and α  and β , coefficients. The coefficient β  quantifies the 

X‘s influence on Y, its estimate ˆb β=  (alongside with ˆa α= ) is usually obtained with the 

help of ordinary least squares (OLS) method:  

 

 2

1
,

( , ) arg min ( ( ))
N

i ii
a b Y X

α β

α β
=

= − +∑  (0.1) 
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(in our case 0.00084b = , which means that if company‘s profit increases by 1 (million of 

dollars), then executive‘s salary increases on average by 0.00084 (million of dollars)=$840). 

 
Model 1: OLS, using observations 1-70 

Dependent variable: Comp 

 

             coefficient   std. error    t-ratio    p-value  

  ---------------------------------------------------------- 

  const      0,599965      0,112318       5,342    1,15e-06  *** 

  Profit     0,000842      0,000117       7,228    5,50e-010 *** 

 

Mean dependent var   1,138571   S.D. dependent var   0,928189 

Sum squared resid    33,61789   S.E. of regression   0,703122 

R-squared            0,434479   Adjusted R-squared   0,426162 

F(1, 68)             52,24308   P-value(F)           5,50e-10 

Log-likelihood      -73,65540   Akaike criterion     151,3108 

Schwarz criterion    155,8078   Hannan-Quinn         153,0971 

 

 

Recall that here t-ratio (or t-statistics) is defined as 0
ˆ( ) / .t std errorβ β= −  and is designed to 

test the hypothesis 0 0:H β β= . In the above table 0 0β = , thus ˆ / .t std errorβ= . If the 

discrepancy  t  is “big“, more specifically, if p-value is less than 0.05, we reject 0H  –  this 

means that X  influences Y. 

 

Clearly, compensation cannot be explained by the profit alone. In fact, the data set 

executive.xls contains two more explanatory variables: W=change in sales and Z=change in 

debt. The extented, multiple regression, model  

 

1 2 3i i i i i
Y X W Zα β β β ε= + + + +  

 

is usually presented in the form of a regression table:  
 

 

Model 2: OLS, using observations 1-70 

Dependent variable: Comp 

 

             coefficient    std. error    t-ratio   p-value  

  ---------------------------------------------------------- 

  const       0,565674      0,132710       4,262    6,57e-05 *** 

  Profit      0,000807743   0,000113558    7,113    1,02e-09 *** 

  ChSales    -0,00397477    0,0102140     -0,3891   0,6984   

  ChDebt      0,0279660     0,0100031      2,796    0,0068   *** 

 

Mean dependent var   1,138571   S.D. dependent var   0,928189 

Sum squared resid    30,00558   S.E. of regression   0,674263 

R-squared            0,495245   Adjusted R-squared   0,472302 

F(3, 66)             21,58553   P-value(F)           7,45e-10 

Log-likelihood      -69,67678   Akaike criterion     147,3536 

Schwarz criterion    156,3475   Hannan-Quinn         150,9261 

 

Excluding the constant, p-value was highest for variable 3 (ChSales) 
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The interpretation of regression coefficients is subject to ceteris paribus conditions. For 

instance, ˆ
j j

b β=  measures the marginal effect of 
j

X  on Y, holding the other explanatory 

variables constant. Thus, the marginal effect of Profit remains virtually unchanged.     

 

As the ChSales variable is not significant, we rewrite Model 2 in a more parsimonious 

form: 

 
Model 3: OLS, using observations 1-70 

Dependent variable: Comp 

 

             coefficient   std. error    t-ratio    p-value  

  ---------------------------------------------------------- 

  const      0,536816      0,109359       4,909    6,17e-06  *** 

  Profit     0,000814567   0,000111483    7,307    4,27e-010 *** 

  ChDebt     0,0269409     0,00958869     2,810    0,0065    *** 

 

Mean dependent var   1,138571   S.D. dependent var   0,928189 

Sum squared resid    30,07442   S.E. of regression   0,669979 

R-squared            0,494087   Adjusted R-squared   0,478985 

F(2, 67)             32,71694   P-value(F)           1,22e-10 

Log-likelihood      -69,75699   Akaike criterion     145,5140 

Schwarz criterion    152,2595   Hannan-Quinn         148,1934 

 

 

Which of the three models is “best“? The first requirement is “all explanatory variables must 

be significant“ – thus we shall compare only Model 1 and Model 3.  

 

Secondly, most model selection criteria attempt to find the model with the smallest 

2

1

N

ii
SSR e

=
=∑ . The criteria we examine fit this general approach; the differences among 

criteria amount to different penalties for the number of degrees of freedom used in estimating 

the model (that is, the number of parameters estimated). Because all of the criteria are 

effectively estimates of the sum of squares of residuals, they have a negative orientation – that 

is, the smaller the better.  

 

The popular characteristic of the model quality is the coefficient of determination 2
R :  

 

2 1
SSR

R
SST

= − , 

 

where 
2

1
( )

N

ii
SST Y Y

=
= −∑ (if, for example, 2 0.65R = , we say that the right-hand variables 

explain 65% of Y‘s variability) . The problem with 2
R  is that it cannot fall when more 

explanatory variables are added to a model and therefore R-squared of Model 3 

(=0,494087) could be  greater than that of Model 1 (=0,434479) just because the Model 3 

has more explanatory variables.  

 

There are many possibilities to penalize for extra explanatory variables (k is the number of 

explanatory variables):  
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• Adjusted 2
R :  2 / ( )

1
/ ( 1)

SSR N k
R

SST N

−
= −

−
 

 

• Akaike information criterion : exp(2 / )
SSR

AIC k N
N

=  

 

• Schwarz information criterion: /k N SSR
SIC N

N
=  

 

• Hannan-Quinn information criterion ln 2 log log
SSR

HQC n k n
n

= +  

 

Note that sometimes these criteria (most popular among them are AIC and SIC) give 

conflicting answers. Always follow the rule: if a few models have the same left-hand variable, 

the best is with the smallest AIC and/or SIC. In our case,  Model 3 is definitely better than 

Model 1. 

 
 

• Time series data 

 

Financial researchers are often interested in phenomena such as stock prices, interest rates, 

exchange rates, etc. This data is collected at specific points in time. In all of these examples, 

the data are ordered by time and are referred to as time series data. The underlying 

phenomenon which we are measuring (e.g., stock prices, interest rates, etc.) is referred to as a 

variable. Time series data can be observed at many frequencies. Commonly used frequencies 

are: annual (i.e. a variable is observed every year), quarterly (i.e. four times a year), 

monthly, weekly or daily.  

 

In this course, we will use the notation 
t

Y  to indicate an observation on variable Y (e.g., an 

exchange rate) at time t. A series of data runs from period t = 1 to t = T. “T ” is used to 

indicate the total number of time periods covered in a data set. To give an example, if we were 

to use monthly time series data from January 1947 through October 1996 on the UK 

pound/US dollar exchange – a period of 598 months – then t = 1 would indicate January 1947, 

t = 598 would indicate October 1996 and T = 598 the total number of months. Hence, 1Y  

would be the pound/dollar exchange rate in January 1947, 2Y  this exchange rate in February 

1947, etc. Time series data are typically presented in chronological order. 

 

One objective of analysing economic data is to predict or forecast the future values of 

economic variables. One approach to do this is to build a more or less structural (for example, 

regression) econometric model, describing the relationship between the variable of interest 

with other economic quantities, to estimate this model using a sample of data, and to use it as 

the basis for forecasting and inference. Although this approach has the advantage of giving 

economic content to one’s predictions, it is not always very useful. For example, it may be 

possible to adequately model the contemporaneous relationship between unemployment and 

the inflation rate, but as long as we cannot predict future inflation rates we are also unable to 

forecast future unemployment. 
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In the first part  of this course (Ch. 1-3) we follow a different route: a pure time series 

approach. In this approach the current values of an economic variable are related to past 

values. The emphasis is purely on making use of the information in past values of a variable 

for forecasting its future. In addition to producing forecasts, time series models also produce 

the distribution of future values, conditional upon the past, and can thus be used to evaluate 

the likelihood of certain events.    �� 

 

The most interesting results in econometrics during the last 20-30 years were obtained in the 

intersection of cross-sectional and time series methods. In the second part of this course (Ch. 

4-7) we shall get to know different variants of  

 

• regression models for time series 

 

Another possibility to combine the two above-mentioned methods is to deal with the so-called  

 

• panel data  

 

A data set containing observations on multiple phenomena observed over multiple time 

periods is called panel data. Panel data aggregates all the individuals, and analyzes them in a 

period of time. Whereas time series and cross-sectional data are both one-dimensional, panel 

data sets are two-dimensional. 

 
person year income age sex 

1 2003 1500 27 1 

1 2004 1700 28 1 

1 2005 2000 29 1 

2 2003 2100 41 2 

2 2004 2100 42 2 

2 2005 2200 43 2 

In the above example, a data set with panel structure is shown. Individual characteristics 

(income, age, sex) are collected for different persons and different years. Two persons (1, 2) 

are observed over three years (2003, 2004, 2005). Because each person is observed every 

year, the data set is called a panel. 

0.3. Software 

There are many statistical software programs. Broadly speaking, they can be divided into 

commercial (SAS, SPSS, EViews,...) and free (R, GRETL) software; on the other hand, 

according to the way the procedures are performed, they can be divided into menu-driven and 

programable (R). The latter two groups nowadays have shown a tendency to combine – for 

example, EViews, gretl and the commercial S-Plus, all allow to program your steps or perform 

them from the toolbar. This course is accompanied by computer labs where statistical 

procedures will be usually performed with GRETL or R (necessary packages are described in 

http://cran.r-project.org/web/views/TimeSeries.html).  

 

************************ 

 

The rest of this course is devoted to the analysis of time series data. 
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1. Time Series: Examples 

 

Time series are analysed to understand the past and to predict the future, enabling managers or 

policy makers to make properly informed decisions. A time series analysis quantifies the main 

features in data and the random variation. These reasons, combined with improved computing 

power, have made time series methods widely applicable in government, industry, and com-

merce. 

 

1.1 example. Stock returns. 

Let 
t

P  be the price of an asset at time t . The one-period (simple) return is  

1

1

t t

t

t

P P
R

P

−

−

−
= . 

Consider monthly returns on Citigroup stock from 1990:01 through 1998:12 (to input the data, 

open gretl, go to File| Open data| Sample file...| Ramanathan| data9-13| right-click on cret 

and choose Time series plot). 
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Figure 1.1. Monthly returns on Citigroup stock. 

 

The returns oscillate rather regularly around some constant (which is greater than zero – this 

means that the returns are generally positive). It is a very simple time series, the best future 

forecast is probably just this constant. One of the main objectives of this course is to learn 

how to forecast time series.  

 

 

 

 



©   R. Lapinskas, PE.II - 2013 

      1. Time Series: Examples 

1-2  

 
 

1.2 example. Air passenger bookings.   

 

The number of international passenger bookings (in thousands) per month on an airline (Pan 

Am) in the United States were obtained from the Federal Aviation Administration for the pe-

riod 1949:1–1960:12 (this classic Box & Jenkins airline data is available as airlines file 

from the fma package of the R program; it can also be found as AP.gdt or AP.txt in the PEdata 

folder accompanying this course). The company used the data to create a model which was 

used to predict future demand before ordering new aircraft and training aircrew. 
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Figure 1.2. International air passenger bookings in the United States for the period 

1949-1960.                              

 

There are a number of features in the time plot of the air passenger data that are common to 

many time series. For example, it is apparent that the number of passengers travelling on the 

airline is increasing with time. In general, a systematic and deterministic change in a time se-

ries that does not appear to be periodic is known as a trend. The simplest model for a trend is 

a linear increase or decrease, and this is often an adequate approximation. 

 

A repeating pattern within each year is known as seasonal variation, although the term is ap-

plied more generally to repeating patterns within any fixed period, such as restaurant bookings 

on different days of the week. There is clear seasonal variation in the air passenger time series. 

At the time, bookings were highest during the summer months of June, July, and August and 

lowest during the autumn month of November and winter month of February. 
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1.3 example. Sales of shampoo over a three year period 

 

The data available as shampoo in the fma package is a monthly sales of shampoo for the pe-

riod 1:1 – 3:12.  
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Figure 1.3. Sales of shampoo over a three-year period. 

 

The series has no seasonal component, it is consisting only of a trend and an irregular compo-

nent.  

 

1.4 example. Quarterly exchange rate: GBP to NZ dollar 

 

The trends and seasonal patterns in the previous two examples were clear from the plots. In 

addition, reasonable explanations could be put forward for the possible causes of these featu-

res. With financial data, exchange rates for example, such marked patterns are less likely to be 

seen, and different methods of analysis are usually required. A financial series may sometimes 

show a dramatic change that has a clear cause, such as a war or natural disaster. Day-to-day 

changes are more difficult to explain because the underlying causes are complex and impos-

sible to isolate, and it will often be unrealistic to assume any deterministic component in the 

time series model. 

 

The quarterly exchange rates for British pounds sterling to New Zealand dollars for the period 

1991:1 to 2000:3 are shown in Fig. 1.4. The data (available as pounds_nz.dat) are mean values 

taken over quarterly periods of three months. 
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Figure 1.4. Quarterly exchange rates xrate for the period 1991–2000 (red); differences 

diff(xrate) (blue) seem to be more regular and, possibly, stationary 

 

The trend seems to change direction at unpredictable times rather than displaying the relative-

ly consistent pattern of the air passenger series. Such trends have been termed stochastic 

trends to emphasise this randomness and to distinguish them from more deterministic trends 

like those seen in the previous examples. A mathematical model known as a random walk or 

DS time series can sometimes provide a good fit to data like these and is discussed in Ch. 4. 

  

One of the main applications of the time series theory is prediction. If we reconsider our 

examples, it seems plausible that we should use the mean to forecast stock returns; to forecast 

sales of shampoo use its trend, air passenger bookings should be forecasted with its trend plus 

seasonal component and it is not quite clear at the moment how to forecast stochastic trend of 

the quarterly exchange rate. We will learn soon how to realize this program.    
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2. Stationary Time Series 

2.1. White Noise - 1 

All time series may be divided into two big classes – (covariance or weak) stationary and 

nonstationary. We shall postpone the exact definitions to subsequent sections, but for the mo-

ment - a process which randomly but rather regularly (with more or less constant spread) fluc-

tuates around its constant mean is called stationary. Three examples of such series can be seen 

in Fig. 2.1. 
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Figure 2.1. Three examples of stationary series; note that the third process (right-most) re-

verts to its mean much slowlier than the previous two.  

 

In Fig. 2.2 you can see four examples of nonstationary time series. 
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Figure 2.2. All four time series in this figure are not „rather regularly fluctuating around its 

constant mean“; these time series are not stationary 

 

The simplest stationary random process, which is at the same time the main building block of 

all other stationary series, is the so-called white noise – this is a sequence of uncorrelated ran-

dom variables with zero mean and constant variance (its graph is plotted in Fig. 2.1, left; note 

that the graph of the stock return, see Fig. 1.1, is quite similar to it). However, how can we 

know that the other two graphs there are not of the WN? Two functions, ACF (autocorrelation 

function) and PACF (partial autocorrelation function), come to our rescue: if all the bars 

(except the zeroth in ACF) are within the blue band, the stationary process is WN (see Fig. 

2.3).   
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Figure 2.3. The time series WN is a white noise, while the other two are not. 

 

 

 

 

 

Remark. Note that when observing or measuring time series we obtain numbers 1 2, ,...,
T

y y y . 

On the other hand, these numbers are just one realization of random variables 1 2, ,...,
T

Y Y Y . In 

the sequel, we shall follow a common practice and in both cases use the same upper-case letter 

notation (it will be clear from the context what do we mean). If we mean random variables, we 

can speak about the probability distribution of these random variables, their expectations
t

EY , 

variances
t

DY  etc. Using these probabilistic concepts, we can now give a more precise defini-

tion of stationary series: if 
t

EY const≡ (i.e., does not depend on t ), the process is called mean-

stationary; if 2
t

DY σ≡ , the process is called variance-stationary; if both conditions hold, the 

process is called  (weakly-) stationary
2
.   

                                                 
1
 This is only the first step which must be followed by the Ljung-Box test (see p. 2-9). 

2
 In fact, the definition of stationarity is still a bit more complicated, see p. 2-3. 

To decide whether the time series is stationary, examine its graph. 

To decide whether a stationary time series is white noise, examine its ACF and PACF
1
. 
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Figure 2.4. One realisation (or path or trajectory) of a mean-nonstationary series (left), va-

riance-nonstationary series (center), and stationary time series (right) 

2.2. Covariance Stationary Time Series 

 

In contrast to cross-sectional data where different observations were assumed to be uncorre-

lated, in time series we require is that there be some dynamics, some persistence, some way in 

which the present is linked to the past and the future to the present. The known or historical 

data conveys information regarding their future, thus allowing to forecast the future. 

 

If we want to forecast a series, at a minimum we would like its mean and its covariance struc-

ture to be stable over time; in that case, we say that the series has covariance stationarity. The 

first requirement for a series to be covariance stationary is that the mean of the series be stable 

over time. The mean of the series at time t is 
t t

EY µ= ; if the mean is stable over time, as re-

quired by covariance stationarity, then we can write 
t

EY µ≡ .  

 

The second requirement for a series to be covariance stationary is that its covariance structure 

be stable over time. Quantifying stability of the covariance structure is a bit tricky, but tre-

mendously important, and we do it by using the autocovariance function (ACF). The auto-

covariance at displacement τ  is just the covariance between 
t

Y  and tY τ− . It will, of course, 

depend on τ , and it may also depend on t, so in general we write  

 

 ( , ) cov( , ) ( )( )t t t tt Y Y E Y Yτ τγ τ µ µ− −= = − −  (2.1) 

 

If the covariance structure is stable over time, as required by covariance stationarity, then the 

autocovariances depend only on displacement τ , not on time t, and we write ( , ) ( )tγ τ γ τ= . 

Note that (0) cov( , ) ( )t t tY Y DYγ = = < ∞ . Autocovariance function is important because, after 

all, it is the only characteristics which allows us to distinguish between different stationary 

time series (it provides a basic summary of cyclical dynamics and interdependence in a covar-

iance stationary series.)   

 

A time series 
t

Y  is stationary if its mean, variance and covariance  

do not depend on  t :  
t

EY µ≡ , 2
t

DY σ≡ , and ( , ) ( )tγ τ γ τ≡ . 
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Figure 2.5. Two trajectories (red and green) of stationary process can depart considerably 

from its mean (=0) but the sample mean of 100 such trajectories (black) is almost equal to 0. 

 

In light of the superior interpretability of correlations compared to covariances, we often work 

with the correlation  between tY  and tY τ− . That is, we work with the autocorrelation function 

( )ρ τ  rather than the autocovariance function ( )γ τ . The autocorrelation function is obtained 

by dividing the autocovariance function by the variance: 

 

 
cov( , ) ( )

( )
(0)

t t

t t

Y Y

DY DY

τ

τ

γ τ
ρ τ

γ
−

−
= =  (2.2) 

(note that we always have (0) 1ρ = , | ( ) | 1ρ τ ≤ ).  

 

Finally, the partial autocorrelation function (PACF) ( )p τ  is sometimes useful ( ( )p k  is just a 

coefficient on t kY −  in a population linear regression 1 1 ...t t k t k tY Y Yα β β ε− −= + + + + , i.e., 

( ) kp k β= ). The partial autocorrelations, in contrast to just autocorrelations, measure the as-

sociation between tY  and tY τ−  after controlling for the effects of 1 1,...,t tY Y τ− − + ; that is, they 

measure the partial correlation between tY  and tY τ− .  

 

2.3. White Noise - 2 

 

The fundamental building block of all stationary time series is the so-called white noise
3
 pro-

cess which we define as a sequence of zero mean, constant variance 2σ and serially uncorre-

lated
4
 r.v.’s (we denote it by 2~ (0, )tε σ  or 2~ (0, )t WNε σ .) Note that sometimes, instead 

                                                 
3
 White noise is analogous to white light, which is composed of all colors of the spectrum in equal amounts. We 

can think of white noise as being composed of a wide variety of cycles of differing periodicities in equal 

amounts.  
4
 That is, ( , ) 0tρ τ ≡  for 1τ >  and any t. 
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of uncorrelatedness, we demand a somewhat stronger property of independence (if tε  is 

normally distributed, then these two definitions coincide; the normal or Gaussian white noise 

will be denoted by 
i.i.d.

2~ (0, )t Nε σ , where i.i.d. means independent identically distributed). 
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Figure 2.6. Sample path of a simulated
5
 Gaussian white noise wn of length 150T = ; there 

are no patterns of any kind in the series due to the independence over time.  

 

From the definition it follows that 0tEε ≡ , 2
tDε σ≡ . To complete the proof of stationarity, 

we have to show that ACF ( , ) ( )( )t t t t t tt E E E Eτ τ τγ τ ε ε ε ε ε ε− − −= − − =  or, what is the same 

2( , ) ( ( , ) / )t tρ τ γ τ σ=  does not depend on t. Fortunately, it is very easy: for any t , 

 

1, 0
( , ) ( ) ( ( ))

0, 0
t p

τ
ρ τ ρ τ τ

τ
=

= = =
≠

 

 

(the absence of autocorrelation means that WN “has no memory”.)  

 

 

A bit later we shall show that any stationary process can be expressed in terms of WN. An 

example in that direction is as follows:  

2.1 example. The time series 1 1t t tY bε ε −= +  is stationary. Indeed, 

i) 1 1 1( ) 0 0 0t t tEY E b bε ε −= + = + ⋅ ≡ , ii) 2 2
1(1 )tDY bσ≡ +  and  

iii) 2
1 1 1 1 1 2 1( ,1) ( )( )t t t t t tt EY Y E b b bγ ε ε ε ε σ− − − −= = + + ≡ , ( , ) 0t tt EY Y τγ τ −= ≡ , if 1τ >  . 

 

The last line means that this process has a very short memory (i.e., if 
t

Y  and 
t

Y τ+  are separat-

ed by more that one time period, they are uncorrelated). On the other hand, this series does not 

make a WN (why?). 

                                                 
5
 GRETL command is series wn=normal(); in R we write wn=rnorm(n). 
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2.4. The Lag Operator 

 

The lag operator and related constructs are the natural language in which time series models 

are expressed. The lag operator L  is very simple. It "operates" on a series by lagging it; thus, 

 

 1t tLY Y −= . (2.3) 

 

Similarly, 2
1 2( ( )) ( )t t t tL Y L L Y L Y Y− −= = =  and so on: p

t t p
L Y Y −= . Typically, we operate on a 

series not with the lag operator but with a polynomial in the lag operator. A lag operator poly-

nomial of degree m is just a linear function of powers of L up through the mth power: 
2

0 1 2( ) ... m

mB L b b L b L b L= + + + + . For example, if 2( ) 1 0.9 0.6B L L L= + − , then  

 

1 2( ) 0.9 0.6t t t tB L Y Y Y Y− −= + − . 

 

A well-known operator, the first-difference operator ∆ , is actually a first-order polynomial in 

the lag operator; you can readily verify that 1 (1 )t t t tY Y Y L Y−∆ = − = − . 

 

Thus far, we have considered only finite-order polynomials in the lag operator; it turns out, 

however, that infinite-order polynomials are also of great interest. We write the infinite-order 

lag operator polynomial as 

2
0 1 2 0

( ) ... i

ii
B L b b L b L b L

∞
=

= + + + =∑  

 

At first sight, infinite distributed lags may seem esoteric and of limited practical interest be-

cause models with infinite distributed lags have infinitely many parameters 0 1 2( , , ,...)b b b  and 

therefore cannot be estimated with a finite sample of data. On the contrary, and surprisingly, it 

turns out that models involving infinite distributed lags are central to time series modeling and 

forecasting. Wold's theorem, to which we now turn, establishes that centrality. 

 

2.5. The General Linear Process 

 

What we are looking for now is a model for stationary process. Wold's representation theorem 

points to the appropriate model. 

 

Wold’s Representation Theorem. Let { tY } be any zero-mean covariance stationary process. 

Then we can write it as 

2

0
( ) , ~ (0, )

t t i t i ti
Y B L b WNε ε ε σ∞

−=
= =∑ , 

where 0 1b =  and 2

0 ii
b

∞
=

< ∞∑ . On the other hand, any process of the above form is station-

ary.  �   

2.2 example. Take 1 2 ... 0b b= = =  - this corresponds to white noise. Thus, once again, WN is 

a stationary process. 

2.3 example.  The time series of  2.1 example is stationary 
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2.4 example. Take 1b = ϕ 2 3
2 3, , ,...b bϕ ϕ= =  – since 21 ... 1/ (1 )ϕ ϕ ϕ+ + + = − < ∞  if 

| | 1ϕ < , the process 2
1 2 ...

t t t t
Y ε ϕ ε ϕ ε− −= + + +  is stationary in this case. 

 

In our statement of Wold's theorem, we assumed a zero mean. That may seem restrictive, but 

it is not. Rather, whenever you see tY , just read tY µ−  so that the process is expressed in de-

viations from its mean. The deviation from the mean has a zero mean, by construction. Work-

ing with zero-mean processes therefore involves no loss of generality while facilitating nota-

tional economy.  

 

As we have seen, the Wold representation points to the crucial importance of models with in-

finite distributed lags. Infinite distributed lag models, in turn, are stated in terms of infinite 

polynomials in the lag operator, which are therefore very important as well. Infinite distribut-

ed lag models are not of immediate practical use, however, because they contain infinitely 

many parameters, which certainly inhibits practical application. Fortunately, infinite polyno-

mials in the lag operator need not contain infinitely many free parameters. The infinite poly-

nomial ( )B L  may, for example, be a function of of one parameter ϕ  as in 2.4 example or a 

ratio of finite-order (and perhaps very low-order) polynomials. Such polynomials are called 

rational polynomials, and distributed (weighted) lags constructed from them are called rational 

distributed lags. Suppose, for example, that ( ) ( ) / ( )B L L L= Θ Φ , where the numerator poly-

nomial is of degree q , 
0

( )
q i

ii
L Lθ

=
Θ =∑  and the denominator polynomial is of degree p , 

0
( )

p i

ii
L Lϕ

=
Φ =∑ . There are not infinitely many free parameters in the ( )B L  polynomial; 

instead, there are only p + q parameters. If p and q are small, say 0, 1, or 2, then what seems 

like a hopeless task – estimation of ( )B L  – may actually be easy. 

 

More realistically, suppose that ( )B L  is not exactly rational, but is approximately rational. 

Then we can approximate the Wold representation by using a rational distributed lag. Rational 

distributed lags produce models of cycles that economize on parameters (they are parsimoni-

ous), while nevertheless providing accurate approximations to the Wold representation. The 

popular ARMA and ARIMA forecasting models, which we will study shortly, are simply ra-

tional approximations to the Wold representation. 

 

2.6. Estimation and Inference for the Mean, Autocorrelation, and 

Partial Autocorrelation Functions 

 

Now suppose we have a sample of data of a stationary time series, but we know neither the 

true model that generated the data (i.e., the polinomial ( )B L ) nor the mean, autocorrelation 

function, or partial autocorrelation function associated with that true model. Instead, we want 

to use the data to estimate the mean, autocorrelation function, and partial autocorrelation func-

tion, which we might then use to help us learn about the underlying dynamics, and to decide 

upon a suitable model or set of models to fit to the data. 

 

• Sample Mean 

 

The mean of a stationary series is (usually unknown nonrandom) number tEYµ = . A funda-

mental principle of estimation, called the analog principle, suggests that we develop estima-
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tors by replacing expectations with sample averages. Thus, our estimator of the population 

mean, given a sample of size T, is the sample mean
6
 

1
/

T

tt
Y Y T

=
=∑ . Typically, we are not 

directly interested in the estimate of the mean, but it is needed for estimation of the autocorre-

lation function. 

 

 

• Sample Autocorrelations 

 

The autocorrelation at displacement or lag τ  for the covariance stationary series { }tY  is  

 

2

( )( )
( )

( )

t t

t

E Y Y

E Y

τµ µ
ρ τ

µ
−− −

=
−

. 

 

Application of the analog principle yields a natural estimator of ( )ρ τ : 

 

1

2

1

[( )( )] /
ˆ ( )

( ) /

T

t tt

T

tt

Y Y Y Y T

Y Y T

ττρ τ −= +

=

− −
=

−

∑
∑

. 

 

This estimator, viewed as a function of τ , is called the sample autocorrelation function (sam-

ple ACF). It is often of interest to assess whether a series is reasonably approximated as white 

noise, which is to say whether all of its autocorrelations are zero in population. A key result, 

which we simply assert, is that if a series is white noise, then the sample autocorrelations 

ˆ( ), 1,..., ,Kρ τ τ =  in large samples are independent and all have the 2(0, (1/ ) )TN  distribu-

tion. Thus, if the series is white noise, approximately 95% of the sample autocorrelations 

should fall in the interval 2 / T± . In practice, when we plot the sample autocorrelations for a 

sample of data, we typically include the "two standard error bands" which are useful for mak-

ing informal graphical assessments of whether and how the series deviates from white noise. 

Note that exactly the same claim holds for PACF: if a series is white noise, approximately 

95% of the sample partial autocorrelations should fall in the interval 2 / T± . As with the 

sample autocorrelations, we typically plot the sample partial autocorrelations along with their 

two-standard-error bands. 

 

The two-standard-error  bands, although very useful, provide 95% bounds for only the sample 

autocorrelations taken one at a time. Ultimately, we are often interested in whether a series is 

white noise, that is, whether all its autocorrelations are jointly 0, that is, all ( ), 1, 2,..., ,i i Kρ =  

equal zero. Clearly, because of a limited sample size we can take only a finite number of ρ ’s.  

It can be shown that the Ljung-Box statistic ( 2)Q T T= + ⋅  2

1
ˆ ( ) / ( )

K
Tτ ρ τ τ

=
−∑ , under the 

null hypothesis that Y is white noise, is approximately distributed as a 2
Kχ  random variable. 

To test the zero 0 : (1) 0,H ρ = (2) 0,...,ρ =  ( ) 0Kρ = , we have to calculate the valuep −  p-

2( )Kvalue P qχ= > : if p-value < 0.05, we reject 0H  and assume that Y is not white noise.  

 

                                                 
6
 If we treat 

t
Y  as random, Y  is random, otherwise it is just a real nonrandom number.  
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Figure 2.7. ACF and PACF of the generated wn of Fig. 2.1; (almost) all ˆ ( )ρ τ  and ˆ ( )p τ  

are within “blue band”, i.e., there is no ground to reject the white noise hypothesis. 

 

Selection of K is done to balance competing criteria. On the one hand, we don't want K to be 

too small because, after all, we are trying to do a joint test on a large part of the autocorrela-

tion function. On the other hand, as K grows relative to T, the quality of the distributional 

approximations we have invoked deteriorates. In practice, focusing on K in the neighborhood 

of T  is often reasonable
7
. � 

 

 

To illustrate the ideas we have introduced, we examine a quarterly, seasonally adjusted index 

of Canadian employment (available as caemp.txt) for 1962:1-1995:4 (see Fig.2.8). The series 

displays no trend, and, of course, it displays no seasonality because it is seasonally adjusted 

(we shall discuss seasonality in the next chapter). It does, however, appear highly serially cor-

related (it evolves in a slow, persistent fashion – high in business cycle booms and low in re-

cessions).  

 

The sample autocorrelations are very large relative to their standard errors and display slow 

one-sided decay. The sample partial autocorrelations, in contrast, are large relative to their 

standard errors at first (particularly for the 1-quarter displacement) but are statistically negli-

gible beyond displacement 2. It is clear that employment has a strong cyclical component; the 

diagnostics in Fig. 2.8 rejects the white noise hypothesis. Moreover, the sample auto-

correlation and partial autocorrelation functions have particular shapes – the autocorrelation 

function displays slow one-sided damping, whereas the partial autocorrelation function cuts 

off at a displacement of 2. You might guess that such patterns, which summarize the dynamics 

in the series, might be useful for suggesting candidate forecasting models. Such is indeed the 

case, as we shall see in the next sections. 

                                                 
7
 The “blue lines” are for quick estimation of possible outliers. Always test your assumption of WN with Ljung-

Box test not for one but for a set of different K ’s (in GRETL and R (function tsdiag in the forecast package) 

this is done automatically). 
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Figure 2.8. Canadian employment index (left; clearly, caemp cannot depart too far from its 

mean, therefore we treat it as stationary) and ACF and PACF graphs (right) 

 

To end up with caemp, we shall once again test the WN hypothesis, this time by using the 

Ljung-Box statistic. After opening GRETL and importing caemp.txt, direct to Model| Time 

Series| ARIMA…, fill all boxes with 0, and press OK. In the table, choose Graphs| Residual 

correlogram. You will get the following table: 

 
  LAG      ACF          PACF         Q-stat. [p-value] 

 

    1   0,9585  ***   0,9585 ***    127,7312  [0,000] 

    2   0,8971  ***  -0,2669 ***    240,4517  [0,000] 

    3   0,8285  ***  -0,0671        337,3193  [0,000] 

    4   0,7545  ***  -0,0819        418,2578  [0,000] 

    5   0,6782  ***  -0,0451        484,1585  [0,000] 

    6   0,6018  ***  -0,0364        536,4449  [0,000] 

    7   0,5270  ***  -0,0256        576,8441  [0,000] 

    8   0,4518  ***  -0,0627        606,7683  [0,000] 

    9   0,3736  ***  -0,0904        627,3982  [0,000] 

   10   0,2915  ***  -0,0969        640,0584  [0,000] 

   11   0,2110  **   -0,0218        646,7420  [0,000] 

   12   0,1369        0,0153        649,5790  [0,000] 

   …………………………………………………………………………………………………………………………………   

   19  -0,0868        0,0790        654,5980  [0,000] 

   20  -0,0745        0,0350        655,4961  [0,000] 

In the first line,  Q-stat.(= 127,7312) corresponds to 1m = , p-value [0.000] is defi-

nitely lesss than 0.05, thus we reject the hypothesis 0 : (1) 0H ρ = . In the second line, Q-

stat.(= 240,4517) corresponds to 2m = , p-value [0.000] is lesss than 0.05, thus we 

reject the hypothesis 0 : (1) 0, (2) 0H ρ ρ= =  and so on. Once again we see that caemp is defi-

nitely not a white noise.  

 

Now we shall present a few more examples of stationary processes. 
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2.7. Moving-Average (MA) Models 

 

The finite-order moving-average processes are natural and obvious approximations to the 

Wold representation, which is an infinite-order moving-average process. Finite-order moving-

average processes also have direct motivation: the fact that all variation in time series, one 

way or another, is driven by shocks of various sorts suggests the possibility of modeling time 

series directly as distributed lags of current and past shocks, that is, as moving-average pro-

cesses. 

 

• The MA(1) Process 

 

The first-order moving-average or MA(1) process is 

 

                                 2
1 (1 ) , , ~ (0, )t t t t tY L WNε θε θ ε θ ε σ−= + = + −∞ < < ∞ .              (2.4) 

 

The defining characteristic of the MA process in general, and the MA(1) process in particular, 

is that the current value of the observed series is expressed as a function of current and lagged 

unobservable shocks tε . Note that whatever is θ , MA(1) is always a stationary process with  

 

1( ) ( ) 0t t tEY E Eε θ ε −= + ≡ ,      2 2 2
1 (1 )t t tDY D Dε θ ε σ θ−= + ≡ + , 

and   

2

1, 0

( ) / (1 ), 1

0, otherwise

τ

ρ τ θ θ τ

=

= + =



. 

 

The key feature here is the sharp cutoff in the autocorrelation functions - all the autocorrela-

tions are zero beyond displacement 1, the order of the MA process (see Fig. 2.9, left). 

 

It is easy to find another expression of MA(1).  As it follows from (2.4), 
t
ε = / (1 )

t
Y Lθ+  or, 

recalling the formula of geometric series, if | | 1θ < , 

 
2 2 3 3 2 3

1 2 3(1 ...) ...
t t t t t t

L L L Y Y Y Y Yε θ θ θ θ θ θ− − −= − + − + = − + − + , 

 

that is 
t

Y  can also be expressed as infinite series of its own lags: 

 

                                            2 3
1 2 3 ...

t t t t t
Y Y Y Yθ θ θ ε− − −= − + − + .                                       (2.5) 

 

As it follows from this expression, the partial autocorrelation function will decay gradually to 

zero (we have already mentioned in section 2.1 that the partial autocorrelations are just the co-

efficients on the last included lag in a sequence of progressively higher order autoregressive 

approximations.) If θ  < 0, then the pattern of decay will be one-sided; otherwise, the decay 

will be one of damped oscillation (see Fig. 2.9, right). 
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Figure 2.9. The theoretical correlogramm of the MA(1) process with 0.5θ = . 

 

• The MA(q) Process 

 

Now we shall consider the general finite-order moving-average process of order q, or MA(q) 

process for short, 

 
2

1 1 ... ( ) , , ~ (0, )
t t t q t q t i t

Y L WNε θ ε θ ε ε θ ε σ− −= + + + = Θ −∞ < < ∞  

where   

 1( ) 1 ... q

q
L L Lθ θΘ = + + +  (2.6) 

 

is a qth-order lag operator polynomial. The MA(q) process is a natural generalization of the 

MA(1) process. By allowing for more lags of the shock on the right side of the equation, the 

MA(q) process can capture richer dynamic patterns, which we can potentially exploit for im-

proved forecasting. The MA(1) process is, of course, a special case of the MA(q), correspond-

ing to q=1. 

 

The properties of the MA(q) processes parallel those of the MA(1) process in all respects, so 

in what follows we refrain from grinding through the mathematical derivations. Just as the 

MA(1) process was covariance stationary for any value of its parameters, so too is the finite-

order MA(q) process. The potentially longer memory of the MA(q) process emerges clearly in 

its autocorrelation function. In the MA(1) case, all autocorrelations beyond displacement 1 are 

0; in the MA(q) case, all autocorrelations beyond displacement q are 0. This autocorrelation 

cutoff is a distinctive property of moving-average processes. The partial autocorrelation func-

tion of the MA(q) process, in contrast, decays gradually, in accordance with the infinite auto-

regressive representation.  

 

Note that if we have a finite sample of a MA(q), its sample correlogram should not differ 

much from the theoretical one. This will help us to detect that the time series under considera-

tion is a moving average process.  

 

Again, as in MA(1) case, if 
i
θ ‘s satisfy certain conditions, 

t
Y  may be written as infinite con-

vergent series 1 1 2 2 ...
t t t t

Y a Y a Y ε− −= + + +  (such a MA(q) process is called invertible). 
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Figure 2.10. The theoretical correlogramm of the MA(3) process with 

1 2 3
1.2, 0.65, 0.35θ θ θ= = = −  (note that its ACF cuts off at 3t =  and PACF decays 

gradually). 

 

2.8. Autoregressive (AR) Models 

 

The autoregressive process is also a natural approximation to the Wold representation. We 

have seen, in fact, that under certain conditions a moving average process has an autoregres-

sive representation (see (2.5)) so an autoregressive process is in a sense the same as a moving-

average process. 

 

• The AR(1) Process 

The first-order autoregressive process, AR(1) for short, is 

2
1 , ~ (0, )t t t tY Y WNϕ ε ε σ−= +  

 

or, in lag operator form, (1 ) t tL Yϕ ε− =  or
8
 

1

1
t t

Y
L
ε

ϕ
=
−

.  

 

Note that the fluctuations (of the simulated AR(1) process) in the ϕ =0.9 case (see Fig. 2.11) 

appear much more persistent that those of the AR(1) with parameter ϕ =0.1. The former case 

contrasts sharply with the MA(1) process, which has a very short memory regardless of pa-

rameter value. Thus the AR(1) model is capable of capturing much more persistent dynamics 

than is the MA(1) model. 

 

Also note the special interpretation of the errors or disturbances or shocks 
t
ε  in the time series 

theory: in contrast to the regression theory where they were understood as the summary of all 

unobserved 'X s , now they are treated as economic effects which have developed in period t .   

 

                                                 
8
 We have still to explain how to understand 1 / (1 )Lϕ− . 
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Figure 2.11. Two simulated
9
 AR(1) processes - red with 0.1ϕ =  (it is very like a 

WN) and blue with 0.9ϕ =  (the much more persistent one)  

Recall that a finite-order moving-average process is always covariance stationary, but that 

certain conditions must be satisfied for AR(1) to be stationary. The AR(1) process 

1t t tY Yϕ ε−= +  can be rewritten as  

 

2 2 2
1 2

1
(1 ...) ...

1
t t t t t tY L L

L
ε ϕ ϕ ε ε ϕ ε ϕ ε

ϕ − −= = + + + = + + +
−

. 

 

This Wold’s moving-average representation for Y is convergent if |ϕ | < 1; thus 

 

AR(1) is stationary if | | 1ϕ <  

 

Equivalently, the condition for covariance stationarity is that the root 1z  of the autoregressive 

lag operator polynomial (i.e., 11 0 1/z zϕ ϕ− = =∼ ) be greater than 1 in absolute value. This 

seems to be a complicated and redundant variant of the previous condition, but we shall see 

shortly that a similar condition on the roots is important in AR(p) case. 

 

From the moving-average representation of the covariance stationary AR(1) process, we can 

compute the mean and variance: 

 

... 0tEY = = , 
2

2
...

1
tDY

εσ

ϕ
= =

−
. 

An alternative procedure to find the mean is as follows: when |ϕ | < 1, the process is station-

ary, i.e., 
t

EY m≡ ; therefore, 1t t tEY EY Eϕ ε−= +  implies 0m mϕ= +  or 0m = . This methods 

allows us to easily estimate the mean of the following generalized AR(1) process: if 

1t t tY Yα ϕ ε−= + + , then / (1 )m α ϕ= − . 

                                                 
9
 In GRETL this can be done with the following commands: series e = normal() 

                                          series x = 0 

                                          x = 0.9*x(-1) + e 
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 It is easy to show that the correlogram of AR(1) is in a sense symmetric to that of MA(1) – 

the ACF function decays exponentially, namely, ( ) , 0,1, 2,...τρ τ ϕ τ= = and PACF cuts off 

abruptly, specifically, 

, 1
( )

0, 1
p

ϕ τ
τ

τ
=

= 
>

. 
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Figure 2.12. Theoretical AC function (left) and PAC function (right) for the AR(1) 

process with 0.85ϕ = . 

 

 

• The AR(p) Process 

 

The general pth order autoregressive process, or AR(p) process for short, is 

2
1 1 2 2 ... , ~ (0, )

t t t p t p t t
Y Y Y Y WNϕ ϕ ϕ ε ε σ− − −= + + + + . 

 

In lag operator form, we write 

 
2

1 2( ) (1 ... )p

t p t t
L Y L L L Yϕ ϕ ϕ εΦ = − − − − = . 

 

Similar to the AR(1) case, the AR(p) process is covariance stationary if and only if all the 

roots 
i

z of the autoregressive lag operator polynomial ( )zΦ  are outside the complex unit cir-

cle
10

 (note this condition does not have any relationship with the value of 1ϕ ): 

 
2

1 21 ... 0 | | 1p

p i
z z z zϕ ϕ ϕ− − − − = ⇒ > . 

 

AR(p) is stationary if all the roots | | 1iz >  

 

In the covariance stationary case, we can write the process in the convergent infinite moving-

average form ( )1/ ( )t tY L ε= Φ . The autocorrelation function for the general AR(p) process, as 

                                                 

10
 For a quick check of stationarity, use the following rule: if 

1
1

p

ii
ϕ

=
≥∑ , the process isn‘t stationary. 
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with that of the AR(1) process, decays gradually when the lag increases. Finally, the AR(p) 

partial autocorrelation function has a sharp cutoff at displacement p for the same reason that 

the AR(1) partial autocorrelation function has a sharp cutoff at displacement 1. 

 

2.5 example. Consider the AR(2) process 1 21.5 0.9t t t tY Y Y ε− −= − + . The corresponding lag 

operator polynomial is 21 1.5 0.9L L− +  with two complex conjugate roots, 1,2z = 0.83± 0.58i, 

| 1,2z |= 1.0253 > 1 (thus, the process is stationary). It can be shown that the autocorrelation 

function for an AR(2) process is 1 2(0) 1, (1) / (1 )ρ ρ ϕ ϕ= = − and 

 

1 2( ) ( 1) ( 2), 2,3,...ρ τ ϕ ρ τ ϕ ρ τ τ= − + − =                     

 

By using this formula, we can evaluate the autocorrelation function for the process at hand. 

We plot the correlogram of AR(2) process in Fig. 2.13. Because the roots are complex, the 

autocorrelation function oscillates, and because the roots are close to the unit circle, the oscil-

lation damps slowly. 
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Figure 2.13. Theoretical ACF of AR(2) process with complex roots 

 

The AR(p) is an obvious generalization of the AR(1) strategy for approximating the Wold 

representation. The (infinite) moving-average representation associated with the AR(p) pro-

cess depends on p parameters only: (1/ ( ))t tY L ε= Φ  and this fact simplifies the estimation 

procedure. 

 

Thus, a stationary AR process can be rewritten as a MA process (in general, of infinite order). 

However, in some cases the AR form of a stationary process is preferred to that of MA. The 

necessary definition says that the MA process is called invertible if it can be expressed as an 

AR process (in general, of infinite order). It appears that the MA(q) process      

 

2
1 1 ... ( ) , , ~ (0, )

t t t q t q t i t
Y L WNε θ ε θ ε ε θ ε σ− −= + + + = Θ −∞ < < ∞
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is invertible if all the roots of the polynomial 1( ) 1 ... q

q
x x xθ θΘ = + + +  lie outside the unit 

circle. For example, the MA(1) process 1t t t
Y ε ε −= −  (differences of WN) is not invertible 

(why?). 

  

2.9. Autoregressive Moving-Average (ARMA) Models 

 

Autoregressive and moving-average models are often combined in attempts to obtain better 

and more parsimonious approximations to the Wold representation, yielding the autoregres-

sive moving-average process, ARMA(p,q) process for short. As with moving-average and 

autoregressive processes, ARMA processes also have direct motivation. First, if the random 

shock that drives an autoregressive process is itself a moving-average process, then it can be 

shown that we obtain an ARMA process. Second, ARMA processes can arise from aggrega-

tion. For example, sums of AR processes, or sums of AR and MA processes, can be shown to 

be ARMA processes. Finally, AR processes observed subject to measurement error also turn 

out to be ARMA processes. 

 

The simplest ARMA process that is not a pure autoregression or pure moving-average process 

is the ARMA(1,1), given by 
2

1 1, ~ (0, )t t t t tY Y WNϕ ε θε ε σ− −= + +  

or, in lag operator form, 

(1 ) (1 )t tL Y Lϕ θ ε− = +  

 

where | | 1ϕ <  is required for stationarity and | | 1θ <  is required for invertibility. If the covari-

ance stationarity condition is satisfied, then we have the moving-average representation  

 

( )1 1 2 2
(1 )

...
(1 )

t t t t t

L
Y b b

L

θ
ε ε ε ε

ϕ − −
+

= = + + +
−

 

 

which is an infinite distributed lag of current and past innovations. Similarly, we can rewrite it 

in the infinite autoregressive form 

( )1 1 2 2
1

...
1

t t t t t

L
Y a Y a Y Y

L

ϕ
ε

θ− −
−

+ + + = =
+

. 

 

The ARMA(p,q) process is a natural generalization of the ARMA(1,1) that allows for multiple 

moving-average and autoregressive lags. We write 

 
2

1 1 1 1... ... , ~ (0, )
t t p t p t t q t

Y Y Y WNϕ ϕ ε θ ε θ ε σ− − −= + + + + + +  

or 

( ) ( ) .t tL Y L εΦ = Θ  

 

If all of the roots of ( )LΦ  are outside the unit circle, then the process is stationary and has 

convergent infinite moving-average representation ( ( ) / ( ))t tY L L ε= Θ Φ . If all roots of ( )LΘ  

are outside the unit circle, then the process can be expressed as the convergent infinite auto-

regression ( ( ) / ( )) t tL L Y εΦ Θ = . 
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ARMA models, by allowing for both moving average and autoregressive components, often 

provide accurate approximations to the Wold representation that nevertheless have just a few 

parameters. That is, ARMA models are often both highly accurate and highly parsimonious. 

In a particular situation, for example, it might take an AR(5) to get the same approximation 

accuracy as could be obtained with an ARMA(1,1), but the AR(5) has five parameters to be 

estimated, whereas the ARMA(1,1) has only two. 

 

The rule to determine the number of AR and MA terms: 

• AR(p) – ACF declines, PACF = 0 if k > p 

• MA(q) – ACF = 0 if k > q, PACF declines 

• ARMA(p,q) – both ACF and PACF decline 

 

2.10.   Specifying and Estimating Models with GRETL 

 

In Fig. 2.11, we plotted a sample of AR(1) process 1 1( ) 0.9
t t t t t

Y Y Yϕ ε ε− −= + = + . How can we 

restore or estimate the coefficient ϕ  assuming that we have „forgotten“ the way the trajectory 

was created? The first step is to make a guess about the type of the process, i.e., MA, AR, or 

ARMA? To do this, draw a correlogram of the time series (Fig. 2.14).  
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Figure 2.14. The correlogram of the time series x of Fig. 2.11 

 

The ACF is declining, PACF is cut off at 1, thus most probably this is an AR(1) process. As a  

second  step,  in  order  to  estimate  its  coefficients  in  GRETLl,  go  to  script  window  and 

type arma 1 0 ; x  

 
Model 3: ARMA, using observations 1-150 

Dependent variable: x 

 

             coefficient   std. error      z        p-value  

  ---------------------------------------------------------- 

  const       0.0262209    0.554593      0.04728   0.9623    

  phi_1       0.886945     0.0366913    24.17      4.26e-129 *** 
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The intercept is insignificant, thus we repeat the calculation without it: 

 
arma 1 0 ; x –nc 

series res = $uhat # save residuals 
t̂
ε  

corrgm res 12 # find their Ljung-Box p-values 

 

 

Model 4: ARMA, using observations 1-150 

Dependent variable: x 

 

             coefficient   std. error     z      p-value  

  ------------------------------------------------------- 

  phi_1       0.886872     0.0366704    24.18   3.20e-129 *** 

 

 

 
Autocorrelation function for res 

 

  LAG      ACF          PACF         Q-stat. [p-value] 

 

    1  -0.0387       -0.0387          0.2297  [0.632] 

    2   0.0696        0.0682          0.9752  [0.614] 

    3   0.1361  *     0.1421 *        3.8471  [0.278] 

    4  -0.0738       -0.0689          4.6966  [0.320] 

    5   0.0770        0.0530          5.6300  [0.344] 

    6  -0.0156       -0.0202          5.6688  [0.461] 

    7  -0.1358  *    -0.1315          8.6111  [0.282] 

    8   0.0878        0.0624          9.8493  [0.276] 

    9  -0.0449       -0.0078         10.1756  [0.336] 

   10  -0.1430  *    -0.1352 *       13.5054  [0.197] 

   11   0.0663        0.0338         14.2265  [0.221] 

   12  -0.0594       -0.0034         14.8091  [0.252] 

 

The model is quite satisfactory (the coefficient is significant, residuals make a WN) and the 

estimated ϕ̂  (=0.89) is very close to the true value of 0.9. 

2.1 exercise. Create a new data set 200 observation long (go to File| New data| ...| set 

Frequency Other 1). Generate AR(2) process 1 24 0.5 0.3t t t tY Y Y ε− −= + − + , 2~ (0,2 )
t
ε  (see 

Footnote 7). Is it a stationary process (use the graph of 
t

Y )?  What is its theorethical and sam-

ple mean? Now “forget” the formula and draw the correlogram of the time series. What is 

your guess about the type of the time series? To estimate its parameters, go to Model| Time 

Series| ARIMA… Are they close to 4, 0.5, and -0.3? Once the model is created, draw its 15 

steps forecast with Analysis| Forecasts…                �� 

 

2.2 exercise. Assume that 
t

Y  is a stationary AR(1) process 1t t t
Y Yϕ ε−= + . What are the for-

mulas to estimate ϕ ? Recall that according to (3.4), PE.I – Lecture Notes,  

 

� �
1 1ˆ ˆcov( , ) / var( ) (1)OLS

t t t
Y Y Yϕ ρ− −= = . 

 

On the other hand, multiply both sides of 1t t t
Y Yϕ ε−= + by 1t

Y − and take its expectation - you 

will get the so-called Yule-Walker equation (1) (0)γ ϕ γ= and, by the analogue principle, the 

same estimator of ϕ .  
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Now, use the same Yule-Walker procedure for 1 1 2 2t t t t
Y Y Yϕ ϕ ε− −= + +  and write the formu-

las for 1̂ϕ  and 2ϕ̂ .                           ��  

 

Generally, the stationary AR(p) process 1 1 2 2 ... , ~
t t t p t p t t

Y Y Y Yϕ ϕ ϕ ε ε− − −= + + + +  

2(0, )WN σ , can be treated in exactly the same way as a classical regression problem where 

t
Y  is the dependent variable and 1,...,

t t p
Y Y− −  are the independent variables. That is to say, 

the OLS estimates of the coefficients 
i
ϕ , as well as the joint limiting distribution of these 

estimates, are the same as if the equation was treated as a classical regression problem 

Now let us switch to a more realistic example. In Fig. 2.8, we examined the correlogram for 

the quarterly, 1962:1-1995:4, index of Canadian employment (available as caemp.txt) and 

saw that the sample autocorrelations damp slowly and the sample partial autocorrelations cut 

off, just the opposite of what is expected for a moving average. Thus, the correlogram indi-

cates that a finite-order moving-average process would not provide a good approximation to 

employment dynamics. Nevertheless, nothing stops us from fitting moving average models, 

so let us fit them and use AIC and SIC to guide model selection. 

 

 

The next step would be to estimate MA(q) models, q=1,2,3,4. 

Both AIC and SIC suggest that the MA(4) is best. The results of 

the MA(4) estimation, although better than lower-order MAs, 

are nevertheless poor. For example, the correlogram and Ljung-

Box statistic of caempRES show that residuals are far from 

being white noise:  
  

 

arma 0 4 ; caemp  # generate a model 

fcast caemp04 # generate a forecast series 

series caempRES=$uhat # generate a residual series and test it for WN 

 

 

Let us now consider alternative approximations, such as autoregressions. The AR(p) processes 

can be conveniently estimated by ordinary least squares regressions or arma function.  
 

ols caemp 0 caemp(-1) caemp(-2) caemp(-3) caemp(-4)    # the 1st method 

arma 4 0; caemp # Note that these two estimates differ (different methods) 

arma 3 0; caemp # estimate AR(3) 

arma 2 0; caemp                                           

arma 1 0; caemp                                        

                                                      Table 3.2: AR(p) models  

The 4th and 3rd order lags in  AR(4)  model are insignificant and the 

3rd order lag in AR(3)  is insignificant as well; in the AR(2) model all 

variables are significant and its AIC and SIC are less than in other mo-

dels. On the other hand, arma 2 0; caemp residuals make a nearly 

perfect WN (check).  

 
? arma 2 0; caemp 

 

Model 2: ARMA, using observations 1962:1-1995:4 (T = 136) 

Estimated using Kalman filter (exact ML) 

Dependent variable: caemp 

Table 3.1: MA(q) models 

q AIC SIC 

1 

2 

3 

4 

795,86 

686,97 

624,40 

579.26 

804,60 

698,62 

638,97 

596.74 
 

p AIC SIC 

1 

2 

3 

4 

525,93 

493,57 

494,95 

496,88 

534,67 

505,22 

509,51 

514,35 
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             coefficient   std. error   t-ratio    p-value  

  --------------------------------------------------------- 

  const       97,4773      4,40286      22,14     1,32e-108 *** 

  phi_1        1,45048     0,0748910    19,37     1,44e-083 *** 

  phi_2       -0,476183    0,0761685    -6,252    4,06e-010 *** 

 

Mean dependent var   100,2198   S.D. dependent var   7,997169 

Mean of innovations  0,002213   S.D. of innovations  1,421887 

Log-likelihood      -242,7859   Akaike criterion     493,5718 

Schwarz criterion    505,2224   Hannan-Quinn         498,3063 

 

 

We could stop here but consider for completeness the ARMA(p,q) approximation to the Wold 

representation. The model arma 3 1 ; caemp is almost as good as arma 2 0; caemp 

(the AIC of the latter model is the smallest among its neighbours and equals 496.02) but it has 

more parameters than AR(2) model. Following the KISS (Keep It Sophisticatedly Simple) 

principle and also comparing AIC‘s, we choose AR(2) model.  
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Figure 2.15. caemp and its AR(2) forecast for 1962:1 – 2001:4 

2.11. Forecasting 

 

So far we thought of the information set as containing the available past history of the series, 

1{ , ,...}T T TY Y −Ω = , where for theoretical purposes we imagine history as having begun in the 

infinite past (note that 1{ , ,...}T TY Y −  contains the same information as 1{ , ,...}T Tε ε − ). Based 

upon that information set, we want to find the optimal forecast of Y  at some future time T h+  

(we shall denote the forecast through , , 1T h TY h+ ≥ ).  If 
t

Y  is a stationary process, then the fo-

recast tends to the process mean as h  increases, therefore, the forecast is interesting only for 

several „small“ values of h .  

 

• Forecasting MA(q) process 

 

Our forecast method is always the same: write out the process for the future time period, 

T h+ , and  project  it  on  what  is  known at time T , when  the  forecast  is  made.  Consider, 

for example, an MA(1) process 2
1, ~ (0, )

t t t
Y WN εµ ε θε ε σ−= + + . We have 
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1 1 1,

2 2 1 2,

,

, 0

, 0 0

, 2

T T T T T T

T T T T T

T h T

Y Y

Y Y

Y h

µ ε θε µ θε

µ ε θε µ

µ

+ + +

+ + + +

+

= + + = + +

= + + = + +

≡ ≥

 

 

The forecast quickly approaches the (sample) mean of the process and starting with q +1h =  

coincides with it. When h  increases, the accuracy of the forecast diminishes (i.e., the width of 

the confidence band increases) up to the moment q +1h =  whereupon it becomes constant. 

2.6 example. Most financial studies involve returns, instead of prices, of assets. There are 

two main reasons for using returns. First, for average investors, return of an asset is a comple-

te and scale-free summary of the investment opportunity. Second, return series are easier to 

handle than price series because the former have more attractive statistical properties (returns 

are often stationary). There are, however, several definitions of an asset return. Let tP  be be 

the price of an asset at time t . A simple return is 1 1( ) /t t t tR P P P− −= − . If ln( )t tp P= , then 

1t t tr p p −= −  is log return. If these returns are small (which is usually the case), they are al-

most identical. 

 

Figure 2.16 shows the time plot of monthly simple returns of the CRSP equal-weighted index 

from January 1932 to December 2003 (the data is available as m-ew.txt).  One can see that the 

series has significant ACF at lags  1, 3, and 9. There are some marginally significant ACFs at 

higher lags, but we do not consider them here. Based on the sample ACF, the following 

MA(9) model  

1 1 3 3 9 9( )t t t t t tR Y µ ε θ ε θ ε θ ε− − −= = + + + +  

 

is identified for the series. Note that, unlike the sample PACF, the sample ACF provides in-

formation on the nonzero MA lags of the model. 

 
arma 0 9 ; crsp  # all 9 MA terms; some are insignificant 

arma 0 {1 3 9} ; crsp  # only 1st, 3rd, and 9th MA terms 

addobs 12   # we shall forecast crsp for 12 months  

fcast crspMA 
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Figure 2.16. Monthly simple returns and sample ACF of CRSP equal-weighted index 
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It is easy to check that the second model has the smallest AIC and SIC among similar models.  

We forecast crsp for the coming year. To enhance the plot visibility, go to Sample| Set ran-

ge.. and choose Start: 1996:1. In Fig. 3.9 one can see that in 9 months forecast sets to the 

mean value and does not change anymore.   
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Figure 2.17. crsp (red) and its forecast (blue) (the graphs were plotted through the menu bar) 

 

• Forecasting AR(p) process 
 

The forecast exponentially fast tends to the (sample) mean of the process but never reaches it. 

When h  increases, the accuracy of the forecast diminishes (i.e., the width of the confidence 

band increases) but never reaches the limit. For example, in AR(1) case, we write out the pro-

cess for time 1T + , 1 1T T T
Y Yϕ ε+ += + , and project the right-hand side on time T  information 

set: 1,T T T
Y Yϕ+ = . To get 2-step-ahead forecast, write 2 1 2T T T

Y Yϕ ε+ + += +  and project it on the 

same information set: 2
2, 1,T T T T T

Y Y Yϕ ϕ+ += = . Similarly, ,
h

T h T T
Y Yϕ+ =  for any h , thus the 

forecast tends to zero (or to the mean, in general case) exponentially fast.  

2.7 example. Now we put our forecasting technology to work to produce point and interval 

forecasts for Canadian employment. Recall that the best moving-average model was an 

MA(4), whereas the best autoregressive model, as well as the best ARMA model and the best 

model overall, was an AR(2). We model caemp restricting our data to 1962:1 – 1993:4, fore-

cast it to the next two years and compare with the real 1994:1 – 1995:4 data.  
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Figure 2.18. Employment history and forecast together with interval extrapolation 

and realization -  MA(4) model (blue line is for forecast, green lines for 95% confidence 

interval)  
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Fig. 2.18 shows the 8-quarter-ahead forecast with MA(4) and realization. It proves that MA(4) 

model is unsatisfactory. The actual employment series stays well below its mean over the 

forecast period, whereas the forecast rises quickly back to the mean.  

 

Now consider forecasting with the AR(2) model. Fig. 2.19 shows the 8-quarter-ahead extrapo-

lation forecast, which reverts to the unconditional mean much slowlier quickly, which seems 

natural given the high persistence of employment. The 8-quarter-ahead point forecast is, in 

fact, still well below the mean. Similarly, the 95% error bands grow gradually and have not 

approached their long-horizon values by eight quarters out. 
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Figure 2.19. Employment history (red) and AR(2) forecast (blue) together with the in-

terval extrapolation (the green lines are for 95% confidence interval)  

 

The forecast ,T h T
Y +  of MA(q) process in (h =) q steps reaches its average and then does not 

change anymore. 

The forecasts of AR(p) and ARMA(p,q) tend to the average, but never reach it. The speed of 

convergence depends on the coefficients. 

 

2.12.  Financial Volatility and the ARCH Models 

 

Consider a variable 
t

Y  evolving over time so that it grows annually at rate r  (usually, r  is a 

small number, | | 0.05r < ): 1(1 )
t t

Y r Y −= + = 2 log(1 )
2 0 0 0(1 ) ... (1 )t r t Rt

t
r Y r Y e Y e Y

+ ⋅
−+ = = + = =  

(thus, the values of 
t

Y  lie on an exponent; this might roughly describe the growth of GDP, 

capital stock, or (stock) price level). The model is too simplistic to describe a real grow, so we 

have to introduce an economic shock component, for example, as 1(1 )
t t t

Y r Yε −= + + ⋅ =  

2
01

(1 ) , ~ (0, ).
t

s ts
r Y WNε ε σ

=
+ + ⋅∏  The values of 

t
Y  are again close to exponent and 

0
Rt

t
EY e Y=  (thus 

t
Y  is nonstationary; their differences ( 1)

1
R t

t t t
Y Y Y e

−
−∆ = − ≈ ⋅ ( 1)R

e − are 

nonstationary, too (why?)). However, take the logarithms and apply the well known equality 

log(1 )x x+ ≈  (it follows from the Taylor‘s expansion and holds for small x ‘s):  

0log log
t t

Y Y Y= = +�
01 1

log(1 ) log .
t t

s ss s
r Y rtε ε

= =
+ + ≈ + +∑ ∑  The graph of 

t
Y�  now is close 

to a straight line (thus, 
t

Y�  is nonstationary) but its differences (or the log differences of 
t

Y ) 
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t t
Y r ε∆ = +�  are stationary (why?). What is even more important, these differences have a 

clear economic interpretation: it is the series of (logarithmic) returns (see 2.6 example), i.e., 

the annual growth of 
t

Y . It is well known that stock or bond returns, exchange rates and some 

other financial series 
t

Y  (to simplify notation, we shall write 
t

Y  instead of 
t

Y∆ � ) are almost 

unpredictable. i.e., are (satisfactory) described as white noise ,t tY r ε= + ~tε
2(0, )WN σ  (in 

other words, stock returns are on average r  but otherwise unpredictable from the past values).  
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Figure 2.20. Price, logged price, and (logarithmic) returns 

 

In this section, we shall try to create a model of the residuals ˆ
t te ε= , i.e., centered returns 

ˆ
t t

Y Y Y r− = −  of real stocks possessing some interesting empirical properties, for example:  

 

• the high-volatility
11

 events tend to cluster in time
12

 (it is called the persistency or inertia of 

volatility) 

• 
t

Y  is uncorrelated with its lags, but 2
t

Y  is correlated with 2 2
1 2, ,...

t t
Y Y− −   

• 
t

Y  is heavy-tailed, i.e., the right tail of its density decreases slowlier than that of the Gaus-

sian density (this means that 
t

Y  (for example, returns) take big values more often than the 

Gaussian r.v.)  

 

The core idea of the ARCH (Auto Regressive Conditional Heteroscedastic) model is to effec-

tively describe the dependence of volatility on recent returns.We begin with a “naive“ appro-

ach to these matters.  

2.8 example. The data file stock.xls contains weekly data for the logged stock prices 

lStock (T=208). Though the differences, i.e., returns log )
t

P∆d_lstock(=  do not pass 

WN tests (check), for the meantime we assume that the WN assumption is true. In Fig. 2.20, 

                                                 
11

 For a time, we define the volatility (or variability or changeability) of 
t
ε  as 

2

t
e  (it is close in a sense to the va-

riance of 
t
ε ). 

12
 “Many market strategists expect that the market will remain volatile between now and mid-January“ or “Stock 

markets reacted nervously to...“. 
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we can see that volatility
13

 (blue line) has indeed the property of persistency – in the vicinity 

of  100t =  the volatility is high for some time whereas it is quite small in stable times.  
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Figure 2.21. The log differences (red) seem to be stationary whereas volatility 
2

t
u                    

(= sq_uhat1) (blue) has a clustering property 

 

 

We have already learned that AR process is able to model the phenomenon of persistency 

which, in our case, may be called „clustering in volatility“.  Consider, for instance, an AR(1) 

model of volatility:  2 2
1 ,t t tu u wα ϕ −= + +  ~tw WN : 

 

OLS, using observations 3-208 (T = 206) 

Dependent variable: sq_uhat1 

 

               coefficient   std. error    t-ratio    p-value  

  ------------------------------------------------------------ 

  const        2.40841e-06   1.48446e-06    1.622    0.1063    

  sq_uhat1_1   0.737005      0.0473286     15.57     1.51e-036 *** 

 

The model
14

 2 2
10.0000024 0.737t t tu u w−= + +  might be of great interest to an investor wishing 

to purchase this stock. Suppose an investor has just observed that 2
1 0tu − = . In other words, the 

stock price changed by its average amount in period  1t − . The investor is interested in predic-

ting volatility in period t  in order to judge the likely risk involved in purchasing the stock. 

Since the error is unpredictable, the investor ignores it (i.e., it is just as likely to be positive as 

negative). However, the predicted volatility in period  t  is 2.4e-06. On the other hand, had he 

observed  2
1 0.0001tu − = , he would have predicted volatility in period t to be 0.0000024 + 

0.0000737 = 7.6e-05, i.e., 30 times bigger. This kind of information can be incorporated into 

financial models of investor behavior.      �� 

 

So far, we have analysed empirical properties of stock.xls returns. Now we shall discuss in 

more detail a concept of WN which, as you remember, is defined as a sequence of uncorrela-

ted or independent random variables { }
t
ε  with zero mean and constant variance 2σ . Thus far, 

we have not cared much about this “or“ but now it becomes important (the sequence of uncor-

                                                 
13

 That is, squared residuals (sq_uhat1 =) 
2

ˆ
t

u  of the model _
t t

d lstock uα= + .  

14
 Thus we assume that 

t
ε  are not correlated (the series is a WN) but 

2
t
ε  (to fit the empirical facts) are and the 

dependence is described by AR(1). 
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related r.v.‘s is called a weak WN
15

 whereas the sequence of independent r.v.‘s a strong WN; 

for normal, or Gaussian, process 
t
ε  both definitions are equivalent). Note that if 

t
ε  is a strong 

WN then 2
t
ε  (and any other function of 

t
ε ) is too. 

 

2.9 example. If 
t
ε  is a strong WN, then 

  

• conditional mean 1( | ) 0
t t

E ε −Ω ≡    

• conditional variance 1var( | ) ((
t t t

Eε ε−Ω = − 2 2 2
1 1 1( | )) | ) ( | )

t t t t t
E Eε ε σ− − −Ω Ω = Ω ≡ . 

 

Here 1( , ,...)
s s s

ε ε −Ω = F  is the set containing all the information on the past of the process; 

the proof  of these features follows from the properties of conditional mean (see PE.I, Lecture 

Notes, p. 3-2). 

 

2.10 example.  If 
t
ε  is a strong WN and 1t t tY Yϕ ε−= +  is a stationary AR(1) process, then 

 

• conditional mean 1 1( | )
t t t

E Y Yϕ− −Ω = ≡const  

• conditional variance 2 2
1 1 1 1var( | ) (( ) | )

t t t t t t
Y E Y Yϕ ε ϕ σ− − − −Ω = + − Ω ≡ .        

 

In general, as it follows from the Wold representation theorem, if  { }
t
ε  makes a strong WN, 

then 1 1var( | ) var( ( ) | )
t t t t

Y B L constε− −Ω = Ω ≡ .    �� 

 

Unfortunately (or fortunately), if { }
t
ε  makes only a weak WN, the conditional variance 

1var( | )
t t

Y −Ω  is not necessarily constant. Now we shall present a model of weak WN process 

(its variance is constant) such that its conditional variance or volatility may change in time
16

. 

The simplest way to model the above presented clustering phenomenon is to use the ARCH(1) 

model which describes the (centered) returns tε  as  

 

                                              
2 2 2

1 1( | )

t t t

t t t t

w

E

ε σ

σ ε ω αε− −

=

= Ω = +

                                         (2.7) 

 

where the innovations tw  are (0,1) - Gaussian (or Student‘s or similar symmetric) i.i.d.r.v.‘s 

(that is, 
t

w  is a strong WN), , 0ω α > . It is easy to show that tε  is again a weak WN, i.e., 

0, / (1 )t tE Dε ε ω α≡ ≡ −  and cov( , ) 0t h tε ε+ =  for all 0t ≥  and | | 1h ≥ . In other words, its 

variance is constant whereas its conditional variance 2
t
σ  is not!

17
 Indeed, the conditional dist-

ribution of tε  given 1tε −  is Gaussian with changing variance: 1| ~t tε ε −
2

1(0, )tN ω αε −+ . Note 

that every trajectory of ARCH process seems to be non-regular but when you take the whole 

infinite ensamble, the mean value and variance at any time t  is the same (i.e., an  ARCH pro-

                                                 
15

 Correlogram and the Ljung-Box test are used to test whether a stationary process is a weak WN.  
16

 This allows to model the persistency of volatility. 

17
 Thus 

t
ε  is (unconditionally)  homoskedastic, but conditionally heteroskedastic. Since 

2

t
σ  is the one-period 

ahead forecast variance based on past information, it is called the conditional variance.  
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cess is stationary). On the other hand, the scale 
t
σ  depends on 1t

ε − , therefore, the broker 

knowing the history of our process till today can predict tomorrow‘s variability or volatility of 

the process (this is important in some cases, for example, in capital asset pricing model 

(CAPM) and the Black–Scholes option price formula where the volatility of the price of the 

underlying asset plays a crucial role). ARCH processes are also important in analyzing returns 

(the main problem in the analysis of these type of financial data is to forecast the volatility of 

future returns). 

 

The ARCH(1) process can be generalized: the process  

 

2 2 2 2
1 1 1( | ) ...

t t t

t t t t q t q

w

E

ε σ

σ ε ω α ε α ε− − −

=

= Ω = + + +

 

 

is called an ARCH(q) process and the process  

 

2 2 2 2
1 1 1

( | )

t t t

q p

t t t i t i j t ji j

w

E

ε σ

σ ε ω α ε β σ− − −= =

=

= Ω = + + ∑ ∑

 

 

a  GARCH(p,q)  process (the most popular GARCH(1,1) process is just a parsimonious way 

to rewrite a high order ARCH(q) process; both ARCH and GARCH processes are (weak) WN 

processes with a special structure of their conditional variance.)  

 

Quite often, the process we want to investigate for the ARCH effects is stationary but not a 

WN. For example, if  1t t t
Y Yα ϕ ε−= + + , we can first remove the AR(1) part and then analyze 

the residuals 
t

e  for the presence of, say, ARCH(1) effect. However, in order to properly esti-

mate all the coefficients it is better to carry out the procedure in one step (respective model is 

called an AR(1) - ARCH(1) model
18

).  

 

• Let 
t
ε  be a weak WN(0, 2σ ) and consider the model 

t t
Y r ε= +  or 0 1t t t

Y Xβ β ε= + +  

or 1t t t
Y Yα ϕ ε−= + +  or similar 

• To test whether the WN shocks 
t
ε  make an ARCH process, plot a graph of 2

t
e  – if 

t
ε  

is an ARCH process, this graph must show a clustering property  

• To further test whether the shocks 
t
ε  form an ARCH process, test them for normality 

(the hypothesis must be rejected) 

• To further test whether the shocks 
t
ε  form an ARCH process, draw the correlogram of 

t
e  – the correlogram must indicate WN, but that of 2

t
e must not (and it should be simi-

lar to the correlogram of AR(p) process) 

• To formally test whether the shocks 
t
ε  form an ARCH(q), use the auxiliary regression  

2 2 2
1 1 ...

t t q t q t
e e e wα α α− −= + + + + ; if you reject the hypothesis 0 1: ... 0

q
H α α= = = , 

t
ε  

is ARCH(q) 

 

                                                 
18

 We say that the mean equation is described by AR(1) and variance equation by ARCH(1).  
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• Instead of using ARCH(q) with big q, often a more parsimonious
19

 description of 
t
ε  is 

given by GARCH(1,1) 

• In order to show that the selected ARCH(q) or GARCH(1,1) model is “good“, test 

whether residuals ˆˆ ˆ/
t t t

w ε σ=  and 2ˆ
t

w  make WN (as they are expected to).  

 

2.8 example (cont.)  The traditional OLS method to estimate the parameters ω  and α  of 

ARCH(1) does not work because of complicated nature of (2.7); however, GRETL and R ha-

ve relevant procedures to do the job. Once you have imported stock.xls, create 
t

R =  log
t

P∆  = 

d_lstock, go to Model| Time series| GARCH...| choose d_lstock as dependent variable 

and GARCH p: 0, ARCH q: 1| OK.    

 
Model 1: GARCH, using observations 2-208 (T = 207) 

Dependent variable: d_lStock 

Standard errors based on Hessian 

 

             coefficient   std. error      z      p-value  

  -------------------------------------------------------- 

  const      0.00104847    0.000113235   9.259   2.06e-020 *** 

   

  alpha(0)   2.40025e-06   3.90431e-07   6.148   7.86e-010 *** 

  alpha(1)   0.659880      0.157144      4.199   2.68e-05  *** 

 

Thus, the estimate of the model  

 

2
1

2
0 1 1

| ~ (0, )

t t

t t t

2

t t

d_lstock = r +

N

= +

ε

ε σ

σ α α ε

−

−



Ω




           is given by           
�2 2

1

ˆ^ _ 0.001

2.400 06 0.660
t t

d lstock r

e eσ −

= =

= − +

  

 

and consists of two parts – the (conditional) mean equation is just a constant 0.001 while the 

second line presents the ARCH(1) equation for (conditional variance or) volatility. Note that 

this equation is very close to the “naive“ one on p. 2-25.     �� 

 

Now it is right time to recall that d_lstock is not a WN (see its correlogram). To find the 

mean equation, go to Model| Time series| ARIMA... and verify that residuals of the ARI-

MA(6,0,0) model for d_lstock form a WN. Save the residuals and create ARCH(1) model 

for them. Alternatively, go directly to Model| Time series| GARCH..., insert d_lstock as 

dependent variable , go to the ...lags box and, after choosing 1 to 6 lags, estimate ARCH(1) 

model: 

 
GARCH, using observations 8-208 (T = 201) 

Dependent variable: d_lStock 

 

               coefficient    std. error       z      p-value  

  ------------------------------------------------------------ 

  const         0.00106556    0.000178667    5.964    2.46e-09 *** 

  d_lStock_1   -0.0982519     0.0701929     -1.400    0.1616   

  d_lStock_2    0.0608469     0.0514942      1.182    0.2374   

                                                 
19

 Usually GARCH(p,q) models with small p and q nicely capture persistence of high volatility (volatility clus-

ters), whereas ARCH(q) specifications usually need high orders. 
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  d_lStock_3   -0.0122428     0.0464596     -0.2635   0.7922   

  d_lStock_4   -0.0605324     0.0419533     -1.443    0.1491   

  d_lStock_5   -0.0201123     0.0422073     -0.4765   0.6337   

  d_lStock_6    0.0885649     0.0373857      2.369    0.0178   ** 

 

  alpha(0)      2.25813e-06   4.08361e-07    5.530    3.21e-08 *** 

  alpha(1)      0.656985      0.180902       3.632    0.0003   *** 

 

The upper part of the table stands for the AR(6) mean equation while the last two lines for 

volatility.         

 

As alternative, we can use a more straightforward approach: go to Model| Time series| ARI-

MA...| choose d_lstock as Dependent variable and ARMA(6,0) model| OK, then in the 

model‘s window go to 1) Tests| Autocorrelation (you will get „no autocorrelation“ in the resi-

duals) and 2) Tests| ARCH (you will find that ARCH effect is definitely present, thus create 

an AR(6)-ARCH(1) model).         �� 

 

The following example explains how to apply the GARCH procedure.  

 

2.11 example.  The data file nyse.txt contains monthly data StockPrice from 1952:1 

through 1996:1 on a major stock price index provided by the New York Stock Exchange.  

 
ols ld_StockPrice 0  # regress log differences on constant only 

series sigma = $sigma   # Standard Error of Regression (=0.04) 

 

In the Model 1 window, go to Save| Residuals and then Save| Squared residuals; (centered) 

returns uhat1 constitute a WN, but the corr elogram and Ljung-Box table shows that usq1 

do not (and what about the normality of uhat1?). Thus, we suspect that uhat1 may be an 

ARCH process. 
 

To test the hypothesis 0 1: ... 0
q

H α α= = =  which means no ARCH in 

2 2 2
1 1 ...

t t q t q
σ ω α ε α ε− −= + + + ,  choose the proper AR(q) model of the auxiliary regression 

2 2 2
1 1 ...

t t q t q t
e e e wα α α− −= + + + +  (proper means minimum AIC and WN residuals 

t
w ); now, 

to test 0H , use the F - test (or the LM test: save 2
R  of the auxiliary regression and test 

whether 2
LM TR=  is greater than 5% critical value of 2

q
χ ). 

 

To perform the above procedure, in the Model 1 window go to Tests| ARCH, where we start 

with lag order 12 and end with 9 (now the top term alpha(9) is significant): at the bottom 

of the table you will find the lines   

  
Null hypothesis: no ARCH effect is present 

  Test statistic: LM = 23.4373 

  with p-value = P(Chi-Square(9) > 23.4373) = 0.00528544 

 

which mean that we must reject no ARCH hypothesis (thus, ld_StockPrice is ARCH(9) 

process; note that the second best is ARCH(3) model).  

 

The ARCH(9) model depends on 10 parameters. A common approach is to use a more parsi-

moniuos model GARCH(1,1) (in fact, there is no way to test for its accepability): 
garch 1 1; ld_StockPrice 0  # to create GARCH(1,1) model 
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series ht_garch11 = $h  # conditional variance  

series st_err11 = sqrt(ht_garch11) # conditional standard error 

 

The same result may be achieved from the pop-up menu: in GRETL window, go to Model| 

Time series| GARCH...| and choose ld_StockPrice as Dependent variable (this will crea-

te your Model 2). 

To get an impression of the accuracy of the models, copy the following lines to GRETL script 

window: 

 
garch 0 3; ld_StockPrice 0  # to create ARCH(3)   

series ht_arch3 = $h  

series st_err03 = sqrt(ht_arch3)  # conditional standard error 

 

Then, to appreciate difference across models, plot a graph of unconditional standard error si-

gma as well as two conditional variants (for only 1985:01 through 1996:01, see Fig 2.21,left): 
 

# gnuplot StockPrice ld_StockPrice --time-series --with-lines --output=display 

smpl 1985:01  1996:01 

gnuplot sigma st_err11 st_err03 --time-series --with-lines --output=display 
 

To forecast Model 2, go to its window, choose Analysis| Forecasts...| and add 11 observations 

(see Fig. 2.21, right). As expected, the forecast of the WN process ld_StockPrice is just 

its mean while the conditional standard errors tend to the unconditional sigma.  
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Figure 2.22. The left graph compares three standard errors of  ld_StockPrice; two conditional va-

riants are clearly past-dependent; the GARCH(1,1) 11-months forecast (right). Note that the extreme va-

lue of ld_StockPrice at around 1988 implies maximum value of st_err11 at the same time. 

 

When we say “describe a stationary process 
t

Y “, we mean to express it as a sum of its 

structural part (like AR or MA) 
t

Z  and a zero mean white noise 
t

w : 
t t t

Y Z w= + . In gene-

ral, we must then test whether 
t

w  is a strong WN, i.e., to test for the ARCH effects 
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library(fGarch) 

library(forecast) 

spec = garchSpec(model = list(alpha = c(0.6), beta = 0)) 

spec 

set.seed(1) 

arch1Sim = 2 + garchSim(spec, n = 200,extended = TRUE) 

arch1Sim[1:6,] 

dev.off();dev.off() 

  

plot(arch1Sim) 

arch1=resid(lm(arch1Sim$garch~1)) 

ARCH1=ts(arch1) 

 

dev.new() 

tsdisplay(ARCH1) 

dev.new() 

tsdisplay(ARCH1^2) 

 

garchFit(~garch(1,0),ARCH1,trace = FALSE) 

#garchFit(ARCH1~garch(1,0),trace = FALSE) 

#garchFit(arch1Sim$garch~garch(1,0),ARCH1,trace = FALSE) 

#garchFit(ARCH1~garch(1,0),ARCH1,trace = FALSE) 
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3. Trend Stationary Time Series
1
 

 

Many forecasting methods are based on the concept that the underlying pattern, provided it 

exists, can be distinguished from randomness by smoothing or averaging past values. The 

purpose of smoothing is to eliminate randomness so the pattern can be projected into the futu-

re and used as the forecast.   

 

The general mathematical representation of the decomposition approach is as follows: 

 

                                                   ( , , )t t t tY f Tr S ε=                                                         (3.1) 

 

where tY   is the time series value (actual data) at period  t 

 tTr  a deterministic trend or general movement component 

 tS   a deterministic seasonal component 

  tε   the remaining stationary component. 

 

The exact functional form of (3.1) depends on the decomposition method actually used. A 

common approach is to assume equation (3.1) has the additive form  

 

t t t tY Tr S ε= + + . 

 

That is, the trend, seasonal and irregular component are simply added together to give the ob-

served series. 

 

Alternatively, the multiplicative decomposition has the form 

 

t t t tY Tr S ε= ⋅ ⋅ . 

 

That is, the trend, seasonal and irregular component are multiplied together to give the obser-

ved series.  

 

In both, additive and multiplicative, cases  

the series 
t

Y  is called a trend stationary (TS) series 

 

This definition means that after removing a deterministing part  from a TS series what remains 

is a stationary series. Thus, if our historical data end at t T=  and the process under conside-

ration is additive, we can forecast the deterministic part simply by taking � ˆ
T h T h

Tr S+ ++  provi-

ded
2
 we know the analytic expression for both trend and seasonal part (recall that we have 

already learned how to obtain the forecast ,T T h
ε + ). Note that not all time series are TS. Actu-

ally, most economical series are described by another, DS, model (see Ch.4). 

 

An additive model is appropriate if the magnitude of the seasonal fluctuations does not vary 

with the level of the series. But if the seasonal fluctuations increase and decrease proportional-

                                                 
1
 Procesai, kurių nuokrypiai nuo trendo stacionarūs. 

2
 Most smoothing methods (for example, moving averages) do not give that expression. 
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ly with increases and decreases in the level of the series, then a multiplicative model is ap-

propriate. Multiplicative decomposition is more prevalent with economic series because most 

seasonal economic series do have seasonal variations which increases with the level of the 

series. 

 

Rather than choosing either an additive or multiplicative decomposition, we could use a trans-

formation – very often the transformed series can be modeled additively, when the original 

data are not additive. Logarithms, in particular, turn a multiplicative relationship into an addi-

tive relationship: if t t t tY Tr S ε= ⋅ ⋅  then  

 

log log log logt t t tY Tr S ε= + + . 

 

So we can fit a multiplicative relationship by fitting a more convenient additive relationship to 

the logarithms of the data and then to move back to original series by exponentiating. 

 

There are various ways to estimate the trend 
t

Tr  at time t, but a relatively simple procedure, 

which is available in R (for example, with decompose) and does not assume any specific 

form of 
t

Tr  is to calculate a moving average centered on t. A moving average is an average of 

a specified number of time series values around each value of t in the time series, with the 

exception of the first few and last few terms. If the time series has no seasonal component, in 

order to estimate the trend we can take any odd number, for example, if 3l = and we estimate 

an additive model, 

 

�
1 1( ) / 3

t t t t
Tr Y Y Y− += + +    (two-sided averaging) 

�
2 1( ) / 3

t t t t
Tr Y Y Y− −= + +    (one-sided averaging) 
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Figure 3.1. (Artificial data) Two-sided averaging (left) and one-sided averaging (right; 

in both cases the estimates loose some end points); the 11-points averaging (red) produces 

a smoother estimate but in any case they do not allow us to forecast the time series. 
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If the time series contains a seasonal component and we want to average it out, the length of 

the moving average must be equal to the frequency (thus, for monthly series, we take 12l = ).    

However, there is a slight snag. Suppose our time series begins at January (t = 1) and we ave-

rage January up to December (t = 12). This average corresponds to a time t = 6.5, between 

June and July. When we come to estimate seasonal effects, we need a moving average at inte-

ger times. This can be achieved by averaging the average of January up to December and the 

average of February (t = 2) up to January (t = 13). This average of two moving averages cor-

responds to t = 7, and the process is called centring. Thus the trend at time t can be estimated 

by the centered moving average 

 

� ( ) ( )6 5 5 6 6 5 5 6
... /12 ... /12 (1/ 2) ... (1/ 2)

2 12

t t t t t t t t

t

Y Y Y Y Y Y Y Y
Tr

− + − + − − + ++ + + + + + + + +
= =  

 

where t = 7,...,n − 6. By using the seasonal frequency for the coefficients in the moving avera-

ge, the procedure generalises for any seasonal frequency (e.g., quarterly series), provided the 

condition that the coefficients sum to unity is still met. 

 

An estimate of the monthly additive effect 
t

S  at time t can be obtained by subtracting �
t

Tr : 

 

�ˆ
t t t

S Y Tr= −  

 

By averaging these estimates of the monthly effects for each month (January, February etc), 

we obtain a single estimate of the effect for each month 

 

It is common to present economic indicators, such as unemployment percentages, as seasonal-

ly adjusted series. This highlights any trend that might otherwise be masked by seasonal varia-

tion attributable, for instance, to the end of the academic year, when school and university 

leavers are seeking work. If the seasonal effect is additive, a seasonally adjusted series is gi-

ven by ˆ
t t

Y S− .   
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Figure 3.2. Logarithms of the airpass time series, lat, from the fma package and 

its trend (left); seasonal component (right)  
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The above described moving average procedure usually quite succesfully describes the times 

series in question, however, it does allows to forecast it. 

 

To decide upon the mathematical form of a trend, one must first draw the plot of the time se-

ries. If the behavior of the series is rather „regular“, one can choose a parametric trend – usu-

ally it is a low order polynomial in t , exponential, inverse or similar functions. The most po-

pular method to estimate the coefficients of the chosen function is OLS. On the other hand, if 

it is not quite clear which concrete function to use, one can look for some implicit function 

described not by a formula but by a certain computational algorithm. A useful variant of this 

procedure is presented in Sec. 3.2. In any case, the smoothing method is acceptable if the resi-

duals � ˆˆ tt t t
Y Tr Sε = − −  constitute a stationary process. If we have a few competing trends, the 

best one can be chosen by AIC, BIC or similar criterions. An alternative approach is to create 

models for all but some 0T  end points and then to choose the model whose forecast fits origi-

nal data best (to select the model, one can use such characteristics as  

  

Root Mean Square Error     RMSE = 
0

2

0
ˆ(1/ )

T

tt T T
T ε

= −∑   

Mean Absolute Percentage Error MAPE = 
0

0
ˆ(1/ ) / 100

T

t tt T T
T Yε

= −
×∑  

 

and like). 

 

3.1. The Global Method of Decomposition and Forecasting - OLS 

 

The well known OLS method estimates the coefficients of, say, quadratic trend  0tY β= +   

2
1 2 tt tβ β ε+ +  by minimizing 2 2

0 1 2 0 1 2
1

( , , ) ( ( ))
T

t

t

RSS Y t tβ β β β β β
=

= − + +∑ . Note that if the 

value of the last TY  for whatever reason deviates much from the trend, this may considerably 

change the estimates 0 1 2
ˆ ˆ ˆ, , andβ β β  and, therefore, the fitted value of the first 1Ŷ . This is why 

we term the method global. One local method which little alters the estimate of 1Y , following 

a change in a remote TY , will be examined in the next section.  

 

3.1 example. We shall examine the number of international passenger bookings (in thousands) 

per month on an airline (PanAm) in the United States for the period 1949:1–1960:12 (the data 

is available as AP.txt in the PEdata folder). We shall create three models: 

 

Model 1 2
0 1 2t t

AP t tβ β β ε= + + +  

Model2 2
0 1 2 1 111 ... 11

t t t t
AP t t dm dmβ β β γ γ ε= + + + + + +  

Model3 2
0 1 2 1 11log 1 ... 11

t t t t
AP t t dm dmβ β β γ γ ε= + + + + + +  

 

where 1,...,144t =  is for the time trend, 1dm  is a dummy variable for the first month (Janua-

ry), 2dm  is for February etc. Recall that in order to avoid the dummy variable trap (see PE.I, 

Lecture Notes, Sec. 4.5), we have to exclude one dummy variable (for example, 12dm ) from 
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our regression models ( 1γ  is the extra number of passengers in January compared with the 

base month of December, 2γ  is the extra number of passengers in February etc). 

 

After importing AP, to create the trend variable ( )t =  time, go to Add| Time trend, then se-

lect time and, to create 2
t , go to Add| Squares of selected variables. To create Model 1, go to 

Model| Ordinary Least Squares, select AP as dependent and time and sq_time as indepen-

dent variables: 

 
^AP = 112 + 1.64*time + 0.00701*sq_time 

     (11.4)(0.362)     (0.00242) 

 

(below the coefficients, one can see the standard errors; clearly, both time and sq_time are 

significant). 

 

To visualize this model, in the Model 1 window, go to Graphs| Fitted, actual plot| Against ti-

me (see Fig. 3.3, left). To capture seasonal variations, in the GRETL window, go to Add| Pe-

riodic dummies, then to Model| Ordinary Least Squares, select AP as dependent, time, 

sq_time, and dm1, ..., dm11 as independent variables, then in the Model 2 window, go to 

Graphs| etc. 

 

 100

 200

 300

 400

 500

 600

 700

 1950  1952  1954  1956  1958  1960

A
P

Actual and fitted AP

fitted

actual

 
 

Figure 3.3. AP (red) and fitted values (blue) from Model 1 (left) and Model 2 (right) 

 

Additive Model 2 describes seasonality in a wrong way (the AP‘s seasonal fluctuations increa-

se together with level but in our fit they do not). To correct for multiplicativity, we make Mo-

del 3 for logarithms (but first, you have to create logarithms: select AP and go to Add| Logs of 

selected variables; a new variable l_AP will be created).   
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Figure 3.4. l_AP (red) and fitted values (blue) from Model 3 (left) and forecast made 

by Model 3 (right) 

  

Now the fit is much better (see Fig. 3.4, left); to use this final Model 3 for the 24-months-

ahead forecast of l_AP , go, in GRETL window, to Data| Add observations| 24, then, in the 

Model 3 window, go to Analysis| Forecasts| OK (see Fig. 3.4, right).  

 

To plot the forecast not for l_AP but for the original AP, note that this graph is accompanied 

by the forecast table 

 
For 95% confidence intervals, t(130, 0.025) = 1.978 

 

                 l_AP    prediction    std. error        95% interval 

 

 1955:02      5.451038     5.487067 

 1955:03      5.587249     5.627105 

 1955:04      5.594711     5.605647 

 .................................................   

 1960:11      5.966147     5.961961 

 1960:12      6.068426     6.083059 

 1961:01                   6.111356     0.051549     6.009372 - 6.213339 

 1961:02                   6.096019     0.051622     5.993890 - 6.198147 

 ................................................. 

 1962:11                   6.118544     0.054246     6.011225 - 6.225864 

 1962:12                   6.238611     0.054409     6.130969 - 6.346253 

 

 

 

To save prediction, click on the blue cross on the top and 

save it as  l_AP_fore. To get back to AP, go first to Save| 

Standard  error of the regression (as sigma_3) and then, in 

GRETL window, go to Add| Define new variable|  and apply the formula AP_fore = 

exp(l_AP_fore + sigma_3^2/2). Now, plot both AP and AP_fore (see Fig. 3.5): 
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Figure 3.5. AP, its Model 3 fit and 24-months-ahead forecast AP_fore. 

 

3.1 exercise. Do the residuals of Model 3 form a stationary process? White noise?  

 

3.2. One Local Method of Decomposition and Forecasting 

 

Here we shall present a short introduction to the exponential smoothing. Exponential smoo-

thing is a technique that can be applied to time series data, either to produce smoothed data for 

presentation, or to make forecasts. 

 

 

Simple Exponential Smoothing 

 

As is common, we state the exponential smoothing procedure as an algorithm for converting 

the observed series
3
, , 1,...,tY t T=  into a smoothed series, ˆ , 1,...,tY t T= , and forecasts, 

,
ˆ
T h TY + : 

 

1. Initialize at  t= 1: 1 1Ŷ Y=  

2. Update: 1
ˆ ˆ(1 ) , 2,..., .t t tY Y Y t Tα α −= + − =  

3. Forecast: ,
ˆ ˆ , 1, 2,...T h T TY Y h+ = = . 

 

We call  ˆ
tY  the estimate of the level at time t. The smoothing parameter α  is in the unit inter-

val, [0,1]α ∈ . The smaller α  is, the smoother the estimated level. As α  approaches 0, the 

smoothed series approaches constancy, and as α  approaches 1, the smoothed series ap-

proaches point-by-point interpolation. Typically, the more observations we have per unit of 

calendar time, the more smoothing we need; thus we would smooth weekly data (52 observa-

tions per year) more than quarterly data (4 observations per year). There is no substitute, how-

                                                 
3
 Common practice is to apply the exponential smoothing “always” though, in fact, it is applicable only when 

t
Y  

is ARIMA(0,1,1). Namely this ARIMA structure allows us to forecast the time series.  
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ever, for a trial-and-error approach involving a variety of values of the smoothing parameter 

(on the other hand, check ets function from the forecast package where α  is chosen on an 

AIC basis). 
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Figure 3.6. The smoothed curve ˆ
t

Y  (red) is obtained as the average of the tht value of 

the original series , 1, ..., 8
t

Y t =  (black) and the previous value of the smoothed series (the 

forecast of 
t

Y  is presented by the red horizontal broken line on the right) 

 

It is not immediately obvious that the algorithm we just described presents a one-sided mov-

ing average with exponentially declining weights. To sort it out, start with the basic recursion, 

1
ˆ ˆ(1 )t t tY Y Yα α −= + −  and substitute recursively backward for 1

ˆ
tY −  which finally yields 

1

0
ˆ t

t j t jj
Y w Y

−
−=

=∑  where (1 ) j

j
w α α= −  (plot 

j
w ). 

 

 

Holt’s Linear Method 

 

Now imagine that we have not only a slowly evolving local level, but also a trend with a slow-

ly evolving local slope. Then the optimal smoothing algorithm is as follows: 

 

1.  Initialize at  t = 2: 2 2Ŷ Y= , 2 2 1F Y Y= −  

2.  Update:   1 1
ˆ ˆ(1 )( ), 0 1t t t tY Y Y Fα α α− −= + − + < <  

             1 1
ˆ ˆ( ) (1 ) , 0 1, 3,...,t t t tF Y Y F t Tβ β β− −= − + − < < = .  

3.  Forecast:  ,
ˆ ˆ
T h T T TY Y hF+ = +  

 

where ˆ
tY  is the estimated, or smoothed, level at time t, and Ft is the estimated slope at time t. 

The parameter α  controls smoothing of the level, and β  controls smoothing of the slope. The 

h-step-ahead forecast simply takes the estimated level at time T and augments it with h times 

the estimated slope at time T. 
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Holt-Winters’ Trend and Seasonality Method 

 

If the data has no trend or seasonal patterns, then simple exponential smoothing is appropriate. 

If the data exhibit a linear trend, then Holt’s linear method is appropriate. But if the data are 

seasonal, these methods on their own cannot handle the problem well. A method known as 

Holt-Winters method is based on three smoothing equations—one for the level, one for trend, 

and one for seasonality. It is similar to Holt’s linear method, with one additional equation for 

dealing with seasonality. The formulas are a bit involved, so we skip them. �� 
 

The ets function from forecast package in R presents a fully automated procedure 

(the best model is selected according to its AIC) based on the exponential moving average 

filter. We shall smooth both the logged and original data:  
 
library(forecast) 

library(fma) 

data(airpass) 

par(mfrow=c(1,2)) 

ap.log <- ets(log(airpass))  

plot(forecast(ap.log),include=36)      

ap <- ets(airpass) 

plot(forecast(ap),include=36)  

 

The graphs of both forecasts are given  in Fig. 3.7. 
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Figure 3.7. Holt-Winters‘ forecasts of  log(airpass) (left) and airpass (center); 

residuals of the first model make a stationary process (right) 

 

Recall that this decomposition is valid only if the irregular part (residuals) of our model make 

a stationary process. In the logged case, the residuals are plotted on the right graph in Fig. 3.2, 

they seem to form a stationary process. 

  

The h-step-ahead forecast to an additive TS time series , 1,...,t t t tY Tr S t Tε= + + = , is given 

by �
,

ˆ
T hT h T T hY Tr S++ += + , provided tε  is a WN. If the residuals t̂ε constitute a more compli-

cated stationary process (AR, MA, or ARMA), the forecast should take into account their 

structure (see Ch. 2).    

 

There are many more R functions for decomposition and/or smoothing: StructTS, decom-

pose, stl, tsSmooth, ets, ma, ses, lowess ... etc (search with the lines help. 
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search("smoothing") or RsiteSearch ("smoothing") or similar). However, 

most of them do not allow to forecast the series under consideration. 

 

3.2 example.  Below, we have plotted two simulated TS series and their common determinis-

tic trend (black) as well as two estimates of the trend obtained with the decompose function  

(red). This function splits a time series into seasonal, trend and irregular components using 

moving averages
4
. Note that despite the fact that that the estimates of the trend are close to the 

true trend, they do not allow to forecast the series.  

Time

tr

2 4 6 8 10

1
2

3
4

5

Y

trend

est.trend

Time

tr

2 4 6 8 10

1
2

3
4

5

Y

trend

est.trend

 

Figure 3.8. Two simulated time series with the same trend (black); estimated trends 

(red) are close to the true one. 

 

 

  

 

Revision questions 

 

.......... 

                                                 
4
 This moving average procedure has little in common with the MA time series. 
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4. Difference Stationary Time Series
1
 

 

For a long time each economic time series used to be decomposed into a deterministic trend 

and a stationary process, i.e., it was assumed that all time series are TS series. However, later 

it appeared that most economic series belong to another class of difference stationary series. 

 

• If 
t

Y  is stationary or its residuals 
t
ε  in the decomposition 

t t t t
Y Tr S ε= + +  are statio-

nary, then 
t

Y  is called Trend Stationary (or TS) series; 

• If 
t

Y  is not a TS series but its differences 1( )
t t t

Y Y Y −∆ = −  are stationary, then it is cal-

led Difference Stationary (or DS) series. 

 

4.1 example. Recall that the AR(1) process 2

1 , ~ (0, ),
t t t t

Y Y WN εϕ ε ε σ−= +  is stationary if 

| | 1ϕ <  and, therefore, under this condition, it is a TS series. However, if 1ϕ = + , the process is 

no longer stationary. Indeed, 1 2 11 ( ) ...
t t t t t t

Y Y Yε ε ε− − −= ⋅ + = + + =  0 1 ...
t

Y ε ε= + + +  (here 0Y  is 

nonrandom initial value), therefore 0t
EY Y≡ , but 2var

t
Y t constεσ= ≠ . On the other hand, 

t t
Y ε∆ =  is stationary, thus a random walk 0 1 ...

t t
Y Y ε ε= + + +  (cf. Computer Labs, p. 1-3) is 

a DS process.   �� 

0 50 100 150 200
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Figure 4.1. One trajectory of a stationary AR(1) process with 0.6ϕ = (left) and two trajecto-

ries of random walk (right; note long excursions up and down and no mean reverting tendency) 

 

                                                 
1
 Procesai, kurių skirtumai stacionarūs. 
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4.1 exercise.  Let | | 1ϕ < . Is the AR(1) proces 2

1 , ~ (0, ),
t t t t

Y Y WN εα ϕ ε ε σ−= + + a TS pro-

cess? Is the process 0 1 1t t t
Y t Yα α ϕ ε−= + + +  (or 0 1 1 0 1( ( 1))

t t t
Y t Y tβ β ϕ β β ε−− − = − − − + ) a 

TS process? What are its trajectories like? Is 1 0 1( ... )
t t t t

Y Y Y tα ε α ε ε−= + + = + + + +  a DS 

process (it is called a random walk with a drift α )? Sketch its trajectory.      �� 

 

It will be useful to have three expresions for the TS series 0 1 1t t t
Y t Yα α ϕ ε−= + + + , | | 1ϕ < . 

This series can be rewritten as 0 1 1 0 1( ( 1))
t t t

Y t Y tβ β ϕ β β ε−− − = − − − +  where 0β =  

0( (1 )α ϕ− − 2
1 ) / (1 )α ϕ ϕ−  and 1 1 / (1 )β α ϕ= − ; thus, the deviations of 

t
Y  from the straight 

line 0 1tβ β+  are stationary, i.e., 
t

Y  is TS process. The process can also be expressed as  

 

0 1

1

t t

t t t

Y t u

u u

β β

ϕ ε−

= + +


= +
 

 

(solve the first equation for 
t

u  and substitute it to the second line). In words - 
t

Y  is a straight 

line plus stationary AR(1) shocks, i.e., it is again a TS process (sketch some paths). 

 

Another way to define DS series is to say that it contains a stochastic or random trend. In-

deed, the above given TS series can be expressed as 
t t t

Y Tr u= +  (here 
t

Tr  is a deterministic 

function and 
t

u  is stationary) whereas the random walk 0 1 1( ... )
t t t

Y Y tα ε ε ε−= + + + + +  has a 

random “trend” (namely, the expression in parenthesis). 

 

4.2 example. Stock prices on the NYSE  

The data file nyse.txt contains monthly data from 1952:1 through 1996:1 on a major stock 

price index sp (=StockPrice) provided by the New York Stock Exchange (NYSE). The price 

index is a value-weighted one. Figure 4.2 is a time series plots of the index tsp , its logarithm 

logt t=l_sp sp , and differences of logarithms 1t t t t−= ∆ = −d_l_sp l_sp l_sp l_sp  

which are roughly the monthly percentage change of tsp . It is common to take the natural 

logarithm of the time series if it seems to be growing over time. If a series sp  is growing at a 

roughly constant rate (and lies on an exponent), then the time series plot of  log=l_sp sp  

will approximate a straight line (see Fig. 4.2, top right). 
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Figure 4.2.  NYSE stock price index (montly data from 1952 through 1995) (top, left), 

logarithm of the index (top, right), and differences of logarithms (bottom, left) 

 

Note that the behavior of d_l_sp looks very different from l_sp: the trend behavior has 

disappeared completely. The figure indicates that the change in the stock price each month 

tends to be small, although there is considerable variability to this growth rate over time. In 

some of the months, the NYSE stock price index increased by over 5%. In October 1987, it 

fell by over 20%. 

 

The common property of time series data is the existence of correlation across observations. 

The stock price index today, for example, is highly correlated with its value last month, i.e., 

the variable “stock price” is correlated with the variable “stock price lagged one period”. In 

fact, if we calculate the correlation between the stock price and lagged stock price we obtain 

0.999044. Yet, if we calculate the correlation between the change in the stock price index and 

the change in the stock price index lagged once, we obtain 0.039. These findings make intuiti-

ve sense. Stock markets change only slowly over time; even in bear markets they rarely fall by 

more than a few percent per month. Consequently, this month’s stock price tends to be quite 

similar to last month’s and both are highly correlated. Yet, the return on the stock market is 

more erratic. This month’s and last month’s return can be quite different, as reflected in the 

near-zero correlation between them. 
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Figure 4.3. Correlogram of  l_sp (left; resembles the one of AR(1)) and d_l_sp 

(right; resembles WN) 

This pattern is common to many financial time series Y : the series itself has autocorrelations 

near one, but the change in the series has autocorrelations that are much smaller (often near 

zero). Therefore, if you knew past values of the stock price index, you could make a very 

good estimate of what the stock price index was this month. However, knowing past values of 

stock returns will not help you predict the return this month. Y is a nonstationary series while 

Y∆  is unpredictable stationary white noise. 

 
Model 1: ARMA, using observations 1952:01-1996:01 (T = 529) 

Dependent variable: l_sp 

             coefficient   std. error   t-ratio   p-value 

  ------------------------------------------------------- 

  const       6,41022      0,0411527     155,8    0,0000  *** 

  phi_1       0,999715     0,00192066    520,5    0,0000  *** 

Figure 4.3 suggests and the printout of  Model 1: 1 1t t tY Yα ϕ ε−= + +  (see above) confirms that 

ϕ  is close to (and probably equals) 1, that is, 1( 1 )t t tY Yα ε−= + ⋅ +  is a random walk.  

 

4.1. Unit Roots 

 

Now we shall describe close relationship between random walks and processes with unit 

roots. 

 

Definition. We say that an AR(1) process 2
1 , ~ (0, )t t t tY Y WNα ϕ ε ε σ−= + + , has a unit root 

if 1ϕ = . 

 

Recall that if | | 1ϕ < , the process is stationary. The unit root process  1t t tY Yα ε−= + +  (it can 

be rewritten as t tY α ε∆ = + ) is not stationary, it is also referred to as the random walk mo-

del. The coefficient α  is called a drift.  If Y has a unit root, then Y∆  will be stationary. For 

this reason,  
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Figure 4.4. Three paths of simulated unit root process (or random walk) with 0α =  (left) 

and three paths of simulated unit root process (or random walk) with a drift 0.1α =  (right) 

 

series with unit roots are often referred to as difference stationary (DS) series. A series 

which becomes stationary after first differencing is said to be integrated of order one and 

denoted (1)I . If tY∆  is described by a stationary ARMA(p, q) model, we say that tY  is desc-

ribed by an autoregressive integrated moving average (ARIMA) model of order p, 1, q, or in 

short an ARIMA(p, 1, q) model. The symbol (0)I  is used to denote a stationary series (for 

more details see 4.3. Appendix). 

 

The final point can be seen most clearly by subtracting 1tY −  from both sides of the equation in 

the AR(1) model 1t t tY Yα ϕ ε−= + + , yielding:  

 

1t t tY Yα ρ ε−∆ = + +  

 

where 1ρ ϕ= − . Note that, if 1ϕ = , then 0ρ =  and the previous equation can be written sole-

ly in terms of tY∆ , implying that tY∆  fluctuates randomly around α . For future reference, 

note that we can test for ρ = 0 to see if a series has a unit root. Furthermore, a time series will 

be stationary if  1 1ϕ− < <   which is equivalent to 2 0ρ− < < . We will refer to this as the sta-

tionarity condition. 

 

The AR(1) model can be interpreted as a simple regression model where last period’s 1t
Y −  is 

the explanatory variable. However, it is possible that more lags of Y should be included as 

explanatory variables in order to make the remainder white noise. This can be done by 

extending the AR(1) model to the autoregressive of order p, AR( p), model: 

 

 2
1 1 2 2 ... , ~ (0, )

t t t p t p t t
Y Y Y Y WNα ϕ ϕ ϕ ε ε σ− − −= + + + + + , (4.1) 

 

for 1,...,t p T= + . In discussing unit root behavior it is convenient to subtract 1tY −  from both 

sides of the previous equation. With some rearranging we obtain 
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 1 1 1 1 1...
t t t p t p t

Y Y Y Yα ρ γ γ ε− − − − +∆ = + + ∆ + + ∆ +  (4.2) 

  

where the coefficients in this regression, 1 1, ,...,
p

ρ γ γ −  are simple functions of 1,..., p
ϕ ϕ . For 

instance, 1 ... 1
p

ρ ϕ ϕ= + + − . Note that this is identical to the AR(p) model, but is just written 

differently. Hence we refer to both previous equations as AR(p) models. 

 

The key points here to note are that the above equation is still in the form of a regression mo-

del and 0ρ =  implies that the AR(p) time series Y contains a unit root; on the contrary, 

if  2 0ρ− < < , then the series is stationary
2
. Looking at the previous equation with 0ρ =  

clarifies an important way of thinking about unit root series which we have highlighted pre-

viously: if a time series contains a unit root then a regression model involving only Y∆  is ap-

propriate (i.e., if 0ρ = , then the term 1tY −  will drop out of the equation and only terms invol-

ving Y∆  or its lags appear in the regression). It is common jargon to say that “if a unit root is 

present, then the data can be differenced to induce stationarity”. 

 

• The AR(p) process has a (first order) unit root if 1) it is not stationary, but 2) its diffe-

rences are.  

• In AR(1) case this is equivallent to 1ϕ = +  or 0ρ = . 

• In AR(p) case this is equivallent to 1 ... 1
p

ϕ ϕ+ + =  (why?) or 0ρ = . 

 

As we will discuss in the next chapter, with the exception of a case called cointegration, we do 

not want to include unit root variables in regression models. This suggests that, if a unit root in 

Y is present, we will want to difference it and use Y∆ . In order to do so, we must know first if 

Y has a unit root. In the past, we have emphasized that drifting unit root series exhibit trend 

behavior (see Fig. 4.4, right). Does this mean that we can simply examine time series plots of  

Y  for such trending to determine if it indeed has a unit root? The answer is no. To explain 

why, let us examine three models:  

 

1. Random walk with a drift : 1 0 1 ... , ~t t t t tY Y Y t WNδ ε δ ε ε ε−= + + = + + + +  (DS pro-

cess with a stochastic trend) 

2. The process with a linear trend and WN disturbances: , ~t t tY t WNα δ ε ε= + +  (TS 

process with a deterministic trend) 

3. The process with a linear trend and AR(1) disturbances:  

 

1 , | | 1, ~

t t

t t t t

Y t u

u u WN

α δ

ϕ ε ϕ ε−

= + +


= + <
   

       

      (TS process with a deterministic trend). 

 

                                                 
2
 The formal definition of a unit root is as follows: we say that the AR(p) process has (one) unit root if its inverse 

characteristic polynomial 1( ) 1 ...
p

p p
A z z zϕ ϕ= − − −  has one root equal to +1 (this condition is equivalent to 

0ρ =  (why?)) while all the other roots are greater in modulus than 1 (see p.4-14). 
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Note that the third model can be rewritten as  1 , ~t t t tY Y t WNα ϕ δ ε ε−= + + +�� , which can still 

be generalized to allow for AR(p) disturbances: 1 1 ...t tY Yα ϕ −= + + +�
p t p
Y tϕ δ− + +� ,tε  

~t WNε .  
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Figure 4.5.  Simulated paths of the three models 

 

All three models have very similar paths (see Fig. 4.5)  but the properties of respective models 

are essentially different. The differences basically manifest themselves in forecasting: the fo-

recasts of TS models tend to the trend line while DS model does not possess this mean rever-

ting property. Note that in Model 2 shocks are WN, therefore already the one-step forecast 

101,100Y  coincides with the trend. For Model 3 it takes some time for 100 ,100hY +  to approach 

this trend. In contrast, the forecast of DS Model 1 starts at 100Y  and goes parallel to the line 

tδ  (see Fig. 4.6). Also note that the accuracy of the forecast in Case 1 is ever decreasing (the 

confidence interval is broadening as h ) while in Case 2 it is always the same and in Case 3 

it rapidly approaches its limit.     

 

Thus, you should remember that looking at time series plots alone is not enough to tell 

whether a series has a unit root – we need some statistical procedures (i.e., tests) to decide 

upon it.  
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Figure 4.6.  Three models and their forecasts with respective confidence bands 

The LS estimate of δ  in the DS process 0 1 ... , ~t tY Y t WNδ ε ε ε= + + + + ,  is inconsistent be-

cause the error process is not  a WN. To estimate δ  consistently, differentiate 
t

Y . 

The LS estimate of δ  in the stationary TS process 

1 1 ...t tY Yα ϕ −′= + + + , ~
p t p t
Y t WNϕ δ ε ε− ′+ + , is consistent. 

 

The forecasts of TS models tend to the trend line while a DS model does not possess this 

mean reverting property (at any point the process begins anew.)  

The discussion in the previous paragraph motivates jargon that we will use and introduce in 

the context of the following summary: 

 

1. The nonstationary time series on which we focus are those containing a unit root. To put 

it differently, these series contain a stochastic trend. But if we difference these time series, 

the resulting time series will be stationary. For this reason, they are also called difference sta-

tionary. 
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2. The stationary time series on which we focus have 2 0ρ− < <  in the AR(p) model. 

However, these series can exhibit trend behavior through the incorporation of a deterministic 

trend. In this case, they are referred to as trend stationary. 

 

If we add a deterministic trend to the AR(p) model, we obtain a very general model that is 

commonly used in univariate time series analysis: 

   

 1 1 1 1 1...
t t t p t p t

Y Y Y Y tα ρ γ γ δ ε− − − − +∆ = + + ∆ + + ∆ + +  (4.3) 

  

We refer to the above as the AR(p) with deterministic trend model and use it later. We use 

namely this form of an AR process because it is more convenient for testing the hypothesis for 

unit root, i.e., 0 : 0H ρ = .  

 

4.2 example.  Stock prices on the NYSE (continued) 

The following Table 4.1 contains output from an OLS regression of tY∆  on 1 1, ,t tY Y− −∆  

2 3,t tY Y− −∆ ∆  , and a deterministic time trend, created by using the data on stock prices from 

nyse.txt. In other words, it provides regression output for the AR(4) with deterministic trend 

model. We suspect that stock prices may contain a unit root, a supposition supported 

somewhat by the table. In particular, a unit root is present if ρ  (the coefficient on 1tY − ) is ze-

ro. As we can see, the estimate of ρ  is indeed very small (i.e. ρ̂ = -0.016). 

 

Table 4.1 

 
? ols d_l_sp 0 l_sp(-1) d_l_sp(-1) d_l_sp(-2) d_l_sp(-3) time 

 

Model 2: OLS, using observations 1952:05-1996:01 (T = 525) 

Dependent variable: d_l_sp 

 

             coefficient    std. error    t-ratio   p-value 

  --------------------------------------------------------- 

  const       0.0820407     0.0395523      2.074    0.0385  ** 

  l_sp_1     -0.0161543     0.00831845    -1.942    0.0527  * 

  d_l_sp_1    0.0513588     0.0439385      1.169    0.2430  

  d_l_sp_2   -0.0273597     0.0439384     -0.6227   0.5338  

  d_l_sp_3    0.0151113     0.0439494      0.3438   0.7311  

  time        9.98321e-05   5.04478e-05    1.979    0.0484  ** 

 

Log-likelihood       939.5437   Akaike criterion    -1867.087 

Schwarz criterion   -1841.507   Hannan-Quinn        -1857.071 

rho                  0.001951   Durbin-Watson        1.991534 

 

The main question we have to answer now is whether the estimate ρ̂  is close enough to 0 to 

support the hypothesis 0 : 0H ρ = ? In other words, we need a test. 

 

4.2.  Testing in the AR(p) with deterministic trend model 
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As we know, it is possible to use OLS to estimate the coefficients of the AR(p) model (4.3). 

However, in the case where we face the possibility of a unit root there is one important comp-

lication that occurs in the AR(p) model that was not present in earlier chapters. To understand 

it, let us divide the coefficients in the model into two groups: (1) 1 1, ,...,
p

α γ γ − , and δ , and (2) 

ρ . In other words, we consider hypothesis tests involving ρ  separately from those involving 

the other coefficients. 

 

• Testing involving 1 1, ,...,
p

α γ γ − , and δ  

 

Many sophisticated statistical criteria and testing methods exist to determine the appropriate 

lag length in an AR(p) model. Nonetheless, simply looking at the t-ratio or p-values in regres-

sion outputs can be quite informative. For instance, an examination of  Table 5.1 reveals that 

the p-values associated with the coefficients on the lagged Y∆  terms are insignificant, and 

that they may be deleted from the regression (i.e. the p-values are greater than 0.05). Alterna-

tively, a more common route is to proceed sequentially, that is, to choose a maximum lag 

length, maxp , and then sequentially drop lag lengths if the relevant coefficients are insignifi-

cant.  

 

More specifically, begin with an AR( maxp ). If the maxp th lag is insignificant, we reduce the 

model to an AR( maxp - 1). If the ( maxp - 1)th lag is insignificant in the AR( maxp - 1) then 

drop it and use an AR( maxp - 2), etc. Generally, start with a fairly large choice for maxp . 

 

In the AR(p) with deterministic trend model we also have to worry about testing whether δ  = 

0. This can be accomplished in the standard way by checking whether its p-value is less than 

the level of significance (e.g., 0.05). This test can be done at any stage, but it is common to 

carry it out after following the sequential procedure for choosing  p. 

 

4.2 example.  Stock prices on the NYSE (continued) 

 

If we carry out the preceding strategy on the NYSE stock price data, beginning with maxp = 4, 

the model reduces to 1t t tY Y tα ρ δ ε−∆ = + + + : 

 
ols d_l_sp 0 l_sp(-1) time 

 

Model 3: OLS, using observations 1952:02-1996:01 (T = 528) 

Dependent variable: d_l_sp 

 

             coefficient    std. error    t-ratio   p-value 

  --------------------------------------------------------- 

  const       0.0790879     0.0388022      2.038    0.0420  ** 

  l_sp_1     -0.0154821     0.00815052    -1.900    0.0580  * 

  time        9.60002e-05   4.95819e-05    1.936    0.0534  * 

Log-likelihood       944.6746   Akaike criterion    -1883.349 

Schwarz criterion   -1870.542   Hannan-Quinn        -1878.335 

rho                  0.047069   Durbin-Watson        1.905567     �� 

 

These results lead us to the next, most important, testing question: does Y contain a unit root? 

Remember that, if ρ  = 0, then Y contains a unit root. In this case, the series must be differen-

ced in the regression model (i.e., it is difference stationary). You may think that you can sim-
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ply test ρ = 0 in the same manner as you tested the significance of the other coefficients. For 

instance, you might think that by comparing the p-value to a significance level (e.g., 0.05), 

you can test for whether ρ = 0. SUCH A STRATEGY IS INCORRECT!  In hypothesis te-

sting, ρ  is different from other coefficients and thus we must treat it differently. 

 

 

• Testing involving ρ  

 

Most regression packages like GRETL implicitly assume that all of the variables in the model 

are stationary when they calculate p-values. If the explanatory variable 1tY −  is nonstationary, 

its p-value will be incorrect. A correct way of testing for a unit root, i.e., the null hypothesis 

0 : 0H ρ = , has been developed by two statisticians named Dickey and Fuller and is known as 

the Dickey–Fuller test. They recommend using the same t − ratio for testing ρ  = 0, but cor-

recting the p − value.  

 

We can motivate the Dickey–Fuller test in terms of the following: testing could be done by 

comparing a test statistic (here, the t − ratio) to a critical value to determine whether the for-

mer was either “small” (in which case the null hypothesis was accepted) or “large”, i.e., “far 

from zero“ (in which case the hypothesis was rejected). In the standard stationary case, the 

critical values are taken from statistical tables of the Student distribution. Dickey and Fuller 

demonstrated that in the unit root case this is incorrect. To explain, assume that tY =  

1 ,t tYϕ ε− + 2~ (0, )t WNε σ , and test the null 0 : 1H ϕ =  (unit root) against the alternative sta-

tionarity hypothesis 1 : ( 1 ) 1H ϕ− < < . In doing so, we used to apply the t − ratio statistics 

�ˆ ˆ( 1) / . .( )s eτ ϕ ϕ= − ; recall that if 0H  is true, τ  

has the Student distribution
3
 (thus, if 

1.645τ < − , we reject 0H ). However, in the 

unit root case, the probability density function 

of τ  is shifted to the left (see the figure on the 

right) and the 0.05 quantile is more negative 

than -1.645.    

 

A rough rule of a thumb can be used that will 

not lead you too far wrong if your number of 

observations is moderately large (e.g., T > 50). 

This approximate rule is given in the following 

strategy for testing for a unit root:  

 

1. Use the strategy outlined above to estimate the AR( p) with deterministic trend model. Re-

cord the t − statistics corresponding to ρ  (i.e., the t − ratio for the coefficient on 1tY − ). 

2. If the final version of your model includes a deterministic trend, the Dickey–Fuller criti-

cal value is approximately -3.45. If the t − ratio on ρ  is more negative than -3.45, reject the 

unit root hypothesis and conclude that the series is stationary. Otherwise, conclude that the 

series has a unit root. 

                                                 
3
 Which, for big T, is close to standard normal. 
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3. If the final version of your model does not include a deterministic trend, the Dickey–

Fuller critical value is approximately -2.89. If the t − statistics on ρ  is more negative than      

-2.89, reject the unit root hypothesis and conclude that the series is stationary. Otherwise, 

conclude that the series has a unit root.                 �� 

 

In the previous 4.2 example, the final version of the AR( p) model includes a deterministic 

trend. The t − statistics on ρ  is -1.900, which is not more negative than -3.42 (see Table 4.2). 

Hence we can accept the hypothesis that NYSE stock prices contain a unit root and make a 

random walk with drift, i.e., are described by a model t tα ε∆ = +l_sp  (c.f. CompLabs, p. 4-

8, 3. „trend“). 

 

A more accurate estimate of  p − value is given in Table 4.2. 

 

Table 4.2  1% and 5% critical values for Dickey–Fuller tests 

 
 

Still better (once you have decided upon the form of a regression equation) is to apply to 

GRETL function adf (augmented Dickey-Fuller test).  

 

4.2 example.  Stock prices on the NYSE (continued) 

 
adf 0 l_sp --ct    

 

Dickey-Fuller test for l_sp 

sample size 528 

unit-root null hypothesis: a = 1 

 

   test with constant  

   model: (1-L)y = b0 + b1*t + (a-1)*y(-1) + e 

   1st-order autocorrelation coeff. for e: 0.047 

   estimated value of (a - 1): -0.01548 

   test statistic: tau_c(1) = -1.8995 

   p-value 0.6533 

 

Since the p − value  0.6533 isn‘t less than 0.05, we do not 

reject the hypothesis 0ρ = , i.e., once again we confirm the unit root hypothesis.  

 

The same result can be obtained through the menu bar: in GRETL window, select l_sp and 

go to Variable| Unit root tests | Augmented Dickey-Fuller test and fill in the box as shown on 

the right (see p. 4-11) (thus, GRETL starts with 4p =  and selects 1p = ).   �� 
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Once we have proved that the best model to describe l_sp is a random walk t tY α ε∆ = +  or 

1 1
ˆ ˆ ˆˆ
t t tY Y Yα− −= + = + 0.00686, we create the model through Model| Ordinary Least Squares:  

 
Model xx: OLS, using observations 1952:02-1996:01 (T = 528) 

Dependent variable: d_l_sp 

 

             coefficient   std. error   t-ratio   p-value 

  ------------------------------------------------------- 

  const      0,00686458    0,00176760    3,884    0,0001  *** 

 

Log-likelihood       942,7936   Akaike criterion    -1883,587 

Schwarz criterion   -1879,318   Hannan-Quinn        -1881,916 

rho                  0,039124   Durbin-Watson        1,921546 

 

We can use the model to forecast l_sp till, say, 2000:1: go to Data| Add observations...| Nu-

mber of observations to add...|48, go back to Model xx window and select Analysis| Fore-

casts...  l_sp| automatic forecast (dynamic ...). After clicking OK, you will see both the graph 

(see Fig. 4.7) and numeric values
4
. 
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Figure 4.7.   l_sp and its 48 months forecast 

  

 

 Obs          lsp          prediction   std. error   95% interval 

 .......................................................................  

 1996:01      8,229668     8,218999 

 1996:02                   8,236533     0,040578     8,157002 - 8,316064 

 1996:03                   8,243397     0,057386     8,130923 - 8,355871 

 1996:04                   8,250262     0,070283     8,112510 - 8,388014 

 ...................................................................... 

 1999:11                   8,545439     0,275212     8,006032 - 9,084845 

 1999:12                   8,552303     0,278188     8,007065 - 9,097542 

 2000:01                   8,559168     0,281132     8,008160 - 9,110176 

                                                 
4
 The forecast line starts from the last point and is horizontal if there is no drift; the line is parallel to ˆtα  if 

0α ≠ . 
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4.2 exercise. Define the process 0 1 , ~
t t t

Y t WNβ β ε ε= + +  – is it TS or DS? How will you 

obtain a „good“ estimate of 1β ? Define the process 1 1 0 1t t t
Y Y Y tβ ε β−= + + = + + 1 ...ε + +  

, ~
t t

WNε ε  – is it TS or DS? Describe the procedure to obtain a „good“ estimate of 1β . What 

does it mean „good“?  

 

4.3. Unit Roots - Summary 

 

Testing for an (autoregressive) unit root is a time consuming procedure. To begin with, we 

rewrite our basic model 2
1 1 2 2 ... , ~ (0, )

t t t p t p t t
Y t Y Y Y WNα δ ϕ ϕ ϕ ε ε σ− − −= + + + + + + , as  

tY∆ = 1 1 1 1 1...
t t p t p t

t Y Y Yα δ ρ γ γ ε− − − − ++ + + ∆ + + ∆ +    (the latter form is more convenient sin-

ce the unit root hypothesis can be simply formulated as 0 : 0H ρ = ; the former model can also 

have a multicollinearity problem).  

 

When testing for unit root, it is important to understand the meaning of the hypotheses – for 

example, the function ur.df in R package urca suggests three options: type="none", 

"drift" and "trend".   

 

1. “none” – our time series 
t

Y  resembles a stationary AR(1) process with zero mean 

(however, we suspect that it could be a random walk):  

 

1 1 1 1: ~ ( 1) , | | 1t t t t t t tH Y Y w Y Y Y wϕ ϕ ϕ− − −= + − = − + <  

0 1 1 1: ~t t t t t t tH Y Y w Y Y Y w− − −= + − = ⋅ +0  

 

In this case, the null 1ϕ =  means that our process is a random walk without drift. If the hy-

pothesis is rejected, we conclude that the process is stationary AR(1) with zero mean. 

 

2. “drift” – our time series resembles a stationary AR(1) process with nonzero mean 

(however, we suspect that it could be a random walk with drift): 

 

1 1 1 1: ~ ( 1) , | | 1t t t t t t tH Y Y w Y Y Y wα ϕ α ϕ ϕ− − −= + + − = + − + <  

0 1 1 1: ~t t t t t t tH Y Y w Y Y Y wαα − − −= + + − = + ⋅ +0  

 

In this case, the null 1ϕ =  means that our process is a random walk with drift. If the hypothe-

sis is rejected, we conclude that the process is stationary AR(1) with nonzero mean. 

 

3. “trend” -  our time series resembles a stationary AR(1) process around a linear trend 

(however, we suspect that it could be a random walk with drift): 

1 1 1: ( ) ~ [ (1 ) ] (1 ) , | | 1t t t t t tH Y a bt Y a bt w Y a b b t Y wϕ ϕ ϕ ϕ ϕ ϕ− −− − = − − + = − + + − ⋅ + + <  

0 1 1 1: ~t t t t t t tH Y b Y w Y Y b Y w− − −= + + − = + ⋅ +0  

 

In this case, the null 1ϕ =  means that our process is a random walk with drift. If the hypothe-

sis is rejected, we conclude that our process is a stationary AR(1) around a line a bt+ .    � 
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We have to plot 
t

Y  first and then decide upon the type of the model. In theory, our sequential 

procedure (see Sec. 4.2) gives us the right model, but be careful! Recall that when dealing 

with l_sp, our final model was  (here we perform the calculation with R) 

 
> library(dynlm) 

> summary(dynlm(d(l_sp)~L(l_sp)+time(l_sp))) 

 

Coefficients: 

             Estimate Std. Error t value Pr(>|t|)   

(Intercept) -2.169524   1.124569  -1.929   0.0542 . 

L(l_sp)     -0.015482   0.008150  -1.900   0.0580 . 

time(l_sp)   0.001152   0.000595   1.936   0.0534 . 

 

The t − statistics on ρ  is -1.900, which is not more negative than -3.42 (see Table 4.2 and also 

below). Hence we can accept the hypothesis that NYSE stock price l_sp contains a unit root 

and makes a random walk with drift (i.e., 1ϕ =  and thus l_sp is described (see the 

“trend” case above) by a model t tb w∆ = +l_sp ). 

 

The same conclusion can be obtained in a simpler manner with  

 
> library(urca) 

> summary(ur.df(l_sp,type="trend",lags=0)) 

 

###############################################  

# Augmented Dickey-Fuller Test Unit Root Test #  

###############################################  

 

Coefficients: 

              Estimate Std. Error t value Pr(>|t|)   

(Intercept)  7.918e-02  3.885e-02   2.038   0.0420 * 

z.lag.1     -1.548e-02  8.151e-03  -1.900   0.0580 . 

tt           9.600e-05  4.958e-05   1.936   0.0534 . 

 

Value of test-statistic is: -1.8995 6.2954 1.877  

 

Critical values for test statistics:  

      1pct  5pct 10pct 

tau3 -3.96 -3.41 -3.12 

phi2  6.09  4.68  4.03 

phi3  8.27  6.25  5.34 

 

 

The second approach in testing the unit root hypothesis is not to „look for the highest signifi-

cant lag“ but search the model with minimum AIC (or BIC) (this often allows to automate 

the model selection procedure: below, the function ur.df begins with lags=4 and goes 

down till the minimum AIC model with lags=1 is detected): 

 
> summary(ur.df(l_sp,type="trend",lags=4,selectlags="AIC")) 

Coefficients: 

              Estimate Std. Error t value Pr(>|t|)   

(Intercept)  8.559e-02  3.915e-02   2.186   0.0292 * 

z.lag.1     -1.680e-02  8.209e-03  -2.046   0.0412 * 

tt           1.023e-04  4.983e-05   2.053   0.0406 * 

z.diff.lag   5.261e-02  4.380e-02   1.201   0.2302   
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Value of test-statistic is: -2.0463 6.0166 2.1302  

 

Critical values for test statistics:  

      1pct  5pct 10pct 

tau3 -3.96 -3.41 -3.12 

phi2  6.09  4.68  4.03 

phi3  8.27  6.25  5.34 

 

Now the t − statistics with ρ  is -2.046, but it changes neither our final conclusion nor the mo-

del. 
 

Still simpler technique to obtain the same corollary is to use  

 
> library(forecast) 

> aa.mod = auto.arima(l_sp)   

> aa.mod 

 

ARIMA(0,1,0) with drift          

 

Coefficients: 

       drift 

      0.0069 

s.e.  0.0018 

 

sigma^2 estimated as 0.001647:  log likelihood=942.79 

AIC=-1881.59   AICc=-1881.56   BIC=-1873.05 

 

The function auto.arima runs through many models (including those for 
t

Y∆ ) and chooses 

the one with minimum AIC, thus the „best“ model  here is ARIMA(0,1,0) which means unit 

root. 

 

And lastly, we have to check whether the residuals of our final model make WN: 

 
> tsdiag(aa.mod) # yes, residuals make WN 
> plot(forecast(aa.mod),include=48) 
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Figure 4.8. Residuals of the model aa.mod make white noise (left); the 24 

months forecast is on the right 

 

4.3 example. Below, we have plotted two simulated DS series (random walks without drift) 

and their common mean line, i.e., the x  axis (black) as well as two estimates of the trend ob-

tained with the decompose function (red). The function splits a time series into seasonal, 

„trend“ and irregular components using moving averages. Note that it makes no sense to apply 

the function to the DS series: neither random walks nor their „trends“ are close to the mean 

value ( ) 0
t

EY ≡ . Random walk has no deterministic trend, it has only a stochastic „trend“ 

which is different for every trajectory. 

Time
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Figure 4.9. Two simulated random walks (black) and their smoothed stochastic trends 

(red)  

 

4.4. Appendix 

 

Here we shall present a more consistent definition of integrated processes.  

 

Definition 4.1.  We say that a process 
t

Y  is (0)I  (integrated of zeroth order) if it is stationary 

and invertible.  

• White noise is (0)I . 

• Stationary AR(p) process is (0)I . 

• The MA(1) process 1t t t
Y ε ε −= −  (i.e., differences of WN) is stationary but not inver-

tible (why?), thus it is not (0)I . 
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Definition 4.2. The process 
t

Y  is (1)I  (integrated of the first order) if it is not stationary but 

1t t t
Y Y Y −∆ = −  is (0)I ; the process 

t
Y  is (2)I  (integrated of the second order) if it is not sta-

tionary, 
t

Y∆  is also not stationary, but 2( )
t t

Y Y∆ ∆ = ∆  is (0)I  etc
5
.  

• The special  AR(1) process, namely, the random walk 11 , ~
t t t t

Y a Y WNε ε−= + ⋅ + , is 

an (1)I  process. 

• The special ARMA(1,1) process 1 11 1 , ~
t t t t t

Y a Y WNε ε ε− −= + ⋅ + − ⋅ , is not an (1)I  

process. 

• The trend stationary process , ~
t t t

Y t WNα β ε ε= + + , is not a stationary process (the-

refore it is not (0)I )  but it is also not an (1)I  process. Indeed, 1t t t
Y β ε ε −∆ = + −  is 

not (0)I . Thus, if you want to get a „good“ stationary process out of a TS process with 

a polynomial trend, do not differentiate it (you will get a „bad“ process); instead, su-

btract the trend. 

 

4.3 exercise. Is white noise process , ~
t t t

Y WNε ε=  a) stationary? b) (0)I ? c) (1)I ?   

• Let the AR(p) process ( ) , ~
p t t t

A L Y WNε ε= , is such that the inverse characteristic 

polynomial 1( ) 1 ... p

p p
A x x xϕ ϕ= + + +  has exactly one root equal to +1 while all the 

other roots are greater than 1 in modulus. Then we say that the process 
t

Y  has (the first 

order) unit root. Since, in this case, 1( ) ( ) (1 )
p p

A L A L L−= ⋅ − , the process 
t

Y  is (1)I , 

i.e., 
t

Y∆  is (0)I  (more specifically, 
t

Y∆  is a stationary AR(p-1) process). Thus, if you 

differentiate an (1)I  process, you will get a stationary (0)I  process; if you differentia-

te AR(p) process with a unit root, you will get a stationary AR(p-1) process.    

 

To sum up – the unit root process and integrated process are close but not identical concepts: 

the AR(p) process 
t

Y  with one unit root is (1)I  and 1(1/ ( ))
t p t

Y A L ε−∆ =  is (0)I ; since an 

(1)I  process 
t

Z  is not necessarily an AR process, 1( ( ) / ( )) ~ (0)
t p t

Z B L A L Iε−∆ = ; here ( )B L  

corresponds to an invertible process.  

                                                 
5
 In economics, integrated processes of order higher than 2 are rare.  
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5. Regression with time lags: Autoregressive Distributed Lag 

Models 

The goal of the researcher working with time series data does not differ too much from that of 

the researcher working with cross-sectional data: both aim to develop a regression relating a 

dependent variable to some explanatory variables. However, the analyst using time series data 

will face two problems that the analyst using crosssectional data will not encounter: (1) one 

time series variable can influence another with a time lag; and (2) if the variables are nonsta-

tionary, a problem known as spurious regression may arise. However, one should aways keep 

in mind this general rule: if you have nonstationary time series variables then you should 

not include them in a regression model. The appropriate route is to transform the variables 

before running a regression in order to make them stationary. There is one exception to this 

general rule, which we shall discuss later, and which occurs where the variables in a regres-

sion model are nonstationary and cointegrated. In this chapter, we will assume all variables in 

the regression are stationary. 

 

The value that the stock market places on a firm might depend not only on current income, but 

on historical income as well. After all, current income could be affected by short-term factors 

and may not be a totally reliable guide to long-run performance. Similar considerations hold 

for our executive compensation example where compensation might be determined not only 

on current profits, but also on past profits. In short, there are good reasons to include not only 

current values of explanatory variables, but also past values.  

 

To put this concept in the language of regression, we say that the value of the dependent va-

riable at a given point in time should depend not only on the value of the explanatory variable 

at that time period, but also on values of the explanatory variable in the past. A simple model 

to incorporate such dynamic effects has the form 

 

0 ...
t t q t q t

Y X Xα β β ε−= + + + + . 

 

Since the effect of the explanatory variable on the dependent variable does not happen all at 

once, but rather is distributed over several time periods, this model is sometimes referred to as 

a distributed (or weighted) lag model. Coefficients can be interpreted as always, i.e., as mea-

sures of the influence of the explanatory variable on the dependent variable. In this case, we 

have to be careful with timing. For instance, we interpret results as “ 2β  measures the effect of 

the explanatory variable two periods ago on the dependent variable, ceteris paribus”. 

 

5.1. Selection of Lag Order 

 

When working with distributed lag models, we rarely know a priori exactly how many lags 

we should include. That is, unlike most of the regression models considered in Ch. 0, we don’t 

know which explanatory variables in a distributed lag model belong in the regression before 

we actually sit down at the computer and start working with the data. Appropriately, the issue 

of lag length selection becomes a databased one where we use statistical means to decide how 

many lags to include. There are many different approaches to lag length selection in the eco-

nometrics literature. Here we outline a common one that does not require any new statistical 
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techniques. This method uses t-tests for whether 0
q
β =  to decide lag length. A common stra-

tegy is to  

 

• Begin with a fairly large lag length, maxq , and test whether the coefficient on the 

maximum lag is equal to zero (i.e., test whether 
max

0
q
β = ) 

• If it is, drop the highest lag and re-estimate the model with maximum lag equal to 

max 1q −  

• If you find 
max 1 0

q
β − =  in this new regression, then lower the lag order by one and 

re-estimate the model.  

• Keep on dropping the lag order by one and re-estimating the model until you reject 

the hypothesis that the coefficient on the longest lag is equal to zero. 

 

5.1 example.  The effect of bad news on market capitalization 

 

The share price of a company can be sensitive to bad news. Suppose that Company B is in an 

industry which is particularly sensitive to the price of oil. If the price of oil goes up, then the 

profits of Company B will tend to go down and some investors, anticipating this, will sell their 

shares in Company B driving its price (and market capitalization) down. However, this effect 

might not happen immediately. For instance, if Company B holds large inventories produced 

with cheap oil, it can sell these and maintain its profits for a while. But when new production 

is required, the higher oil price will lower profits. Furthermore, the effect of the oil price jump 

might not last forever, since Company B also has some flexibility in its production process 

and can gradually adjust to higher oil prices. Hence, news about the oil price should affect the 

market capitalization of Company B, but the effect might not happen immediately and might 

not last too long. 

 

The file BADNEWS.XLS contains data collected on a monthly basis over five years (i.e., 60 

months) on the following variables: 

 

  Y market capitalization of Company B ($000) 

  X the price of oil (dollars per barrel) above the benchmark price 

 

Since this is time series data and it is likely that previous months’ news about the oil price will 

affect current market capitalization, it is necessary to include lags of X in the regression. 

Below are present OLS estimates of the coefficients in a distributed lag model in which mar-

ket capitalization is allowed to depend on present news about the oil price and news up to 

maxq = 4 months ago. That is, 

 

0 1 1 4 4...t t t t tY X X Xα β β β ε− −= + + + + + : 

 
 

ols y 0 x x(-1) x(-2) x(-3) x(-4) 

 

Model 1: OLS, using observations 1980:05-1984:12 (T = 56) 

Dependent variable: y 

 

             coefficient   std. error   t-ratio    p-value  

  --------------------------------------------------------- 
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  const      91173,3       1949,85      46,76     6,17e-043 *** 

  x           -131,994       47,4361    -2,783    0,0076    *** 

  x_1         -449,860       47,5566    -9,459    1,01e-012 *** 

  x_2         -422,518       46,7778    -9,032    4,40e-012 *** 

  x_3         -187,104       47,6409    -3,927    0,0003    *** 

  x_4          -27,7710      47,6619    -0,5827   0,5627    

 

Mean dependent var   74067,00   S.D. dependent var   10468,82 

Sum squared resid    1,45e+09   S.E. of regression   5380,606 

R-squared            0,759855   Adjusted R-squared   0,735840 

F(5, 50)             31,64143   P-value(F)           2,22e-14 

Log-likelihood      -557,3585   Akaike criterion     1126,717 

Schwarz criterion    1138,869   Hannan-Quinn         1131,428 

rho                 -0,161850   Durbin-Watson        2,240889 

 

 

What can we conclude about the effect of news about the oil price on Company B’s market 

capitalization? Increasing the oil price by one dollar per barrel in a given month is associated 

with:  

 

1. An immediate reduction in market capitalization of $131,994, ceteris paribus. 

2. A reduction in market capitalization of $449,860 one month later, ceteris paribus 

 

and so on. To provide some intuition about what the ceteris paribus condition implies in this 

context note that, for example, we can also express the second of these statements as: “Increa-

sing the oil price by one dollar in a given month will tend to reduce market capitalization in 

the following month by $449,860, assuming that no other change in the oil price occurs”. 

 

Since the p-value corresponding to the explanatory variable 4tX −  is greater than 0.05 we can-

not reject the hypothesis that 4 0β =  at the 5% level of significance. Accordingly, we drop 

this variable from the model and re-estimate with lag length set equal to 3, yielding the results 

in the following table: 

 
? ols y 0 x x(-1) x(-2) x(-3) 

 

Model 2: OLS, using observations 1980:04-1984:12 (T = 57) 

Dependent variable: y 

 

             coefficient   std. error   t-ratio    p-value  

  --------------------------------------------------------- 

  const       90402,2      1643,18      55,02     9,19e-048 *** 

  x            -125,900      46,2405    -2,723    0,0088    *** 

  x_1          -443,492      45,8816    -9,666    3,32e-013 *** 

  x_2          -417,609      45,7332    -9,131    2,18e-012 *** 

  x_3          -179,904      46,2520    -3,890    0,0003    *** 

 

Mean dependent var   74153,74   S.D. dependent var   10395,57 

Sum squared resid    1,47e+09   S.E. of regression   5313,050 

R-squared            0,757447   Adjusted R-squared   0,738789 

F(4, 52)             40,59659   P-value(F)           2,09e-15 

Log-likelihood      -567,2045   Akaike criterion     1144,409 

Schwarz criterion    1154,624   Hannan-Quinn         1148,379 

rho                 -0,142889   Durbin-Watson        2,234934 
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The p-value for testing 3 0β =  is 0.0003, which is much less than 0.05. We therefore conclude 

that the variable 3tX −  does indeed belong in the distributed lag model. Hence q = 3 is the lag 

length we select for this model. In a formal report, we would present this table of results. Sin-

ce these results are similar to those discussed above, we will not repeat the interpretation of 

them.             

  

 

5.2. Dynamic Models with Stationary Variables 

 

In regression analysis, researchers are typically interested in measuring the effect of an 

explanatory variable or variables on a dependent variable. However, this goal is complicated 

when the researcher uses time series data since an explanatory variable may influence a de-

pendent variable with a time lag. This often necessitates the inclusion of lags of the 

explanatory variable in the regression. Furthermore, the dependent variable may be correlated 

with lags of itself, suggesting that lags of the dependent variable should also be included in the 

regression.  

 

These considerations motivate the commonly used autoregressive distributed lag (ADL) 

model: 

 

 1 1 0... ...
t t p t p t q t q t

Y t Y Y X Xα δ ϕ ϕ β β ε− − −= + + + + + + + +  (5.1) 

 

In this model, the dependent variable Y depends on p lags of itself, the current value of an 

explanatory variable X as well as q lags of X. The model also allows for a deterministic trend 

t. Since the model contains p lags of Y and q lags of X we denote it by ADL( p, q). In this 

chapter, we focus on the case where there is only one explanatory variable X. Note, however, 

that we could equally allow for many expl anatory variables in the analysis. 

 

Let us consider two stationary variables tY  and tX , and assume that it holds that 

   

 1 0 1 1 , 0 1.t t t t tY Y X Xα ϕ β β ε ϕ− −= + + + + < <     (5.2) 

 

As an illustration, we can think of tY  as ‘company sales’ and  tX  as ‘advertising’, both in 

month t . If we assume that tε  is a white noise process, independent of  1,t tX X −  and 1,t tY Y − , 

the above relation can be estimated by the use of ordinary least squares. 

 

The interesting element in (5.2) is that it describes the dynamic effects of a change in tX  upon 

current and future values of tY . Taking partial derivatives, we can derive that the immediate 

response is given by  0/t tY X β∂ ∂ = . Sometimes this is referred to as the impact (or short-

run) multiplier. An increase in X with one unit has an immediate impact on Y of 0β units. 

The effect after one period is  

 

1 1 0 1/ /t t t tY X Y Xϕ β ϕβ β+∂ ∂ = ∂ ∂ + = +  

 

(this can also be derived in a more explicit way: 
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1 0 1 1 1

1 0 1 1 0 1 1 1

0 1

( )

... ( ) ... ).

t t t t t

t t t t t t t

t

Y Y X X

Y X X X X

X

α ϕ β β ε

α ϕ α ϕ β β ε β β ε

ϕβ β

+ + +

− − + +

= + + + + =

+ + + + + + + + =

+ + +

 

 

Similarly, after two periods  

 

2 1 0 1/ / ( )t t t tY X Y Xϕ ϕ ϕβ β+ +∂ ∂ = ∂ ∂ = +  

 

and so on. This shows that after the first period, the effect is decreasing if |ϕ | < 1. Imposing 

this so-called stability condition allows us to determine the long-run effect of a unit change in 

tX . It is given by the long-run multiplier (or equilibrium multiplier) 

 

2 0 1
0 0 1 0 1 0 0 1( ) ( ) ... (1 ...)( )

1

β β
β ϕβ β ϕ ϕβ β β ϕ ϕ ϕβ β

ϕ

+
+ + + + + = + + + + + =

−
 

 

This says that if advertising tX  increases with one unit for one moment, the expected cumula-

tive increase in sales is given by 0 1( ) / (1 )β β ϕ+ − .  

 

Figure 4.1. Yellow bars are the resprctive impact multipliers and their sum is the 

long-run multiplier. 

 

On the other hand, if the increase in tX  is permanent, the long-run multiplier also has the in-

terpretation of the expected long-run permanent increase in tY . From (5.2) the long-run 

equilibrium relation between Y and X can be seen to be (imposing 

1 1 1... , ... , ... 0t t t t t tY Y Y X X X ε ε− − += = = = = = = = = ) 

 

0 1Y Y X Xα ϕ β β= + + +  

or 

 0 1

1 1
Y X

β βα

ϕ ϕ

+
= +

− −
 (5.3) 
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which presents an alternative derivation of the long-run multiplier
1
. We shall write (5.3) con-

cisely as Y Xα β= + �� , with obvious definitions of α�  and β�  (see also section 6.6). Thus, if X  

changes to a new constant X ′ , Y  will finally change to Y Xα β′ ′= + ��  (but it will take some 

time!). 

 

There is an alternative way to formulate the autoregressive distributed lag model from (5.2). 

Subtracting 1tY −  from both sides of (5.2) and some rewriting gives 

 

1 0 0 1 1(1 ) ( )t t t t tY Y X Xα ϕ β β β ε− −∆ = − − + ∆ + + +  

or 

                                           0 1 1(1 )[ ]t t t t tY X Y Xβ ϕ α β ε− −∆ = ∆ − − − − +��                          (5.4) 

 

This formulation
2
 is an example of an error-correction model (ECM). It says that the change 

in tY  is due to the current change in tX   plus an error-correction term: if 1tY −  is above the 

equilibrium value corresponding  to 1tX − , that is, if the ‘disequilibrium error’ in square brac-

kets is positive, then a „go to equilibrium“ mechanism generates an additional negative ad-

justment in tY . The speed of adjustment is determined by 1 ϕ− , which is the adjustment pa-

rameter; note that stability assumption ensures that 0 1 1ϕ< − <  therefore only a part of any 

disequilibrium is made up for in the current period). 

 

Notice that without prior knowledge of the long-run parameters, we cannot estimate the above 

ECM in the form (5.4). This is because without knowing α�  and β� , we cannot construct the 

disequilibrium error 1 1t tY Xα β− −− − �� . In the absence of such knowledge, to directly estimate 

the ECM, we must first multiply out the term in parentheses to obtain  

 

                               0 1 1(1 ) (1 ) (1 )
t t t t t

Y X Y Xϕ α β ϕ ϕ β ε− −∆ = − + ∆ − − + − +�� .                (5.5) 

 

t
Y∆  can now be OLS-regressed on 

t
X∆ , 1t

Y − , and 1t
X − , estimates of all short- and long-run 

parameters then being obtained. 

 

We can further generalize (5.2) and (5.4). For example, if  

 

1 1 2 2 0 1 1 2 2 ,t t t t t t tY Y Y X X Xα ϕ ϕ β β β ε− − − −= + + + + + +  

 

then the ECM is 

 

2 1 0 2 1 1 2 1 1(1 )[ ]t t t t t t tY Y X X Y Xϕ β β ϕ ϕ α β ε− − − −∆ = − ∆ + ∆ − ∆ − − − − − +
��

 

 

                                                 
1
 If Y  and X  are in logarithms, 0 1( ) / (1 )β β ϕ+ −  is the long-run elasticity of Y  with respect to X  (what is the 

meaning of this multiplier if  Y  and X  are in levels?) 
2
 If Y and X  are in logarithms, Y∆  and X∆ can be regarded as proportional changes which are likely to form 

stationary series even if Y and X  do not. In (5.4), 0β  is the short-run parameter whereas β�  the long-run pa-

rameter, thus ECM contains both short- and long run multipliers.    
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(the original model must be rewritten in differences plus a disequilibrium error). To estimate 

this model, it is again necessary to express it in (5.5) form. 

 

It is possible for more than two variables to enter into an equilibrium relationship, for 

example,  

0 1 1 0 1 1 1 ;t t t t t t tY X X Z Z Yα β β γ γ ϕ ε− − −= + + + + + +  

 

this equation transforms to  

 

0 0 1 1 1 1(1 ) [ ]
t t t t t t t

Y X Z Y X Zβ γ ϕ α β γ ε− − −∆ = ∆ + ∆ − − − − − +
�� �

 

 

etc. All the ECMs may be consistently estimated via OLS provided all the predictors are sta-

tionary. 

 

As long as it can be assumed that the error term tε  is a white noise process, or – more gene-

rally – is stationary and independent of 1, ,...t tX X −  and 1 2, ,...t tY Y− − , the ADL models can be 

estimated consistently by ordinary least squares. Problems may arise, however, if, along with 

tY  and tX , the implied tε  is also nonstationary. This is discussed in Ch. 6. 
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6. Regression with Time Series Variables 

 

Estimation and interpretation of the ADL( p, q) (see Ch. 5) model depend on whether the se-

ries X and Y  are stationary or not. Note though that we assume throughout that X and Y have 

the same stationarity properties; that is, that they either must both be stationary or both have a 

unit root. Intuitively, regression analysis involves using X  to explain Y. If the properties of 

X differ from those of Y , it becomes difficult for X to explain Y. For instance, it is hard for a 

stationary series to explain the stochastic trend variation in a unit root series. In practice this 

means that, before running any time series regression, you should examine the univariate pro-

perties of the variables you plan to use. In particular, you should carry out unit root tests along 

the lines described in Ch. 4 for every variable in your analysis. 

 

6.1. Time Series Regression when X and Y are Stationary 

 

This section is an extension of Section 5.2.  

 

In the case of the AR( p) model (see (4.2)), it proved convenient for both the OLS estimation 

and interpretation to rewrite the model with Y∆  as the dependent variable. Similar considera-

tions hold for the ADL( p, q) model 

 

                            1 1 0... ...
t t p t p t q t q t

Y t Y Y X Xα δ ϕ ϕ β β ε− − −= + + + + + + + +                       (6.1) 

 

which can be rewritten as: 

 

 1 1 1 1 1 1 1... ... .
t t t p t p t t q t q t

Y t Y Y Y X X Xα δ ρ γ γ θ ω ω ε− − − − + − +∆ = + + + ∆ + + ∆ + + ∆ + + ∆ +  (6.2) 

 

It should be emphasized that this model is the same as that in the original form of the ADL( p, 

q); it has merely undergone a few algebraic manipulations. This model may look complicated, 

but it is still nevertheless just a regression model. That is, no new mathematical techniques are 

required for this model, which is, after all, still based on the simple equation of a straight line.  

 

We have already discussed how to interpret regression coefficients, placing special emphasis 

on ceteris paribus conditions. Recall that we made statements of the form: “The coefficient 

measures the influence of kX  on Y , ceteris paribus”. In the ADL( p, q) model, such an in-

terpretation can still be made, but it is not that commonly done. In economics, a common way 

to interpret the coefficients is through the concept of a multiplier. Thus, 0β  in (6.1) is called 

the short run or impact multiplier (it describes how the size 1 one-moment increase of 
t

X  

affects 
t

Y ). However, it is common to focus on the long run or total multiplier, which is 

what we will do here. To motivate this measure, suppose that X and Y are in an equilibrium or 

steady state, i.e., are not changing over time. All of a sudden, X changed permanently to a new 

level one unit higher than the  previous value, affecting Y, which starts to change, eventually 

settling down in the long run to a new equilibrium value. The difference between the old and 

new equilibrium values for Y can be interpreted as the long run effect of X on Y and is the long 

run multiplier. This multiplier is often of great interest for policymakers who want to know 
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the eventual effects of their policy changes in various areas. The long run multiplier measures 

the effect of this sort of change. In some cases, you might be interested in the effect of a tem-

porary change in X (i.e., X starts at some original level, then increases by one unit for one pe-

riod before going back to the original level the next). The long run multiplier does not measu-

re the effect of this type of change. We can use the traditional “marginal effect” interpretation 

of regression coefficients for such temporary changes (recall that this is termed the short run 

multiplier). It can be shown that the long run multiplier for the ADL( p, q) model is /θ ρ− . 

In other words, only the coefficients on tX  and 1tY −  in the rewritten ADL model matter for 

long run behavior.  

 

To be more specific in distinguishing different multipliers, we shall analyse the ADL(1,1) 

model in more detail. The model 1 0 1 1t t t t tY Y X Xα ϕ β β ε− −= + + + +  can be rewritten in terms 

of X  (to have convergent series, we assume that | | 1ϕ < ) as follows: 

 

0 1 1(1 ) t t t tL Y X Xϕ α β β ε−− = + + +  

or 
1 2

0 1 1 0 1 1

2
0 0 1 1 0 1 1 0 1 2

0

(1 ) ( ) (1 ( ) ...)( )

( ) ( ) ( ) ...
1

... ...

t t t t t t t

t t t t t

t s t s t

Y L X X L L X X

X X X X v

X X v

ϕ α β β ε ϕ ϕ α β β ε

α
β β ϕ β ϕ β ϕ β ϕ β ϕ β

ϕ

δ δ δ

−
− −

− − −

−

= − + + + = + + + + + + =

+ + + + + + + + + =
−

+ + + + +�

 

 

The coefficient 0 0( )δ β=  at 
t

X  or /
t t

Y X∂ ∂  is called the short-run multiplier, the coefficient 

( )
s

δ =  0 1( )sϕ β ϕ β+  at 
t s

X −  or /
t s t

Y X+∂ ∂  the s  period delay multiplier, the number 
1

s

i

i

δ
=
∑  

the s  period interim multiplier and, finally,  0 1

0 1
i

i

β β
δ

ϕ

∞

=

+
=

−∑  the total or long-run multiplier. 

In other words, the short-run multiplier is the immediate 
t

Y ‘s response to a momentary change 

in X : 1 1...
t

X X X−= = = , 1
t

X X= +  whereas the long-run multiplier is the eventual 
t

Y ‘s, 

t → ∞ , response to a permanent change in X :  1 1...
t

X X X−= = = , 1 ... 1
t t

X X X+= = = + . 

 

Per pratybas Hill, Griffiths 381 psl 

6.1 example.   The effect of financial liberalization on economic growth. 

 

Researchers in the field of international finance and development are interested in whether 

financial factors can play an important role in encouraging growth in a developing country. 

The purpose of this example is to investigate this issue empirically using time series data from 

a single country. Data set LIBERAL.XLS contains data from Country A for 98 quarters on 

GDP growth and a variable reflecting financial liberalization: the expansion of the stock mar-

ket. In particular, the dependent and explanatory variables are: 

 

• Y = pchGDP  the percentage change in GDP. 

• X = pchSMC the percentage change in total stock market capitalization. 
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The mean of these two variables is 0.30% and 0.01% per quarter, indicating that stock markets 

in Country A have not expanded by much on average. Note, however, that this average hides 

wide variation. In some quarters market capitalization increased considerably, while in other 

quarters it decreased. Assuming that both variables are stationary, we can estimate an ADL(2, 

2) model using OLS. Remember that, if the variables in a model are stationary, then the stan-

dard regression quantities (e.g. OLS estimates, p-values, confidence intervals) can be calcula-

ted in an ordinary way. Table 6.1 contains the results of this procedure. 

 

Table 6.1  Regression model 

 

1 1 1 1 2 1t t t t t t tpchGDP t pchGDP pchGDP pchSMC pchSMC pchSMCα δ ρ γ θ ω ω ε− − −∆ = + + + ∆ + + ∆ + ∆ +
 
? ols dpchGDP 0 time pchGDP(-1) dpchGDP(-1) pchSMC dpchSMC dpchSMC(-1) 

 

Model 2: OLS, using observations 3-98 (T = 96) 

Dependent variable: dpchGDP 

              coefficient    std. error    t-ratio    p-value  

  ------------------------------------------------------------ 

  const       -0,0297651     0,0426415     -0,6980   0,4870    

  ttt          0,000729571   0,000741733    0,9836   0,3280    

  pchGDP_1    -0,119616      0,0126390     -9,464    4,11e-015 *** 

  dpchGDP_1    0,794232      0,0309911     25,63     7,41e-043 *** 

  pchSMC       0,125388      0,0481253      2,605    0,0108    ** 

  dpchSMC      0,837527      0,0438253     19,11     2,96e-033 *** 

  dpchSMC_1    0,00224124    0,0217915      0,1028   0,9183    

 

Log-likelihood       22,54807   Akaike criterion    -31,09614 

Schwarz criterion   -13,14570   Hannan-Quinn        -23,84028 

 

-6
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 0
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 0  20  40  60  80  100

pchGDP

pchSMC

 
Figure 6.1.  Graphs of two stationary time series: pchGDP (red) and pchSMC 

(blue) 

 

Using the formula for the long run multiplier, we can see that its OLS estimate is -(.125/-.120) 

= 1.042. There are different ways of expressing this information verbally (remember that the 

dependent and explanatory variables are percentage changes): 
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1. On average, market capitalization in Country A has been increasing by 0.01% per quarter 

and GDP by 0.30% per quarter. If Country A’s total stock market capitalization increases by 

1.01% in each month (i.e., increase by one unit from 0.01 each month to 1.01 each month), 

then in the long run its GDP should start increasing by 1.342% per quarter (i.e., the initial 0.30 

plus the long run multiplier of 1.042). Can you imagine how the graphs in Fig. 6.1 change?   

2. The long run multiplier effect of financial liberalization on GDP growth is 1.042%. 

3. If X permanently increases by 1%, the equilibrium value of Y will increase by 1.042%. 

 

The statistical information, though, indicates that this might not be a good model, since some 

of the explanatory variables are not significant (e.g. the p-values for the coefficients on 1tX −∆  

and the time trend both imply insignificance at the 5% level). This raises the issue of lag 

length selection in the ADL( p, q) model. We will not discuss this topic here, other than to 

note that the strategy for selecting q in the regression model with lagged explanatory variables 

and the strategy for selecting p in the AR( p) model can be combined. There is no general 

convention about whether you should first select p, then q, then decide whether the determi-

nistic trend should be included, or make another ordering (e.g., select q, then p then trend or 

select q then trend then p, etc.). As long as you are careful, you will not be led too far wrong 

in selecting a good model. The author‘s final ADL model is  

 

1 10.007 ( )( 0.120) 0.800

( 0.124) 0.839 ,

t t t

t t t

pchGDP pchGDP pchGDP

pchSMC pchSMC

ρ

θ ε
− −∆ = + = − ⋅ + ⋅∆ +

= ⋅ + ⋅∆ +
 

 

the long-run multiplier / 1.033θ ρ− = , and the equilibrium model 0.007pchGDP = +  

1.033 pchSMC  (thus, if pchSMC  increases by 1 to a new permanent level, pchGDP  will 

eventually increase by 1.033). 

 

6.2. Time series regression when Y and X have unit roots: spurious regres-

sion 

 

For the remainder of this chapter, we will assume that Y and X have unit roots. In practice, of 

course, you would have to test whether this was the case using the last chapter sequential pro-

cedure and/or Dickey–Fuller (or any other unit root) test. We begin by focussing on the case 

of regression models without lags, then proceed to similar models to the ADL( p, q) model. 

Suppose we are interested in estimating the following regression: 

 

                                                      t t tY t Xα δ β ε= + + + .                                             (6.3) 

 

If Y and X contain unit roots, then OLS estimation of this regression can yield results which 

are completely wrong. For instance, even if the true value of β  is 0, OLS can yield an estima-

te β̂  which is very different from zero. Statistical tests (using the t-ratio or p-value) may indi-

cate that β  is not zero. Furthermore, if β  = 0, then the 2
R  should be zero. In fact, the 2

R  

will often be quite large. To put it another way: if Y and X have unit roots then all the usual 

OLS regression results might be misleading and incorrect. This is the so-called spurious 

regression problem.We do not have the statistical tools to prove that this problem occurs, but 

it is important to stress the practical implication. With the one exception of cointegration that 
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we note below, you should never run a regression of Y on X if the variables have unit 

roots. 

 

In Fig. 6.2 we illustrate the above statements. x  and y  are two independent random walks  

with 0δ =  (as it follows from independence, the true β  equals 0). However, the OLS estima-

te β̂  differs from 0 and, as its p − value is almost always less than 0.05 (the last graph, blue 

line), we “conclude“ that β  is almost always „significant“. Do not trust OLS in such a case!   
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Figure 6.2.  x and y are two independent random walks. 

 

We will see soon that the reason of these wrong conclusions is the fact that ~ (1)
t

Iε . Here are 

some properties of popular statistics in that „bad“ case where  
t

Y , 
t

X , and ~ (1)
t

Iε : 

 

• DW statistics tends to 0 when T → ∞  

• 
2

R  tends to a random limit 

• ˆOLSβ  is not consistent 

• t -statistics on ˆOLSβ  diverge – need to be divided by T  to obtain a random variable 

with well defined distribution 

 

In short, do not regress 
t

Y  on 
t

X  in such a case. However, the question remains - what to do if 

t
Y  and 

t
X  have unit roots and are not cointegrated? (on the “good” case of cointegration, see 

Sct. 6.3 below). The general advice is to rethink your model, for example, instead of working 

with t t tY Xα β ε= + + , analyze the model 1 0 1 1t t t t tY Y X Xα ϕ β β ε− −= + + + +  (in this case the 

OLS estimators are consistent Verbeek3edp328). Another possibility is to create an ADL mo-

del for stationary differences 
t

Y∆  and 
t

X∆ , for example: 

 

1 0 1 1t t t t tY Y X Xα ϕ β β ε− −∆ = + ∆ + ∆ + ∆ + . 
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If, for example, 
t

Y  is log of GDP and 
t

X  is log of the price level, then 
t

Y∆  and 
t

X∆  are the 

growth rate and inflation, respectively, and the above equation has a nice interpretation.  

 

 

6.3. Time Series Regression when Y  and X  Have Unit Roots: Cointegration 

 

The one time where you do not have to worry about the spurious regression problem occurs 

when Y and X are cointegrated. This case not only surmounts the spurious regression problem, 

but also provides some nice financial intuition. Cointegration has received a great deal of at-

tention recently in the financial literature and many theoretical finance models imply cointeg-

ration should occur, so it is worthwhile to discuss the topic in detail here. 

 

Some intuition for cointegration can be obtained by considering the errors in the above regres-

sion model: t t tY Xε α β= − − . Written in this way, it is clear that the errors are just a linear 

combination of Y and X. However, X and Y both exhibit nonstationary unit root behavior such 

that you would expect the error to also exhibit nonstationary behavior. (After all, if you add 

two things with a certain property together the result generally tends to have that property.) 

The error does indeed usually have a unit root. Statistically, it is this unit root in the error term 

that causes the spurious regression problem. However, it is possible that the unit roots in Y and 

X “cancel each other out” and that the resulting error is stationary (or, in other words, Y and X 

will trend together.). In this special case, called cointegration, the spurious regression problem 

vanishes and it is valid to run a regression of Y on X. To summarize, here is a definition: if Y 

and X have unit roots, but some linear combination of them, 1 2t t
Y Xγ γ+ , is stationary, 

then we say that Y and X are cointegrated. Note that the coefficients 1γ  and 2γ  are not 

uniquely defined: if 1 2t t
Y Xγ γ+  is stationary, then, for example, 2 11 ( / )

t t
Y Xγ γ⋅ + ⋅  is statio-

nary, too
1
 (we say that the latter expression is normalized with respect to Y ). 

 

How to make sure that such constants exist? Stationarity means little variability around the 

mean therefore, to best approximate 
t

Y  in terms of 
t

X , we can use OLS.   

6.2 example.  Let  

1 1

1 2

1.3 , 0.6
t t t t t t

t t t

Y X u u u

X X

ε

ε
−

−

= + = +


= +
, ~ (0,1)

it
iid Nε . 

 

Here, both 
t

X  and 
t

Y  are quite irregular random 

walks, but the linear combination 1 1.3
t t

Y X⋅ − ⋅  is a 

stationary AR(1) process 
t

u ; thus 
t

Y  and 
t

X  cointeg-

rate (they have a common stochastic trend 
t

X ). In 

practice, we have to test the residuals of the regres-

sion 
t t t

Y X uα β= + +  for stationarity (see Engle-

Granger test in Sct. 6.4).    �� 
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In the real world, it is unlikely that a financial system will ever be in precise equilibrium since 

shocks and unexpected changes to it will always occur. However, departures 
t

u  from 

equilibrium should not be too large and there should always be a tendency to return to 

equilibrium after a shock occurs. Hence, if a financial model which implies an equilibrium 

relationship exists, then we should observe Y and X as being cointegrated. 

Common sense tells you that, if two assets are close substitutes for one another, then their pri-

ces should not drift too far apart. After all, if one asset becomes much more expensive than a 

similar asset, then investors will sell the first asset in order to buy the cheaper alternative. But 

if many investors are selling the expensive asset, then its price should drop. And if many in-

vestors are buying the cheap asset its price would rise. Thus, the prices of the expensive and 

cheap assets would move closer to one another. Many financial theories formalize this intui-

tion to imply different cointegrating relationships.  

 

Cointegration often arises in models of the term structure of interest rates and the yield 

curve. The basic idea is that bonds can have different maturities or repayment periods. So you 

can have a bond which promises to pay a fixed interest rate for one year, or two years, or 10 

years, etc. The interest rates paid on bonds of different maturities can be different since inves-

tors have different time preferences and long maturities are less flexible since they lock the 

investor in for a longer time period. That is, an investor could either buy a five-year bond, or a 

sequence of one-year bonds each year for five years. The latter strategy would be more 

flexible since the investor could always change her mind after each year. Hence, long-term 

interest rates often tend to be higher than short-term interest rates to compensate the buyer for 

a loss of flexibility. The exact shape of the relationship between interest rates at different ma-

turities is called the term structure of interest rates or the yield curve (a yield is the return to 

holding the bond for the entire time until it matures). This provides much useful information 

about investor’s beliefs about the future and is, thus incorporated in many financial theories 

some of which imply cointegrating relationships. For instance, in [CLM, Ch.10] is outlined an 

argument where yield spreads (i.e., the difference between the yield of a bond with an N peri-

od maturity and the yield of a bond with a 1 period maturity) are stationary time series variab-

les and show how this implies yields of different maturities should be cointegrated. 

 

In futures markets, theories involving investors having rational expectations tend to imply 

cointegrating relationships. For instance, in foreign exchange markets you can buy any major 

currency (e.g., the $ or the £) in the conventional manner (i.e., for immediate delivery at a 

specified rate). This is referred to as the spot exchange rate or spot rate. However, it also 

possible to agree an exchange rate now, but carry out the actual trade at some future date (e.g., 

a deal might have the form “I will guarantee that one year from now, I will give you $2.00 for 

your £1”). Such an exchange rate, agreed now but with the actual trade to be carried out later, 

is called the forward exchange rate or forward rate. Similar contracts (and much more 

complicated ones) can be written in stock markets and, indeed, such financial derivatives 

play a huge role in modern financial markets. Many financial theories, involving market effi-

ciency and rational expectations of investors, imply that forward rates should be good predic-

tors of future spot rates. Empirically, it seems that prices of assets (and an exchange rate is a 

price of an asset) often have unit roots in them (with returns being stationary). If we combine 

the financial theory with this empirical regularity, it turns out that they imply that spot and 

forward rates should be cointegrated. In foreign exchange markets, there are many theories 

which imply such cointegrating relationships. We will not explain them here, but just drop a 

few of names such as purchasing power parity, uncovered interest parity and covered interest 

parity. As we have touched on previously, there are also many financial theories which come 

out of basic present value relationships which imply cointegration. For instance, one such the-
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ory implies that stock prices and dividends should be cointegrated. Another financial theory 

implies that consumption c, assets a and income y should be cointegrated. Such so-called cay 

relationships have received a great deal of attention in the recent empirical finance literature. 

Furthermore, theory suggests that the cointegrating error from the cay relationship plays a ve-

ry important role: it should have predictive power for future stock returns. 

In short, financial theory suggests cointegrating relationships between many different financial 

time series should exist. Hence, it is important to test whether cointegration is present (i.e., to 

see whether financial theory holds in practice) and, if it is present, to estimate models invol-

ving cointegrated variables (e.g., to estimate the cointegrating error from the cay relationship). 

Accordingly, we now address these issues, beginning with an empirical example. 

 

6.3 example.  Cointegration between the spot and forward rates 

 

We have discussed previously how financial theory suggests spot and forward rates should be 

cointegrated. As an example, forexN.xls contains time series data for 181 months on the spot 

and one-month forward exchange rates of a certain foreign currency (both variables are mea-

sured in foreign currency units per dollar). Figure 6.1 plots these two series and provides 

strong visual evidence that the spot and forward rates are indeed cointegrated. That is, even 

though they are not identical to one another, the general trend behavior in the two variables 

looks quite similar. 
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Figure 6.3.  spot_rate and forward_rate plots  

 

6.4. Estimation and Testing with Cointegrated Variables 

 

As mentioned above, if Y and X are cointegrated, then the spurious regression problem does 

not apply; consequently, we can run an OLS regression of Y on X and obtain valid results. Fur-

thermore, the coefficient from this regression is the long run multiplier. Thus, insofar as inte-

rest centers on the long run multiplier, then estimation with cointegrated variables is very ea-

sy. 
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The test for cointegration described here is referred to as the Engle–Granger test, after the two 

econometricians who developed it. It is based on the regression of Y on X. Remember that, if 

cointegration occurs, then the errors from this regression will be stationary. Conversely, if 

cointegration does not occur, then the errors will have a unit root. Given the close relationship 

between the errors and the residuals, it is reasonable to examine the properties of the residuals 

in order to investigate the presence of cointegration. In Ch. 5 we discussed testing for a unit 

root in a time series variable. Here, we test for a unit root in the residuals using the same 

techniques. In particular, the test for cointegration involves the following steps: 

 

1. Run the regression of Y on X and save the residuals. 

2. Carry out a unit root test on the residuals (without including a constant and a deterministic 

trend). 

3. If the unit root hypothesis is rejected, then conclude that Y and X are cointegrated. 

However, if the unit root is accepted then conclude cointegration does not occur. 

 

Thus if tY  and tX  are cointegrated in t t tY Xα β ε= + + , the error term is (0)I . If not, tε  will 

be (1)I . Hence one can test for the presence of a cointegrating relationship by testing for a 

unit root in the OLS residuals te . It seems that this can be done by using the Dickey–Fuller 

tests of the previous chapter. For example, one can run the regression  

 

 1

1

, ~
p

t t j t j t t

j

e e e u u WNρ β− −
=

∆ = + ∆ +∑  (6.4) 

 

and test whether 0ρ =  (a unit root). There is, however, an additional complication in testing 

for unit roots in OLS residuals rather than in observed time series. Because the OLS estima-

tors „choose“ the residuals in the cointegrating regression to have as small variance as possib-

le, even if the variables are not cointegrated, the OLS estimator will make the residuals „look“ 

as stationary as possible. Thus, using standard DF or ADF tests, we may reject the null hypo-

thesis of nonstationarity too often. As a result, the appropriate critical values are more negati-

ve than those for the standard Dickey–Fuller tests in Table 4.2 and are presented in Table 6.2. 

If te  is not appropriately described by a first order autoregressive process, one should add 

lagged values of te∆  to (6.4), leading to the augmented Dickey–Fuller (ADF) tests, with the 

same asymptotic critical values. This test can be extended to test for cointegration between 

three or more variables. If more than a single tX  variable is included in the cointegrating reg-

ression, the critical values shift further to the left. This is reflected in the additional rows in 

Table 6.2. 

 

 

 

Table 6.2  Asymptotic 5% critical values residual unit root tests for cointegration H, p.776 

 

Number of  X‘s 

in the rhs of (6.3) 

No deterministic 

terms in (6.3) 

Only a  

constant in (6.3) 

Constant 

and trend in (6.3) 

1 

2 

3 

-2.76 

-3.27 

-3.74 

-3.37 

-3.77 

-4.11 

-3.80 

-4.16 

-4.49 
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Thus if the ADF test statistic ˆ ˆ/ ( )seρ ρ  is closer to zero than respective critical value, we do 

not reject the unit root hypothesis. Note also that in the Dickey–Fuller test, we test the hypo-

thesis that ρ  = 0 (i.e., the null hypothesis is the unit root). In the cointegration test, we use the 

Dickey–Fuller methodology but cointegration is found if we reject the unit root hypothesis for 

the residuals. In other words, the null hypothesis in the Engle–Granger test is “no cointegra-

tion” and we conclude “cointegration is present” only if we reject this hypothesis. 

 

6.2 example. Cointegration between the spot and forward rates (continued) 

 

First we manually implement the following strategy:  

 

(1) carry out Dickey-Fuller tests on the null hypothesis that each of the variables listed has a 

unit root  

(2) estimate the cointegrating regression 

(3) run a DF test on the residuals from the cointegrating regression.  

 

(1) Let us suppose that spot and forward rates both have unit roots (probably in a regression 

with trend t; how to test the claim?).  

 

(2) If we run a regression of sr = the spot rate on fr = the forward rate using the data in 

forexN.xls, we obtain the following fitted regression model: 

 
ols sr 0 fr 

 
Model 1: OLS, using observations 1-181 

Dependent variable: sr 

 

             coefficient   std. error   t-ratio     p-value  

  ---------------------------------------------------------- 

  const       0,774335     0,974207       0,7948   0,4278    

  fr          0,995574     0,00567534   175,4      3,09e-202 *** 

 

rho                 -0,085248   Durbin-Watson        2,153426 

 

(3) The above presented strategy suggests that we should next carry out a unit root test on the 

residuals, tu  from this regression. The first step in doing this is to correctly select the lag 

length using the sequential strategy outlined in Ch. 4. Suppose we have done so and conclude 

that an AR(1) specification for the residuals is appropriate (how to test this claim?). The Dic-

key–Fuller strategy suggests we should regress tu∆  on  1tu − :  

# save the residuals  

    genr ui = $uhat 

4 

5 

-4.12 

-4.40 

-4.45 

-4.71 

-4.74 

-5.03 
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    ols diff(ui) 0 ui(-1) # cointegrating regression 

 
Model 4: OLS, using observations 2-181 (T = 180) 

Dependent variable: d_ui 

 

             coefficient   std. error    t-ratio     p-value  

  ----------------------------------------------------------- 

  const       0,0241279    0,291848       0,08267   0,9342    

  ui_1       -1,08529      0,0748477    -14,50      5,80e-032 *** 

 

Since t-ratio -14.50 is definitely less than (recall that T=181) -3.37 (see Table 6.2),  we reject 

the unit root hypothesis and conclude that the residuals do not have a unit root. In other words, 

we conclude that the spot and forward rates are indeed cointegrated.               �� 

 

In GRETL, the Engle-Granger cointegration test can be performed in one shot with the func-

tion coint: the flag --ct (see below) means that both constant and linear trend must be inc-

luded in all regression models; flag  --test-down means that the given value 4 is taken as 

the maximum and the actual lag order used in each case is obtained by testing down): 

 
? coint 4 sr fr --ct --test-down 

 

Step 1: testing for a unit root in sr 

 

Augmented Dickey-Fuller test for sr 

including 2 lags of (1-L)sr 

sample size 176 

unit-root null hypothesis: a = 1 

   with constant and trend  

   model: (1-L)y = b0 + b1*t + (a-1)*y(-1) + ... + e 

   1st-order autocorrelation coeff. for e: -0,023 

   lagged differences: F(2, 171) = 28,563 [0,0000] 

   estimated value of (a - 1): -0,172594 

   test statistic: tau_ct(1) = -2,77991 

   asymptotic p-value 0,2047 

 

Step 2: testing for a unit root in fr 

 

Augmented Dickey-Fuller test for fr 

including 2 lags of (1-L)fr 

sample size 176 

unit-root null hypothesis: a = 1 

 

   with constant and trend  

   model: (1-L)y = b0 + b1*t + (a-1)*y(-1) + ... + e 

   1st-order autocorrelation coeff. for e: -0,012 

   lagged differences: F(2, 171) = 3,861 [0,0229] 

   estimated value of (a - 1): -0,0394676 

   test statistic: tau_ct(1) = -1,77939 

   asymptotic p-value 0,715 

 

Step 3: cointegrating regression 

 

Cointegrating regression -  

OLS, using observations 1-181 

 

 

 

Dependent variable: sr 
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             coefficient   std. error   t-ratio    p-value  

  --------------------------------------------------------- 

  const       2,52803      3,91577       0,6456   0,5194    

  fr          0,971740     0,0518494    18,74     5,57e-044 *** 

  time        0,0236185    0,0510713     0,4625   0,6443    

 

Mean dependent var   163,8089   S.D. dependent var   51,52887 

Sum squared resid    2760,724   S.E. of regression   3,938234 

R-squared            0,994224   Adjusted R-squared   0,994159 

Log-likelihood      -503,4179   Akaike criterion     1012,836 

Schwarz criterion    1022,431   Hannan-Quinn         1016,726 

rho                 -0,086001   Durbin-Watson        2,156768 

 

Step 4: testing for a unit root in uhat 

 

Augmented Dickey-Fuller test for uhat 

including 2 lags of (1-L)uhat 

sample size 176 

unit-root null hypothesis: a = 1 

 

   model: (1-L)y = b0 + b1*t + (a-1)*y(-1) + ... + e 

   1st-order autocorrelation coeff. for e: 0,004 

   lagged differences: F(2, 173) = 2,324 [0,1009] 

   estimated value of (a - 1): -0,869617 

   test statistic: tau_ct(2) = -6,51698 

   asymptotic p-value 1,638e-007 

 

There is evidence for a cointegrating relationship if: 

(a) The unit-root hypothesis is not rejected for the individual variables. 

(b) The unit-root hypothesis is rejected for the residuals (uhat) from the  

    cointegrating regression. 

  

Since the p-value is less than 0.05, we reject unit root in residuals and once again conclude 

cointegration between sr and fr.                 �� 

 

We have found cointegration and therefore we do not need to worry about the spurious regres-

sions problem. Hence, we can proceed to an interpretation of our coefficients without 

worrying that the OLS estimates are meaningless. The coefficient on the forward rate is 0.996 

which is very close to the value of 1 predicted by financial theory (i.e., financial theory says 

that spot and forward rates should on average be the same as the latter should be an optimal 

predictor for the former). Alternatively, we can interpret this coefficient estimate as saying 

that the long run multiplier is 0.996 (see Model 1 on p. 6-9).  

 

6.5. Time  Series  Regression  when Y  and X  are  Cointegrated:  the  Error  

Correction Model 

 

You may encounter instances where unit root tests indicate that your time series have unit 

roots, but the Engle–Granger test indicates that the series are not cointegrated (they have no 

long-run relationship). That is, the series may not be trending together and may not have an 

equilibrium relationship. In these cases, you should not run a regression of Y on X due to the 

spurious regression problem. The presence of such characteristics suggests that you should 

rethink your basic model and include other explanatory variables. Instead of working with Y 

and X themselves, for example, you could difference them. (Remember that if Y and X have 

one unit root, then Y∆  and X∆  should be stationary.) In this case, you could work with the 
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changes in your time series and estimate the ADL model using the techniques described at the 

beginning of this chapter. In other words, you may wish to estimate the original ADL model, 

but with changes in the variables: 

 

1 1 0... ...
t t p t p t q t q t

Y Y Y X Xϕ γ γ ω ω ε− − −∆ = + ∆ + + ∆ + ∆ + + ∆ + . 

 

Although such models can be estimated, it is important to understand that they describe only 

short-run interactions (since there is no equilibrium, there is no sence to speak about long run 

multiplier). Furthermore, if the variables are cointegrated, these models are not satisfactory, 

because they ignore the long-run relationship between the variables tY  and tX .  

 

The last remark is best understood through example.  A principal feature of cointegrated vari-

ables is that their time paths are influenced by the extent of any deviation from long-run equi-

librium. After all, if the system is to return to the long-run equilibrium, the movements of at 

least some of the variables must respond to the magnitude of the disequilibrium. For example, 

theories of the term structure of interest rates imply a long-run relationship between long- and 

short-term rates, that is, between ,L t
R  and ,S t

R . In other words, these two variables are cointe-

grated: there exists such a constant β  that the disequilibrium error , ,L t S t
R Rβ− is stationary.  If 

the gap , 1 , 1L t S t
R Rβ− −−  between the long- and short-term rates is positive, the short-term rate 

must  ultimately rise relative to the long-term rate. 

  

The dynamic model implied by this discussion is one of error correction. In an error-

correction model, the short-term dynamics of the variables in the system are influenced by the 

deviation from equilibrium. If we assume that both interest rates are (1)I , a simple vector error-

correction model (VECM
2
; see more on this in Ch. 7, Section 7.4) that could be applied to the 

term structure of interest rates is 

 

                    
, , 1 , 1 ,

, , 1 , 1 ,

( ) ( 0, ~ )

( ) ( 0, ~ )

L t L L t S t L t L L

S t S L t S t S t S S

R R R WN

R R R WN

α β ε α ε

α β ε α ε
− −

− −

∆ = − − + >

∆ = − + >

                   (6.5a) 

 

where LR  and  SR  are the long- and short-term interest rates, respectively. As specified, the 

short- and long-term interest rates change in response to stochastic shocks (represented by ,S tε  

and ,L tε ) and to  the previous period’s deviation from long-run equilibrium. Everything else 

equal, if this deviation happened to be positive (so that , 1 , 1 0L t S tR Rβ− −− > ), the short-term 

interest rate would rise and the long-term rate would fall (long-run equilibrium is attained when 

, ,L t S tR Rβ= ).  

 

Note that (6.5a) can be written in a matrix form as a vector error correction model (VECM):  

 

                                     ( )
1

1
L L L L

S S S St t t

R R

R R

α ε
β

α ε
−

∆ −       
= − +       ∆       

                          (6.5b) 

                                                 
2
 The systems (6.5) describes the behavior of two variables, 

S
R  and 

L
R ,  therefore the model is called a vector 

ECM. 
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(we shall generalize it in Section 7.4; it is important that this model can be used to analyze and 

forecast the vector ,
L

S t

R
t T

R

 
> 

 
).  

 

These results are unaltered if we add to the model more stationary terms and obtain a general 

VECM in two variables: 

 

       
, 10 , 1 , 1 11 , 12 , ,

, 20 , 1 , 1 21 , 22 , ,

( ) ( ) ( )

( ) ( ) ( )

S t S L t S t S t i L t i S t

L t L L t S t S t i L t i L t

R R R a i R a i R

R R R a i R a i R

α α β ε

α α β ε
− − − −

− − − −

∆ = + − + ∆ + ∆ +

∆ = − − + ∆ + ∆ +

∑ ∑
∑ ∑

    (6.5c) 

 

So far the presented material was explained on an intuitive level. However, there exists the 

Granger Representation Theorem that says that if Y and X are cointegrated, then the rela-

tionship between them can always be expressed as an ECM.  

 

A more common expression for ECM in two variables (Y  and X ) is a single equation form      

 

1 0t t t tY e Xϕ λ ω ε−∆ = + + ∆ +  

 

where 1te − is the error obtained from the regression model with Y and X  (i.e., 1 1t te Y α− −= − −   

1tXβ − )
3
. Note that if we knew 1te − , then the ECM is just a regression model. We can also gen-

eralize the above expression to  

 

1 1 1 0... ...
t t t p t p t q t q t

Y t e Y Y X Xϕ δ λ γ γ ω ω ε− − − −∆ = + + + ∆ + + ∆ + ∆ + + ∆ + . 

 

Some sophisticated statistical techniques have been developed to estimate the ECM, but the 

simplest thing to do is merely to replace the unknown errors by the residuals from the regres-

sion of Y on X (i.e., replace 1te −  by 1t̂e − ). That is, a simple technique based on two OLS reg-

ressions proceeds as follows: 

 

Step 1. Run a regression of Y on X and save the residuals. 

Step 2. Run a regression of tY∆  on all regressors from the above equation including the resi-

duals from Step 1 lagged one period. 

 

6.4 example.     Cointegration between the spot and forward rates (continued from 6.2   

example). 

 

In the previous part of this example, we found that the variables, Y =  sr = the spot rate and 

X =  fr =  the forward rate, were cointegrated. This suggests that we can estimate an error 

correction model. To do so, we begin by running a regression of Y on X and saving the residu-

als (which was done in the previous part of the example). The residuals tu  can then be inclu-

ded in the following regression (in lagged form):  

                                                 
3
 If the model contains two or more X ′ s, there can be more than one cointegrating relationship and more than 

one error correction term (see Section 7.4).  
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1 0t t t tY u Xϕ λ ω ε−∆ = + + ∆ +  

 

Below you can see results from OLS estimation of this model. The statistical information can 

be interpreted in the standard way. We can say that (with the exception of the intercept) all the 

coefficients are strongly statistically significant (since their p-values are much less than 0.05). 

 
? ols sr 0 fr 

 

Model 1: OLS, using observations 1-181 

Dependent variable: sr 

 

             coefficient   std. error   t-ratio     p-value  

  ---------------------------------------------------------- 

  const       0,774335     0,974207       0,7948   0,4278    

  fr          0,995574     0,00567534   175,4      3,09e-202 *** 

 

?  series srfrRES=$uhat 

Generated series srfrRES (ID 7) 

? ols diff(sr) 0 srfrRES(-1) diff(fr) 

 

Model 2: OLS, using observations 2-181 (T = 180) 

Dependent variable: d_sr 

 

              coefficient   std. error    t-ratio     p-value  

  ------------------------------------------------------------ 

  const       -0,0231999    0,342999      -0,06764   0,9461    

  srfrRES_1   -1,08504      0,0750502    -14,46      8,69e-032 *** 

  d_fr         1,04369      0,181935       5,737     4,11e-08  *** 

 

 

We noted before that β̂  = 0.996 and this is the estimate of the long run multiplier. The point 

estimates in the table of λ  and 0ω  summarize the short run properties. To aid in interpretation 

note that all variables in the model are percentages. The coefficient on 1tu −  of -1.085 measu-

res how much Y  responds to equilibrium errors. Since this coefficient is negative, positive 

errors tend to cause Y∆  to be negative and hence Y  to fall. In particular, an equilibrium error 

of one unit tends to cause the spot rate to fall by 1.085 units in the next period, ceteris paribus. 

This is a very quick adjustment to an equilibrium error! The coefficient on tX∆  = 1.044. Ima-

gine, in other words, what would happen if the forward rate were to remain unchanged for 

some time ( X∆  = 0), but then suddenly were to change by one unit. The ECM implies that Y 

would instantly change by 1.044 units. In other words, the spot rate responds very quickly to 

changes in the forward rate. 

 

6.6. The Long-run and Short-run Multipliers*
)
 

 

Now we shall get back to the material which was earlier exposed in Ch. 5 and the opening 

pages of this chapter. First, assume that both 
t

Y  and 
t

X  are stationary. 

 

1. Let us consider two processes 
t

Y  and 
t

X , bound together by the static equation 

, ..., 1, , 1,...
t t t

Y X t T T Tα β ε= + + = − +  If the values of 
t

Y  and 
t

X  do not change: 
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1...
T T

X X X−= = = , 1... ( )
T T

Y Y Y Xα β−= = = = + , and 0
t

ε ≡ , we say that 
t

X  and 
t

Y  are in 

equilibrium. Now, assume that in time 1T +  the variable 
t

X  changes its value to 

1 2 ... 1
T T

X X X+ += = = +  – the ( , )
t t

X Y  system will move to a new equilibrium but, generally 

speaking, it could take some time. A (usually not very realistic) static system is remarkable in 

the sense that it reaches the new equilibrium in no time: 

 

1 1 1( 1)

( 1) , 2,

T T T

T h T h T h

Y X X Y Y

Y X X Y Y h

α β α β β

α β α β β
+ + +

+ + +

= + = + ⋅ + ⇒ − =

= + = + ⋅ + ⇒ − = ≥
 

  

Here β  is both the short-run (when 1h = ) and long-run (when h → ∞ ) multiplier.  

 

2. Transition to the new equilibrium is slower in dynamic case. Assume that DGP is described 

by 0 1 1t t t t
Y X Xα β β ε−= + + + . Now    

 

1 0 1 1 0 1 1 0

0 1 1 0 1 0 1

( 1)

( ) ( 1) , 2

T T T T

T h T h T h T h

Y X X X X Y Y

Y X X X Y Y h

α β β α β β β

α β β α β β β β
+ + +

+ + + − +

= + + = + ⋅ + + ⇒ − =

= + + = + + ⋅ + ⇒ − = + ≥
 

 

i.e., the short-run (or impact) multiplier is 0β  and the long-run multiplier is 0 1β β+ . Note that 

0 1β β+  is also the slope of the equilibrium equation which can be obtained from the original 

dynamic equation as t → ∞ , 1t
X X− → and 

t
X X→ : 0 1(lim ) ( )

t t
Y Y Xα β β→∞ = = + + .  

7.1 exercise. Find the short- and long-run multipliers if the DGP is the ADL(0,2) process: 

0 1 1t t t
Y X Xα β β −= + + + 2 2t

Xβ − +
t

ε . Can you rewrite the original equation as 

0t t
Y Xα β= + ∆ + 0 1 1( )

t
Xβ β −+ ∆ + 0 1 2 2( )

t t
Xβ β β ε−+ + ⋅ +  ?  Which coefficient is the short-

run and which one the long-run multiplier? 

 

 3. Assume that the DGP is described as ADL(1,1) process: 1 0t t t
Y Y Xα ϕ β−= + + +  

1 1t t
Xβ ε− + . In equilibrium, at moment T  we have 0 1Y Y X Xα ϕ β β= + + +  or (

T
Y α= +  

0 1( ) ) / (1 )Xβ β ϕ+ ⋅ −  . Thus 

 

1 0 1 1 0( 1) ...
T T T T

Y Y X X Y Yα ϕ β β β+ += + + + + ⇒ − = = , 

 

i.e., the short-run multiplier equals 0β . To find the limit 
T h T

Y Y+ −  as h → ∞ , repeat the rea-

soning of p. 4-4
4
 which implies that the long-run multilier equals 0 1( ) / (1 )β β ϕ+ − . 

7.2 exercise. Can you rewrite the above equation as  1 0 0( 1) (t t tY Y Xα ϕ β β−∆ = + − + ∆ + +  

1 1) t tXβ ε− + ?  Verify that the short-run multiplier is 0β  and the long-run one equals 

0 1( ) / (1 )β β ϕ+ − . 

 

4. The ADL(1,1) process can be rewritten as the error correction model (ECM): 

                                                 
4
 Or apply the equilibrium equation. 
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0 1
0 1 1

0 1
0 1 1

( 1)
1

( 1)
1 1

t t t t t

t t t t

Y X Y X

X Y X

β β
α β ϕ ε

ϕ

β βα
β ϕ ε

ϕ ϕ

− −

− −

+ 
∆ = + ∆ + − − + = − 

+ 
= ∆ + − − − + − − 

 

 

where the short-run and long-run features of the dynamic relationship are modelled separately. 

Here 0β  describes the short-run relationship, 0 1( ) / (1 )β β ϕ+ −  the long-run multiplier, and 

1ϕ −  speed of adjustment to equilibrium described by the error correction term. 

 

5.  Let us assume that the above equations are not in levels but in logarithms. Then respective 

multipliers are called short-run elasticity and long-run elasticity.      �� 

 

 

Now, assume that both 
t

Y  and 
t

X  are (1)I processes. 

 

6. Regression analysis applied to non-stationary time series can produce misleading results 

(spurious regression), therefore (if the series are not cointegrated, i.e., they are not trending 

together) we should not look for a long-run multiplier in equilibrium equation 

t t t
Y Xα β ε= + + . Instead, to find the short-run multiplier, assume that the DGP for stationary 

differences can be expressed as ADL(1,1): 1 0 1 1  
t t t t t

Y Y X Xϕ β β ε− −∆ = ∆ + ∆ + ∆ + . For 

example, say log
t t

y GDP=  and log
t t

x P=  (here 
t

P  is stock exchange index) are both integra-

ted but not cointegrated. In this case, regression 
t t t

y xα β ε= + +  is senseless, but ADL(p,q) 

equation for stationary GDP  growth rate 
t

y∆  and stock returns 
t

x∆  can be reasonable (the 

coefficient 0β  is the short run multiplier). 

 

7.  If 
t

Y  and 
t

X  are cointegrated, i.e., the equilibrium relationship exists, the ECM equation 

1 1 0( )t t t t tY Y X Xϕ λ α β ω ε− −∆ = + − − + ∆ +  contains both short run multiplier 0ω  and long run 

multiplier β . 

 

6.7. Summary 

 

Harris 18 fp The static (or long-run) model (1) (2)
0 1 2t t t

Y X Xβ β β= + +  depicts an equilibrium 

relationship such that for given values of the right-hand-side variables and their long-run im-

pact on Y  (i.e., the 
i

β ), there is no reason for the response to be at any other value than 
t

Y . 

However, it is also of interest to consider the short-run evolution of the variables under consi-

deration, especially since equilibrium (i.e., the steady-state) may rarely be observed. The ma-

jor reason why relationships are not always in equilibrium centres on the inability of economic 

agents to adjust to new information instantaneously. There are often substantial costs of ad-

justment (both pecuniary and non-pecuniary) which result in the current value of the depen-

dent variable Y  being determined not only by the current value of some explanatory variables 

t
X  but also by their past values 1,...,

t t q
X X− − . In addition, as Y  evolves through time in reac-
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tion to current and previous values of X , past (i.e., lagged) values of itself (i.e., 1,...,
t t p

Y Y− − ) 

will also enter the short-run (dynamic) model. This inclusion of lagged values of the depen-

dent variable as regressors is a means of simplifying the form of the dynamic model (which 

would otherwise tend to have a large number of highly correlated lagged values of X  and 

lead to the problem of multicollinearity – high 2
R  but imprecise parameter estimates and low 

t - values, even if though the model may be correctly specified). A very simple dynamic mo-

del of short-run adjustments is   

 

                                             0 0 1 1 1 1 , ~
t t t t t t

y x x y WNα γ γ α ε ε− −= + + + +                       (6.6) 

 

(here variables in lower case are in logarithms). Clearly, the parameter 0γ  denotes the short-

run reaction of 
t

y  to a change in 
t

x , and not the long-run effect that would occur if the model 

were in equilibrium (the latter is defined as 0 1t t
y xβ β= + ). So in the long-run, the elasticity 

between Y  and X  is 1 0 1 1( ) / (1 )β γ γ α= + − , assuming that 1| | 1α <  (which is a necessary if 

the short-run model is to converge to a long-run solution).   

 

The dynamic model represented by (6.6) is easily generalised to allow for more complicated, 

and often more realistic adjustment processes by increasing the lag-lengths. However, there 

are several  potential problems with this form of the dynamic model. The first has already 

been mentioned and concerns multicollinearity. Also, some (if not all) of the variables in a 

dynamic model are likely to be non-stationary, since they enter in levels (this leads to the po-

tential problem of spurious regression). A solution might be to respecify the dynamic model in 

(first) differences. However, this then removes any information about the long-run from the 

model (are we above or below the equilibrium?) and consequently is unlikely to be useful for 

forecasting purposes. A more suitable approach is to adopt the error-correction (ECM) formu-

lation of the dynamic model: 

 

                                           0 1 1 0 1 1(1 )[ ]
t t t t t

y x y xγ α β β ε− −∆ = ∆ − − − − +� �                         (6.7) 

 

Equations (6.6) and (6.7) are equivalent but the ECM has some advantages. 

 

A second feature of the ECM is that all the terms in the model are stationary so standard reg-

ression techniques are valid, assuming cointegration and that we have estimates of 0β  and 1β .   

 

The simple ECM depicted in (6.7) can be generalised in several directions. First, increasing 

the lag-length p  and/or q  in (6.6) results in additional lagged first differences entering (6.7): 

 

1 0 1 1( ) ( ) (1 )[ ]
t t t t t

A L y B L x y xπ β β ε− −∆ = ∆ − − − − +� � , 

 

1 ...
p

π α α= + + . Second, if more than one X  enters the model, we have to consider the po-

ssibility for more than one cointegrating relationship to exist. This leads to the ECM in multi-

variate form, VECM, which will be explored in Ch. 7. 
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Revision questions 

 

 

6.1 Let 1 23 2 1.3 , ~
t t t t t

Y X X WNε ε− −= + − + . Find the short- and long-run multipliers. 

6.2 wytė 
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7.  Multivariate Models 

 

In the present chapter, we discuss methods which involve more than one equation. To motiva-

te why multiple equation methods are important, we begin by discussing Granger causality 

before discussing the most popular class of multiple-equation models: so-called Vector Auto-

regressive (VAR) models. VARs can be used to investigate Granger causality, but are also 

useful for many other things in finance. Time series models for integrated series are usually 

based on applying VAR to first differences. However, differencing eliminates valuable infor-

mation about the relationship among integrated series – this is where Vector Error Correc-

tion model (VECM) is applicable. Using financial examples, we will show their importance.  

 

7.1. Granger Causality 

 

Recall our warnings made earlier about interpreting correlation and regression results as ref-

lecting causality. For instance, alcohol drinking and lung cancer rates were correlated with one 

another, even though alcohol drinking does not cause lung cancer. Here correlation did not 

imply causality. In fact, it was cigarette smoking that caused lung cancer, but a correlation 

between cigarette smoking and alcohol drinking produced an apparent relationship between 

alcohol and lung cancer. 

 

In our discussion of regression, we were on a little firmer ground, since we attempted to use 

common sense in labeling one variable the dependent variable and the others the explanatory 

variables. In many cases, because the latter “explained” the former it was reasonable to talk 

about X “causing” Y.  For instance, the price of the house can be said to be “caused” by the 

characteristics of the house (e.g., number of bedrooms, number of bathrooms, etc.). However, 

one can ran a regression of Y = stock prices in Country B on X = stock prices in Country A. It 

is possible that stock price movements in Country A cause stock markets to change in Country 

B (i.e., X causes Y ). For instance, if Country A is a big country with an important role in the 

world economy (e.g., the USA), then a stock market crash in Country A could also cause pa-

nic in Country B. However, if Country A and B were neighboring countries (e.g., Thailand 

and Malaysia) then an event which caused panic in either country could  affect both countries. 

In other words, the causality could run in either direction – or both! Hence, when using the 

word “cause” with regression or correlation results a great deal of caution has to be taken and 

common sense has to be used.  

 

However, with time series data we can make slightly stronger statements about causality sim-

ply by exploiting the fact that time does not run backward! That is, if event A happens before 

event B, then it is possible that A is causing B. However, it is not possible that B is causing A. 

In other words, events in the past can cause events to happen today. Future events cannot.  

 

These intuitive ideas can be investigated through regression models incorporating the notion 

of Granger or regressive causality. The basic idea is that a variable X Granger causes Y if 

past values of X can help explain Y. Of course, if Granger causality holds this does not guaran-

tee that X causes Y
1
. This is why we say “Granger causality” rather than just “causality”. Ne-

vertheless, if past values of X have explanatory power for current values of Y, it at least su-

                                                 
1
 If you know the weather forecast (X), it will help you to predict rain (Y); however, the forecast is not the cause 

of the rain.  
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ggests that X might be causing Y. Granger causality is only relevant with time series variables. 

To illustrate the basic concepts we will consider Granger causality between two variables (X 

and Y ) which are both stationary. A nonstationary case, where X and Y have unit roots but are 

cointegrated, will be mentioned below. 

 

Since we have assumed that X and Y are stationary, the discussion of Ch. 4 suggests an ADL 

model is appropriate. Suppose that the following simple ADL (only lags on the right hand 

side!) model holds: 

 

1 1 1 1t t t tY Y Xα ϕ β ε− −= + + + . 

 

This model implies that last period’s value of X  has explanatory power for the current value 

of Y . The coefficient 1β  is a measure of the influence of 1tX −  on tY . If 1β  = 0, then past va-

lues of X  have no effect on Y and there is no way that X could Granger cause Y. In other 

words, if 1β  = 0 then X  does not Granger cause Y.  An alternative way of expressing this 

concept is to say that “if 1β  = 0 then past values of X  have no explanatory power for Y  bey-

ond that provided by past values of Y  ”. Since we know how to estimate the ADL and carry 

out hypothesis tests, it is simple to test Granger causality or, in other words, to test 

0 1: 0H β = : if 1β̂  is statistically significant (e.g., its p-value 0.05< ), then we conclude that 

X  Granger causes Y . Note that the null hypothesis being tested here is 0 1: 0H β =  which is a 

hypothesis that Grangercausality does not occur. So we should formally refer to the test of 1β  

= 0 as a test of Granger non-causality, but we will adopt the more common informal termi-

nology and just refer to this procedure as a Granger causality test. 

 

Of course, the above ADL model is quite restrictive in that it incorporates only one lag of X  

and Y . In general, we could assume that the ( , )X Y  interaction is described by an ADL( p, q) 

model of the form (only lags on the right hand side!): 

  

                       1 1 1 1... ...
t t p t p t q t q t

Y t Y Y X Xα δ ϕ ϕ β β ε− − − −= + + + + + + + + ;               (7.1)  

 

we say that X  does not Granger cause Y if all 0
i
β = . In practice, we use the methods descri-

bed in Ch. 6  to select the lag length and then test the joint significance of ˆ
i
β  (we conclude 

that X  Granger causes Y  if any or all of 1
ˆ ˆ,...,

q
β β  are statistically significant). In other 

words, if X  at any time in the past has explanatory power for the current value of Y , then we 

say that X Granger causes Y. Since we are assuming X  and Y  do not contain unit roots, OLS 

regression analysis can be used to estimate this model. To test 0 1: 0,..., 0
q

H β β= =  we have 

to compare two models:  the unrestricted model (7.1) and restricted model  

 

1 1 ...
t t p t p t

Y t Y Yα δ ϕ ϕ ε− −= + + + + + . 

 

We do not reject 0H  if models are „more or less the same“, i.e., if UR RSSR SSR≈ .  Most po-

pular here is the F  test: if test statistics 
( ) /

/ ( ( 2))

R UR

UR

SSR SSR q
F

SSR T q p

−
=

− − +
 is greater than the 0.95 

quantile of the F distribution with ( , ( 2)q T q p− − + ), we say that X Granger causes Y. 
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7.1 example.  Do stock price movements in country A Granger cause stock price move-

ments in country B? 

 

133 monthly data on logged stock prices for Countries A and B are located in data set 

STOCKPAB.XLS, where  

 

 lspA log stock price in country A 

 lspB log stock price in country B 

 pchA % change in A‘s price 

 pchB % change in B‘s price 

 

It is easy to test that stock prices in both countries appear to have unit roots, but are not coin-

tegrated (test it yourself). However, the differences of these series are stationary and can be 

nicely interpreted as stock market returns (exclusive of dividends). We will use these differen-

ced variables to investigate whether stock returns in country A Granger cause those in country 

B. 

 
# generate linear trend  

genr time 

# create unrestricted model 

ols pchA 0 time pchA(-1) pchA(-2) pchA(-3) pchA(-4) \ 

  pchB(-1) pchB(-2) pchB(-3) pchB(-4) 

# create restricted model without pchB; note the Wald F value at the end 

omit pchB(-1) pchB(-2) pchB(-3) pchB(-4) 

 

*********************** 

 

? ols pchA 0 time pchA(-1) pchA(-2) pchA(-3) pchA(-4) pchB(-1) pchB(-2) \ 

  pchB(-3) pchB(-4) 

 

Model 1: OLS, using observations 6-133 (T = 128) 

Dependent variable: pchA 

 

             coefficient   std. error   t-ratio   p-value  

  -------------------------------------------------------- 

  const      -0,609430     0,834940     -0,7299   0,4669   

  time        0,0462238    0,0131545     3,514    0,0006   *** 

  pchA_1      0,0525275    0,168148      0,3124   0,7553   

  pchA_2     -0,0396629    0,168608     -0,2352   0,8144   

  pchA_3     -0,0584789    0,167816     -0,3485   0,7281   

  pchA_4      0,0359476    0,167210      0,2150   0,8302   

  pchB_1      0,853797     0,199501      4,280    3,83e-05 *** 

  pchB_2     -0,216937     0,218358     -0,9935   0,3225   

  pchB_3      0,233913     0,219217      1,067    0,2881   

  pchB_4     -0,271694     0,205388     -1,323    0,1884   

 

R-squared            0,604812   Adjusted R-squared   0,574671 

Log-likelihood      -362,2816   Akaike criterion     744,5631 

Schwarz criterion    773,0834   Hannan-Quinn         756,1511 

rho                 -0,015744   Durbin-Watson        2,030963 

 

? omit pchB(-1) pchB(-2) pchB(-3) pchB(-4) 

 

Model 2: OLS, using observations 6-133 (T = 128) 

Dependent variable: pchA 

             coefficient   std. error   t-ratio    p-value  

  --------------------------------------------------------- 

  const      -0,863807     0,880810     -0,9807   0,3287    
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  time        0,0431803    0,0138237     3,124    0,0022    *** 

  pchA_1      0,645935     0,0897174     7,200    5,40e-011 *** 

  pchA_2     -0,0494193    0,107041     -0,4617   0,6451    

  pchA_3      0,0285230    0,106882      0,2669   0,7900    

  pchA_4     -0,122913     0,0896255    -1,371    0,1728    

 

Mean dependent var   4,308594   S.D. dependent var   6,550260 

Sum squared resid    2548,150   S.E. of regression   4,570172 

R-squared            0,532368   Adjusted R-squared   0,513203 

F(5, 122)            27,77779   P-value(F)           1,07e-18 

Log-likelihood      -373,0541   Akaike criterion     758,1081 

Schwarz criterion    775,2203   Hannan-Quinn         765,0609 

rho                 -0,002375   Durbin-Watson        2,002890 

 

Comparison of Model 1 and Model 2: 

 

  Null hypothesis: the regression parameters are zero for the variables 

    pchB_1, pchB_2, pchB_3, pchB_4 

 

  Test statistic: F(4, 118) = 5,40781, with p-value = 0,000493296 

  Of the 3 model selection statistics, 0 have improved. 

 

The last lines of the output show that the p-value of the F-test is much less than 5%, i.e., 

exclusion of pchB makes the sum of residuals  RSSR  much bigger than URSSR  and, therefo-

re, we reject the hypothesis 0 1 4: 0,..., 0H β β= = . In other words, the lags of  pchB  improve 

forecasting, they  Granger cause stock returns in country A.                       �� 

 

In many cases, it is not obvious which way causality should run. For instance, should stock 

markets in country A affect markets in country B or should the reverse hold?  In such cases, 

when causality may be in either direction, it is important that you check for it. If Y  and X  are 

the two variables under study, in addition to running a regression of Y  on lags of itself and 

lags of X  (as above), you should also run a regression of X  on lags of itself and lags of Y . 

In other words, you should work with two separate equations: one with Y  being the dependent 

variable and one with X  being the dependent variable. This is a simple example of a regres-

sion model with more than one equation. 

 

Note that it is possible to find that Y  Granger causes X  and that X  Granger causes Y . In the 

case of complicated models, such bi-directional causality is quite common and even reasonab-

le. Think, for instance, of the relationship between interest rates and exchange rates. It is not 

unreasonable that interest rate policy may affect future exchange rates. However, it is also 

equally reasonable to think that exchange rates may also affect future interest rate policy (e.g., 

if the exchange rate is perceived to be too high now the central bank may be led to decrease 

interest rates in the future). 

 

7.1 example (continued) 
 

# create unrestricted model 

ols pchB 0 time pchA(-1) pchA(-2) pchA(-3) pchA(-4) \ 

pchB(-1) pchB(-2) pchB(-3) pchB(-4) 

# create restricted model without pchA; note the Wald F value at the end 

omit pchA(-1) pchA(-2) pchA(-3) pchA(-4) 

*********************************** 

[...] 

Comparison of Model 3 and Model 4: 

[...] 
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  Null hypothesis: the regression parameters are zero for the variables 

    pchA_1, pchA_2, pchA_3, pchA_4 

 

  Test statistic: F(4, 118) = 0,0710735, with p-value = 0,990678 

  Of the 3 model selection statistics, 3 have improved. 

 

Now we do not reject 0 1 4: 0,..., 0H β β= = , i.e., pchA does not Granger cause pchB.  �� 

 

This brief discussion of Granger causality has focussed on two variables, X  and Y . However, 

there is no reason why these basic techniques cannot be extended to the case of many variab-

les. For instance, if we had three variables, X , Y  and Z , and were interested in investigating 

whether X  or Z  Granger cause Y , we would simply regress Y  on lags of Y , lags of X  and 

lags of Z . If, say, the lags of Z  were found to be significant and the lags of X  not, then we 

could say that Z  Granger causes Y, but X  does not. 

 

Testing for Granger causality among cointegrated variables is very similar to the method out-

lined above. Remember that, if variables are found to be cointegrated (something which 

should be investigated using unit root and cointegration tests), then you should work with an 

error correction model (ECM) involving these variables. In the case where you have two va-

riables, this is given by: 

 

1 1 1 1 1... ...
t t t p t p t q t q t

Y t e Y Y X Xϕ δ λ γ γ ω ω ε− − − − −∆ = + + + ∆ + + ∆ + ∆ + + ∆ +  

 

As noted in Ch. 6, this is essentially an ADL model except for the presence of the term 1teλ − . 

Remember that 1 1 1t t te Y Xα β− − −= − − , an estimate of which can be obtained by running a 

regression of Y  on X  and saving the residuals. Intuitively, X  Granger causes Y  if past valu-

es of X  have explanatory power for current values of Y . Applying this intuition to the ECM, 

we can see that past values of X  appear in the terms 1,...,
t t q

X X− −∆ ∆  and 1te − . This implies 

that X  does not Granger cause Y  if 1 ... 0
q

ω ω λ= = = = . Chapter 6 discussed how we can 

use two OLS regressions to estimate ECMs, and then use their p-values or confidence inter-

vals to test for causality. Thus, t-statistics and p-values can be used to test for Granger causali-

ty in the same way as the stationary case. Also, the F - tests can be used to carry out a formal 

test of 0 1: ... 0
q

H ω ω λ= = = = . 

 

The bottom line – if X Granger-causes Y , this does not mean that X  causes Y , it only means 

that X  improves Y ‘s predictability (i.e., reduces residuals of the model).    

 

7.2. VAR: Estimation and Forecasting 

 

Our discussion of Granger causality naturally leads us to an interest in models with several 

equations and the topic of Vector Autoregressions or VARs. Before discussing their popula-

rity and estimation, we will first define what a VAR is. Initially, we will assume that all va-

riables are stationary. If the original variables have unit roots, then we assume that differences 

have been taken such that the model includes the changes in the original variables (which do 

not have unit roots). The end of this section will consider the extension of this case to that of 

cointegration. 
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When we investigated Granger causality between X and Y, we began with an ADL( p, q) mo-

del for Y as the dependent variable. We used it to investigate if X Granger caused Y. We then 

went on to consider causality in the other direction, which involved switching the roles of X 

and Y in the ADL; in particular, X  became the dependent variable. We can write the two 

equations as follows: 

 

1 1 11 1 1 11 1 1 1... ...
t t p t p t q t q t

Y t Y Y X Xα δ ϕ ϕ β β ε− − − −= + + + + + + + +  

and 

2 2 21 1 2 21 1 2 2... ...
t t p t p t q t q t

X t Y Y X Xα δ ϕ ϕ β β ε− − − −= + + + + + + + + . 

 

The first of these equations tests whether X Granger causes Y ; the second, whether Y Granger 

causes X. Note that now the coefficients have subscripts indicating which equation they are in. 

For instance, 1α  is the intercept in the first equation, and 2α  the intercept in the second. Fur-

thermore, the errors now have subscripts to denote the fact that they will be different in the 

two equations. 

 

These two equations comprise a VAR. A VAR is the extension of the autoregressive (AR) 

model to the case in which there is more than one variable under study. Remember that the 

AR model introduced in Ch. 3 involved one dependent variable tY  which depended only on 

lags of itself (and possibly a deterministic trend). A VAR has more than one dependent va-

riable (e.g., Y and X ) and, thus, has more than one equation (e.g., one where tY  is the depen-

dent variable and one where tX  is). Each equation uses as its explanatory variables lags of  all 

the variables under study (and possibly a deterministic trend). 

 

The term „VAR“ becomes more transparent if we use a matrix notation. A first order VAR in 

two variables would be given by 

 

 
1 11 1 12 1 1

2 21 1 22 1 2

t t t t

t t t t

Y Y X

X Y X

α ϕ ϕ ε

α ϕ ϕ ε
− −

− −

= + + +

= + + +
 (7.2) 

 

where 1tε  and 2tε  are two white noise processes (independent of the history of Y and X) that 

may be correlated. If, for example, 12 0ϕ ≠ , this means that the history of X  helps explaining 

Y, that is, X  is a Granger cause of  Y . The system (7.2) can be written as 

  

                                          
1 11 11 12

2 21 22 1 2

t t t

t t t

Y Y

X X

εα ϕ ϕ

α ϕ ϕ ε
−

−

        
= + +        
        

                                (7.3) 

 

or, with relevant definitions, as 

 

 1 1t t tY Yα ε−= +Θ +
� �� �

 (7.4) 

 

where ( , )t t tY Y X ′=
�

 is a column vector, 1Θ  is a 2 2×  matrix etc. This extends the first order 

autoregressive model AR(1) from Ch. 2 to the more dimensional case. In general, a VAR(p)  

model for a M - dimensional vector tY

�
 is given by 
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                                              1 1 ...
t t p t p t

Y t Y Yα δ ε− −= + +Θ + +Θ +
�� � �� �

                                (7.5) 

 

where each  
j

Θ  is a d d×  matrix and tε
�

 is a d - dimensional vector of white noise terms 

with covariance matrix Σ .  For example, 

 

(1) (1) (1) (2) (2) (2)
11 12 13 11 12 131 21
(1) (1) (1) (2) (2) (2)

2 1 221 22 23 21 22 23

(1) (1) (1) (2) (2) (2)3 1
31 32 33 31 32 33

t t t

t t t

t t t

Y Y Y

X X X

Z Z Z

ϕ ϕ ϕ ϕ ϕ ϕα

α ϕ ϕ ϕ ϕ ϕ ϕ

α ϕ ϕ ϕ ϕ ϕ ϕ

− −

− −

− −

   
        
        = + +                   

   

1

2

2 3

t

t

t

ε

ε

ε

   
   +   
   
   

 

 

is a VAR(2) model in three variables. The VAR(p) model implies univariate ARMA models 

for each of its components (the AR order is (at most) d p  and MA order (at most) ( 1)d p−  

[HBFKD, p. 660]). However, the advantages of considering the components simultaneously 

include that the model may be more parsimonious and includes fewer lags, and that more ac-

curate forecasting is possible, because the information set is extended to also include the histo-

ry of the other variables. Determining the lag length p in an empirical application is not 

always easy and univariate autocorrelation or partial autocorrelation functions will not help. A 

reasonable strategy is to estimate a VAR model for different values of  p and then select on 

the basis of the Akaike or Schwarz information criteria. 

 

Similarly to one-dimensional case, a VAR(p) is stationary if  all the roots of the equation 

det( 2
1 2 ... p

k p
I z z z−Θ −Θ − −Θ ) = 0 are outside a unit complex circle. The VAR is said to 

have a single unit root if the above equation has exactly one root 1z = + , i.e., 

1 2det( ... ) 0
k p

I −Θ −Θ − −Θ = . This will hold if at least one of the variables in the VAR con-

tains a unit root. 

 

Why we would want to work with such models? One reason has to be Granger causality te-

sting. That is, VARs provide a framework for testing for Granger causality between each set 

of variables. Should interest rates cause exchange rates to change or vice versa? Both? Should 

GDP growth cause interest rates to change? The opposite? Both? However, there are also ma-

ny other reasons. For instance, a point which we will discuss below is that VARs are often 

used for forecasting. However, financial researchers also use VARs in many other contexts. 

Models involving so-called present value relationships often work with VARs using the (log) 

dividend-price ratio and dividend growth. VARs have been used to investigate issues relating 

to the term structure of interest rates (using interest rates of various maturities, interest rate 

spreads, etc.), intertemporal asset allocation (using returns on various risky assets), the ratio-

nal valuation formula (using the dividend-price ratio and returns), the interaction of bond and 

equity markets (using stock and bond return data), etc. In other words, VARs have been used 

in a wide variety of financial problems.  

7.2 example.   A VAR(1) with RMPY variables 

 

Economists often use such important macroeconomic variables as: R = the interest rate, M = 

the money supply, P = the price level and Y = real GDP. Due to the symbols used, models 

using these variables are sometimes informally referred to as RMPY models (pronounced 
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“rumpy”). The file rmpy.xls contains quarterly data on the variables for the US from 1947:1 

through 1992:4. To be precise: 

 

  •  r three-month Treasury bill rate 

  •  m  money supply (M2) measured in billions of dollars 

  •  p  price level measured by the GDP deflator (a price index with 1987 = 1.00) 

  •  y GDP measured in billions of 1987 dollars 

 

Before carrying out an analysis using time series data, you must conduct unit root tests. Re-

member that, if unit roots are present but cointegration does not occur, then the spurious reg-

ression problem exists. In this case, you should work with differenced data. Alternatively, if 

unit roots exist and cointegration does occur, then you will have important economic informa-

tion that the series are trending together and use ECM. 

 

In the present case, tests indicate (check) that we cannot reject the hypothesis that unit roots 

exist in all variables and that cointegration does not occur. In order to avoid the spurious reg-

ression problem, we work with differenced data. In particular, we take logs of each series, 

then take differences of these logged series, then multiply them by 100. This implies that we 

are working with percentage changes in each variable (e.g., a value of 1 implies a 1% change). 

Thus, 

 

  •  dr  percentage change in the interest rate. 

  •  dm  percentage change in the money supply. 

  •  dp  percentage change in the price level (i.e., inflation). 

  •  dy  percentage change in GDP (i.e., GDP growth). 
 

We choose somewhat arbitrarily a VAR(1) model with a linear trend.   
 

var 1 dR dM dP dY ; time 

 

In Table 7.1 we present a short version of the output of the var function.  

 

Table 7.1. The RMPY VAR(1) using dR, dM, dP and dY as dependent variables 
 

 
 

If we examine the significant coefficients (i.e., those with p-value less than 0.05), some inte-

resting patterns emerge. First, in every equation, the lag of the dependent variable is signifi-

cant. For example, in the equation with tR∆  as the dependent variable, 1tR −∆  provides signi-

ficant explanatory power. Secondly, the results for the four equations demonstrate some inte-
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resting patterns of Granger causality. In the equation with R∆  as the dependent variable, we 

can see that both GDP growth and money growth Granger cause interest rate changes. In other 

words, past values of GDP and money growth have explanatory power for current interest rate 

changes. In the case of the /R M∆ ∆  (interest rate/money supply) relationship, the equation 

with M∆ as the dependent variable shows that the causality flows in both directions since in-

terest rate changes also Granger cause money growth. However, interest rate changes do not 

Granger cause GDP growth. The Granger causality results in respect to inflation are particu-

larly interesting since it can be seen that inflation does not Granger cause any other variable, 

but that both R∆  and M∆ Granger cause inflation. A macroeconomist could use these results 

to address theoretical questions of interest (e.g., Is inflation purely a monetary phenomenon? 

Are monetarist views of the economy supported? Are Keynesian views of the economy su-

pported? Is the real economy affected by inflation?, etc.), but it is beyond the scope of this 

course to discuss them in detail. 

 

The results in the previous example are based on a VAR(1). That is, we set  p = 1 and used 

one lag of each variable to explain the dependent variable. In general, of course, we might 

face the cases where the interaction between the components of Y  may well be described by 

VAR(p), p >1. The literature on choosing the right lag in VARs is voluminous, but usually 

the selection is based on the generalized versions of AIC, BIC and like criteria. The following 

GRETL command allows to compare three models with lags 1, 2, and 3: 

 
var 3 dY dP dR dM; time -- lagselect 

 
lags        loglik    p(LR)       AIC          BIC          HQC 

 

   1   -1225,28426            13,880936    14,306664*   14,053550  

   2   -1194,73952  0,00000   13,719328    14,428874    14,007018* 

   3   -1176,87524  0,00316   13,698614*   14,691978    14,101380 

 

The most restrictive BIC recommends the 1st order and most liberal AIC the 3rd order. Note 

that VAR(3) must estimate (1+4+4+4+1)*4=56 coefficients which means a loss of many deg-

rees of freedom and not very accurate estimates (below, we shall choose 2p = ).   �� 

 

Once the order p  has beeb established, we have to estimate the coefficients in (7.5). It ap-

pears that to get BLUE&C estimators, we can apply OLS to every equation individually (this 

is  what,  in  GRETL,  the  var procedure  does and, in R, VAR of the the package vars or 

lineVar of the package tsDyn, do). 

 

Below we shall examine forecasting a VAR(2) model, but at first we present a brief introduc-

tion to some of the practical issues and intuitive ideas relating to forecasting. All our discus-

sion will relate to forecasting with VARs but it is worth noting that the ideas also relate to fo-

recasting with univariate time series models. After all, an AR model is just a VAR with only 

one equation. 

 

Forecasting is usually done using time series variables. The idea is that you use your observed 

data to predict what you expect to happen in the future. In more technical terms, you use data 

for periods t = 1, . . . , T  to forecast periods T + 1, T + 2, etc. To provide some intuition for 

how forecasting is done, consider a VAR(1) involving two variables, Y and X: 

 

1 1 11 1 12 1 1t t t tY t Y Xα δ ϕ ϕ ε− −= + + + +  
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and 

2 2 21 1 22 1 2t t t tX t Y Xα δ ϕ ϕ ε− −= + + + + . 

 

You cannot observe 1TY +  but you want to make a guess of what it is likely to be. Using the 

first equation of the VAR and setting  t = T + 1, we obtain an expression for 1TY + : 

 

1 1 1 11 12 1, 1( 1)T T T TY T Y Xα δ ϕ ϕ ε+ += + + + + +  

 

This equation cannot be directly used to obtain 1TY +  since we don’t know 1, 1Tε + . In words, 

we don’t know what unpredictable shock or surprise will hit the economy next period. Fur-

thermore, we do not know what the coefficients are. However, if we ignore the error term 

(which cannot be forecast since it is unpredictable) and replace the coefficients by their esti-

mates we obtain a forecast which we denote as 1
ˆ
TY + : 

 

1 1 1 11 12
ˆˆ ˆ ˆ ˆ( 1)

T T T
Y T Y Xα δ ϕ ϕ+ = + + + +  

 

We can use the same strategy for two periods, provided that we make one extension. In the 

one period case, we used TX  and TY  to create 1
ˆ
TY +  and 1

ˆ
TX + . In the two period case, 2

ˆ
TY +  

and 2
ˆ

TX +  depend on 1TY +  and 1TX + . But since our data only runs until period T, we do not 

know what 1TY +  and 1TX +  are. Consequently, we replace 1TY +  and 1TX +  by 1
ˆ
TY +  and 1

ˆ
TX +  

(this called a dynamic forecast). That is, use the relevant equation from the VAR, ignore the 

error, replace the coefficients by their estimates and replace past values of the variables that 

we do not observe by their forecasts. In a formula: 

 

2 1 1 11 1 12 1
ˆˆ ˆ ˆˆ ˆ ˆ( 2)

T T T
Y T Y Xα δ ϕ ϕ+ + += + + + + . 

 

2
ˆ

TX +  can be calculated in a similar manner using the formula 

 

2 2 2 21 1 22 1
ˆˆ ˆ ˆˆ ˆ ˆ( 2)

T T T
X T Y Xα δ ϕ ϕ+ + += + + + +  

 

We can use the general strategy of ignoring the error, replacing coefficients by their estimates 

and replacing lagged values of variables that are unobserved by forecasts, to obtain forecasts 

for any number of periods in the future for any VAR(p). 

 

The above described strategy of dynamic forecast is implemented in GRETL. As always, we 

can choose either GRETL terminal or menu based approach. This time we shall proceed from 

the toolbar. Assuming you have already imported rmpy.xls, go to Model|Time series|Vector 

Autoregression..., select dY, dP, dR, dM, and lag order: 2, tick Include a trend, and click OK. 

In the window appeared, we can go to Analysis and explore different possibilities. For 

example, to forecast dY for the comming 12 quarters in 1993:1 – 1995:4,  go to Forecast sec-

tion and fill up relevant boxes.  
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Figure 7.1. 12 quarters forecast in VAR(2) model for dY, dP, dR, and dM   

 

In summary, building a VAR model involves three steps: (a) use some information criterion to 

identify the order, (b) estimate the specified model by using the least squares method and, if 

necessary, reestimate the model by removing statistically insignificant parameters, and (c) use 

the Portmanteau test statistic of the residuals to check the adequacy of a fitted model (this is a 

multivariate analogue of Q-stat in ARIMA model and is to test for autocorrelation and cross-

correlation in residuals). If the fitted model is adequate, then it can be used to obtain forecasts. 

 

7.3 example.  The file var1a.txt contains 100 elements of (trend) stationary VAR(1) simulated 

with R (the code is in Computer Labs, 7.4 example) and described by the formula  

 

1

1.5 0 1.2 0.5

4 0.08 0.6 0.3
t t tY t Y ε−

−     
= + + +     
     

� � �
,   

1.0 0.5
cov( )

0.5 1.25
ε

 
=  
 

�
,   1, ...,100t = . 
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Figure 7.2. The trend  coefficient 
1

0δ =  but, because of the interaction between com-

ponents, 1t
Y  is nevertheless trending (left); if we also take 

2
0δ = , both components be-

come stationary (why?; right)  

 

Now we pretend that we have forgotten the formula and shall try to „restore“ the model. The 

first step in describing Y
�

 is to choose the „right“ order: go to Model * Time series * VAR lag 

selection and fill the respective boxes with 4, y1 and y2 and tick Include a constant and Inc-

lude a trend – all the criterions recommend the 1st order (this is in accordance with our formu-

la ). Next, we shall estimate the coefficients of VAR(1): go to Model * Time series * Vector 

Autoregression and fill the boxes as previously.   

 
Equation 1: v1 

 

             coefficient   std. error   t-ratio    p-value  

  --------------------------------------------------------- 

  const       2.00766      0.380238      5.280    8.16e-07  *** 

  v1_1        1.26420      0.0528852    23.90     5.73e-042 *** 

  v2_1       -0.539874     0.0568344    -9.499    1.94e-015 *** 

  time        0.0117678    0.0106652     1.103    0.2726   

 

Equation 2: v2 

 

             coefficient   std. error   t-ratio    p-value  

  --------------------------------------------------------- 

  const       4.46168      0.418784     10.65     6.67e-018 *** 

  v1_1        0.657071     0.0582464    11.28     3.13e-019 *** 

  v2_1        0.257945     0.0625959     4.121    8.07e-05  *** 

  time        0.0899141    0.0117464     7.655    1.60e-011 *** 

 

(note that all the estimates are close to the true values of the coefficients.) Finally, we shall 

predict both components for 20 periods ahead: in the vector autoregression model window, go 

to Analysis * Forecasts etc 
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Figure 7.3. 20-periods-ahead forecasts for 
1

Y  and 
2

Y . Note different scales in the 

two graphs and a “strange“ (nonmonotone) behavior of the forecasts. 

 

7.1 exercise. a) The file var3a.txt contains a 150-long realization of VAR(1) described by the 

formula  1
1/

5 / 8 1/ 2 64 0
, cov( )

1/ 4 0 643
t t t

Y Y ε ε−
   

= + =   
   

� � � �
. Plot 

t
Y

�
. Test both coordinates for the 

presence of unit root. Repeat the analysis of 8.3 example. b) The file var3b.txt contains a 150-

long realization of VAR(1) described by the formula  1

5 / 8 1/ 2
,

1 2 / 3/ 4
t t t

Y Y ε−
 

= + 
 

� � �
 cov( )ε =

�
 

64 0

0 64

 
 
 

. Plot 
t

Y

�
. Test both components for the presence of unit root. 

7.4 example.  ⇒  In R  

The data file us-tbill.txt contains monthly, 1964:01 through 1993:12, interest rates of US trea-

sure bills for maturities of one month Y_1M and five years Y_5Y. Both series are integrated, 

therefore we fit a VAR(2) model to the first differences
2
 (the 2nd order was selected with 

VARselect by Schwarz‘s SC). 

 
rate=ts(read.table(file.choose(),header=TRUE),start=1964,freq=12) 

rate 

     date  Y_1M  Y_1Y  Y_5Y 

[1,]    1 3.419 3.789 3.984 

[2,]    2 3.500 3.947 4.023 

........................... 

rrate=rate[,c(2,4)] 

library(vars)  

VARselect(rrate, lag.max = 5, type="const") 

$selection 

AIC(n)  HQ(n)  SC(n) FPE(n)  

     5      2      2      5  

$criteria 

                 1          2           3           4           5 

                                                 
2
 Since the series are cointegrated (check), we should also include an error correction term in our model. We 

shall do it later (see 7.4 exercise).  

-16
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AIC(n) -2.33355888 -2.4113507 -2.40700353 -2.40319058 -2.41265107 

HQ(n)  -2.30752343 -2.3679583 -2.34625415 -2.32508424 -2.31718775 

SC(n)  -2.26811464 -2.3022769 -2.25430029 -2.20685785 -2.17268884 

library(urca) 

N=120 # prediction horizon = 120(months) 

par(mfrow=c(1,2)) 

d.rate=diff(rrate)      # create differences. 

var.diff=VAR(d.rate, p = 2, type = "none")    # „none“ because rrate 

print(summary(var.diff))     # does not drift 

 

Endogenous variables: Y_1M, Y_5Y  

Deterministic variables: none  

 

Estimation results for equation Y_1M:  

=====================================  

Y_1M = Y_1M.l1 + Y_5Y.l1 + Y_1M.l2 + Y_5Y.l2  

 

        Estimate Std. Error t value Pr(>|t|)     

Y_1M.l1 -0.19831    0.05795  -3.422 0.000694 *** 

Y_5Y.l1  0.62395    0.10715   5.823  1.3e-08 *** 

Y_1M.l2  0.01030    0.05651   0.182 0.855530     

Y_5Y.l2 -0.27583    0.11218  -2.459 0.014415 *   

 

Multiple R-Squared: 0.1163  

 

Estimation results for equation Y_5Y:  

=====================================  

Y_5Y = Y_1M.l1 + Y_5Y.l1 + Y_1M.l2 + Y_5Y.l2  

 

        Estimate Std. Error t value Pr(>|t|)   

Y_1M.l1  0.01457    0.03143   0.463   0.6433   

Y_5Y.l1  0.06346    0.05812   1.092   0.2756   

Y_1M.l2  0.04838    0.03065   1.578   0.1154   

Y_5Y.l2 -0.12976    0.06084  -2.133   0.0336 * 

 

Multiple R-Squared: 0.0187  

 

The model var.diff is for differences. Since 1...
T h T h T T

Y Y Y Y+ + += ∆ + + ∆ + , the forecast 

,T h T
Y +  equals the cumulative sum of the forecasts for differences:  

 

var.pred=predict(var.diff, n.ahead = N, ci = 0.95) 

R1.d=numeric(360+N);R2.d=numeric(360+N) 

# insert historical data 

R1.d[1:360]=rrate[,1] 

R2.d[1:360]=rrate[,2] 

# predict levels from differences 

R1.d[361:(360+N)]= R1.d[360]+cumsum(var.pred$fcst[["Y_1M"]][,1]) 

R2.d[361:(360+N)]= R2.d[360]+cumsum(var.pred$fcst[["Y_5Y"]][,1]) 

Ra1.d=ts(R1.d,start=1964,freq=12) 

Ra2.d=ts(R2.d,start=1964,freq=12) 

plot(Ra1.d,ylab="Rates",main="VAR in differences") 

lines(Ra2.d,col=2) 

legend(1992,15,c("Y_1M","Y_5Y"),lty=1,col=1:2)     # see Fig. 7.4, left 

The estimation results show that Y_5Y is the Granger cause of Y_1M but not vice versa. Also 

note that the dependence of the one-month rate on the five-year rate is much stronger (as can 

be seen from 2
R : 0.1163 > 0.0187). 
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Figure 7.4 (left) shows the dynamic out-of-sample forecasts (starting in January 1994) of the 

two interest rates. Later, in 7.4 exercise, we shall correct the specification by adding a cointeg-

ration term to the right-hand sides of the model.  
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Figure 7.4. Forecasting the levels with two models - VAR in differences (left) and 

VAR in levels (right)  

 

Note that VAR model should always include variables with the same order of integration –  

this allows us to create a model in levels
3
 (instead of differences.) However, this model again 

has some drawbacks
4
.   

 

⇒ In R 
 

var.lev=VAR(rrate, p = 2, type = "const") 

summary(var.lev) 

 

Endogenous variables: Y_1M, Y_5Y  

Deterministic variables: const 

 

Estimation results for equation Y_1M:  

=====================================  

Y_1M = Y_1M.l1 + Y_5Y.l1 + Y_1M.l2 + Y_5Y.l2 + const  

 

        Estimate Std. Error t value Pr(>|t|)     

Y_1M.l1  0.71030    0.05664  12.540  < 2e-16 *** 

Y_5Y.l1  0.70251    0.10873   6.461 3.46e-10 *** 

Y_1M.l2  0.17968    0.05690   3.158  0.00173 **  

Y_5Y.l2 -0.62927    0.10615  -5.928 7.31e-09 *** 

const    0.12092    0.13944   0.867  0.38644   

Multiple R-Squared: 0.913 

 

Estimation results for equation Y_5Y:  

=====================================  

Y_5Y = Y_1M.l1 + Y_5Y.l1 + Y_1M.l2 + Y_5Y.l2 + const  

 

        Estimate Std. Error t value Pr(>|t|)     

Y_1M.l1  0.01034    0.03086   0.335   0.7379     

                                                 
3
 See [H], p.651 or the last pages of this chapter. 

4
 See also [E2], p. 358. 
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Y_5Y.l1  1.03517    0.05923  17.477   <2e-16 *** 

Y_1M.l2  0.02965    0.03100   0.957   0.3394     

Y_5Y.l2 -0.09011    0.05783  -1.558   0.1201     

const    0.17660    0.07596   2.325   0.0206 *   

 

Multiple R-Squared: 0.9703 

 

 

var.pred.lev=predict(var.lev, n.ahead = N, ci = 0.95) 

R1.lev=numeric(360+N) 

R2.lev=numeric(360+N) 

R1.lev[1:360]=rrate[,1] 

R2.lev[1:360]=rrate[,2] 

R1.lev[361:(360+N)]=var.pred.lev$fcst[["Y_1M"]][,1] 

R2.lev[361:(360+N)]=var.pred.lev$fcst[["Y_5Y"]][,1] 

Ra1.lev=ts(R1.lev,start=1964,freq=12) 

Ra2.lev=ts(R2.lev,start=1964,freq=12) 

plot(Ra1.lev,ylab="Rates",main="VAR in levels") 

lines(Ra2.lev,col=2) 

legend(1992,15,c("Y_1M","Y_5Y"),lty=1,col=1:2) 

 

Both levels (see Fig. 7.4, right) revert to (the values close to) their means
5
 (check) which cont-

radicts the unit root behavior of each series. The explanation lies in the fact that we estimated 

unrestricted
6
 VAR model while actually the coefficients should reflect cointegration and obey 

some constrains (read the VECM section).          �� 

 

⇒ In gretl 

 

Lag selection (Model|Time series|VAR lag selection...) 

 
lags        loglik    p(LR)       AIC          BIC          HQC 

 

   1    -573.10448             3.447050     3.515213     3.474222  

   2    -556.33423  0.00000    3.371037     3.484642*    3.416323* 

   3    -553.24230  0.18583    3.376442     3.535489     3.439843  

   4    -550.10035  0.17893    3.381550     3.586038     3.463064  

   5    -544.67823  0.02837    3.373085     3.623015     3.472714  

   6    -539.60533  0.03804    3.366698*    3.662070     3.484442 

 

We choose (as in R) lag=2. Now go to Model|Time series|Vector Autoregression...: 

 
  Equation 1: Y_1M 

 

             coefficient   std. error   t-ratio    p-value  

  --------------------------------------------------------- 

  const        0.120917    0.139439      0.8672   0.3864    

  Y_1M_1       0.710303    0.0566441    12.54     4.36e-030 *** 

  Y_1M_2       0.179677    0.0569002     3.158    0.0017    *** 

  Y_5Y_1       0.702505    0.108732      6.461    3.46e-010 *** 

  Y_5Y_2      -0.629267    0.106154     -5.928    7.31e-09  *** 

 

[...] 

 

 

 

                                                 
5
 This is what we expect for stationary sequences. 

6
 No restrictions on the coefficients. 
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Equation 2: Y_5Y 

 

             coefficient   std. error   t-ratio    p-value  

  --------------------------------------------------------- 

  const       0.176603     0.0759583     2.325    0.0206    ** 

  Y_1M_1      0.0103356    0.0308565     0.3350   0.7379    

  Y_1M_2      0.0296520    0.0309960     0.9566   0.3394    

  Y_5Y_1      1.03517      0.0592311    17.48     1.02e-049 *** 

  Y_5Y_2     -0.0901103    0.0578267    -1.558    0.1201    

 

[...]    
 

These equations coincide with those obtained with R. To forecast, in the window appeared, go 

to Analysis | Forecasts|...|Number of observations to add 120 – you will get the same graphs as 

before, in Fig. 8.4: 

 

  
 

Figure 7.5. Historical data and forecast of Y_5Y (left) and the same for Y_1M 

(right) 

7.2 exercise. The file ccva.txt contains 1893-1997 yearly data on prices and dividends on S&P 

500 stocks as well as data on inflation and short-term interest rates.  

 
          DYD       RTBILL       SPREAD        XBOND       XSTOCK       YIELD 

1   -2.849642  0.149256883 -0.005428600  0.009500733 -0.245791525 0.049742092 

2   -3.002845  0.036565583  0.010258374 -0.007351078 -0.017624430 0.034208171 

............................................................................. 

 

Fit a VAR model using all series in the file and interpret the results. Fit a VAR model using 

only data from 1893 to 1981. Obtain dynamic forecasts for all series until 1997 and interpret 

the results. 
 

7.3. VAR: Impulse-Response Function 

 

The impulse-response function is yet another device that helps us to learn about the dynamic 

properties of vector autoregressions of interest to forecasters. The question of interest is sim-

ple and direct: How does a unit innovation to a series affect it, now and in the future?  
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To clarify the issue, let us start with one-dimensional case. Let 1 1... 0
T

Y Y −= = = , 

1 1... 0
T

ε ε −= = =  and at moment t T=  a unit shock comes: 1, ... 0
T T
ε σ ε += = = .  

 

• If 
t t

Y ε= , i.e., 
t

Y  is WN, then 1 1, 0
T T T

Y Yσ ε+ += = = and 0
T h T h

Y ε+ += ≡  - WN has 

no memory, no dynamics. 

• If 1 , | | 1
t t t

Y Yϕ ε ϕ−= + < , i.e., 
t

Y  is AR(1), then 0
T

Y ϕ σ σ= ⋅ + = , 1 0
T

Y ϕσ ϕσ+ = + = , 

..., 0h

T h
Y ϕ σ+ = →  as h→∞  - the impulse response is dying down.      

 

Now consider again the two-variable, first-order system 

 

11 1 12 1 1t t t t
Y Y Xϕ ϕ ε− −= + + , 

21 1 22 1 2t t t t
X Y Xϕ ϕ ε− −= + + . 

 

A perturbation in 1tε  has an immediate and one-for-one effect on tY , but no effect on tX . In 

period 1t + , that perturbation in tY  affects 1tY +  through the first equation and also affects 1tX +  

through the second equation. These effects work through to period  t + 2, and so on. Thus a 

perturbation in one innovation in the VAR sets up a chain reaction over time in all variables in 

the VAR. Impulse response functions calculate these chain reactions. 

7.5 example.  Suppose we have a first-order VAR system defined by 

 
2
1 12

1 2
21 2

0.4 0.1 16 14
,

0.2 0.5 14 25

σ σ

σ σ

    
 Θ = Ω = =        

, 

 

where 1Θ  is the coefficient matrix as in (7.4) and t tEε ε ′Ω =
� �

 is the covariance matrix of the 

shock vector 1 2( , )t t tε ε ε=
�

. It is possible to show that respective VAR process is stationary 

(there is little point in studying impulse response functions for nonstationary systems.) Set 

0 0( , ) (0,0)Y X = 7
 and postulate  1 (4,0)ε ′ ′= . This vector sets a one-standard-deviation innova-

tion in the first equation and a zero innovation in the second equation in period one. Assume further 

that both innovations are zero in periods 2, 3, and so on. The first few ( , )Y X  vectors are then given 

by 

 

31 2 1
1 2

1 2 1 3

4 0.4 0.1 4 0 1.6 0.72
, ,

0 0.2 0.5 0 0 0.8 0.72

YY Y Y

X X X X
ε

                ′= = Θ + = + = =                
                 

 

 

The impulse responses in the first five periods for a perturbation of one standard deviation in 1tε  are 

given in Table 7.2. Similarly some impulse responses for a perturbation of one standard deviation 

in 2tε are presented in Table 7.3. 

 

 

                                                 
7
 That is, the process ( , )

t t
Y X  is in its equilibrium. What initial condition would you take if the free term 0α ≠

�
?  
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Table 7.2                                                    Table 7.3   

  

Impulse responses from                              Impulse responses from     

1 (4,0)ε ′=                                                    1 (0,5)ε ′=    

______________________                      ________________________          

  Period       Y            X                               Period         Y             X 

______________________                      ________________________ 

     1             4             0                                     1            0              5 

     2             1.6          0.8                                  2            0.5           2.5 

     3             0.72        0.72                                3            0.45         1.35 

     4             0.36        0.504                              4            0.315       0.765 

     5             0.194      0.324                      ________________________ 

______________________ 

An objection to the procedure just illustrated for the computation of impulse response func-

tions is that the innovations in the VAR are, in general, not contemporaneously independent of 

one another. That one innovation receives a perturbation and the other does not is implausible. 

A widely used "solution" to the problem is to transform the ε
�

 innovations to produce a new 

set of uncorrelated unit variance innovations u
�

. We will illustrate the procedure for the two-

variable case. Let 1 2( , ) (0,0)E u u =  and 1 2cov( , )u u I= . We want to find four (in fact, three) 

coefficients ( )
ij

P p=  such that the covariance matrix of 
11

1 2
21 22

0
( , ) :

p
Pu u

p p
ε ε

 
= =  

 

� �
 

 

 
1 11 1 12 2 11 1 2 11 1

2 21 1 22 2

0p u p u p u u p u

p u p u

ε

ε

= + = + ⋅ =

= +
 (7.6) 

be the same as the sample covariance matrix of 1 2( , )ε ε , i.e., Ω̂ . In order to do this, we have 

to solve the following three equation system: 

 
2 2

1 11 1

2 2 2
2 21 22 2

1 2 11 1 21 1 22 2 11 21 12cov( , ) ( ) ;

D p s

D p p s

Ep u p u p u p p s

ε

ε

ε ε

= =

= + =

= ⋅ + = =

 

 

its solution is 2 2
11 1 21 12 1 22 2 12 1, / , ( / )p s p s s p s s s= = = − .  Note that in higher-dimensional 

VAR’s, the equation that is first in the ordering has only one uncorrelated innovation, 1u . The 

equation that is second has only 1u  and 2u , the equation that is third has only 1 2,u u , and 3u , 

and so on. What is really important here are the equations relating ε
�

 and u
�

: 1
t tu P ε−=
�

 and     

  

 t tPuε =
�

. (7.7) 

 

These relations imply the Cholesky factorization of the matrix Ω̂ : ˆ PP′Ω =  (the matrix is 

expressed as the product of a lower triangular matrix P  and its transpose P′ , which is upper 

triangular.)  This imposes an ordering of the variables in the VAR and attributes all of the ef-

fect of any common component to the variable that comes first in the VAR system (in our case 

it is Y). Note that responses can change dramatically if you change the ordering of the variab-
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les. In Gretl, you may reorder the variables by changing the order of entering VAR variables 

in gretl:VAR window. 

 

7.5 example (continued). Continuing the previous numerical example, we will suppose that 

the values in the A  and  Ω  matrices have been estimated from sample data. It is easy to check 

that  

 

4 0

3.5 3.5707
P

 
=  
 

. 

 

Suppose that we postulate a 1 (1,0)u ′=  vector and set all subsequent u  vectors to zero. This 

vector gives a one standard deviation perturbation in the first component. From (7.7) this imp-

lies 

 

1 1

4 0 1 4

3.5 3.5707 0 3.5
Puε

    
= = =    

    

� �
. 

 

The second element in 1ε
�

 is now nonzero. It is, in fact, the expected value of 21ε , given that 

11 4ε = . The values of the ( , )Y X  vector may then be calculated as before. The first few val-

ues are presented in Table 7.4. Compared with the earlier assumption of a one standard devia- 

 

Table 7.4 

 

Period       Y            X    

    1            4            3.5 

    2            1.95       2.55 

    3            1.035     1.665 

    4            0.580     1.039 

   

tion perturbation in just 11ε , there is now an important impact on X  in the first period, fol-

lowed by noticeably greater impacts in subsequent periods. If a perturbation of one standard 

deviation in the second innovation is assumed, the 1ε  vector is given by  

 

1 1

4 0 0 0

3.5 3.5707 1 3.5707
Puε

    
= = =    

    
 

 

and the successive ( , )Y X  vectors may be computed in the usual way. 

 

Uncorrelated innovations were developed to deal with the problem of nonzero correlations 

between the original innovations. However, the solution of one problem creates another. The 

new problem is that the order in which the u
�

 variables are entered can have dramatic effects 

on the numerical results. The interpretation of impulse response functions is thus a somewhat 

hazardous operation, and there has been intense debate on their possible economic signifi-

cance. 
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7.6 example. We estimate a bivariate VAR for U.S. seasonally adjusted housing starts and 

completions, two widely watched business cycle indicators for 1968.01-1996.06 (these 

monthly data are available as house.dat). We use the VAR to produce point extrapolation 

forecasts. We show housing starts and completions in Figure 7.2. Both are highly cyclical, 

increasing during business-cycle expansions and decreasing during contractions. Moreover, 

completions tend to lag behind starts, which makes sense because a house takes time to com-

plete. 

 

 

We split the data into an estimation sample, 1968:01-1991:12, and a holdout sample, 1992:01-

1996:06 for forecasting. We therefore perform all model specification analysis and estimation, 

to which we now turn, on the 1968:01-1991:12 data.  

 

To model starts and completions, we need to select the order, p, of our VAR(p). Exploration 

of VARs of order 1 through 36 revealed that the AIC achieves a distict minimum at p = 4, so 

we adopt VAR(4).   

 

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 1970  1975  1980  1985  1990  1995

starts

completions

 
 

Figure 7.6. US housing starts and completions, 1968:1 – 1996:06 

 
smpl 1968:01 1991:12 

var 36 starts completions --lagselect 

 
lags        loglik    p(LR)       AIC          BIC          HQC 

 

   1     425,18118            -3,326835    -3,242801    -3,293021  

   2     466,27329  0,00000   -3,621217    -3,481160*   -3,564861  

   3     477,23394  0,00021   -3,676460    -3,480380    -3,597562* 

   4     483,68704  0,01174   -3,695929*   -3,443827    -3,594488  

   5     484,47037  0,81477   -3,670400    -3,362275    -3,546417  

   6     487,36627  0,21524   -3,661637    -3,297490    -3,515112  

   7     488,02559  0,85821   -3,635124    -3,214954    -3,466056  

   8     490,08218  0,39091   -3,619700    -3,143507    -3,428090 

      …………………………………………………………………………………. 

 

After we have chosen VAR(4), go to Model|Time series|Vector Autoregression… and then 

Analysis|Forecasts. The resulting forecasts are presented in Fig. 7.7.  Starts begin their recov-
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ery before 1992:01, and the VAR projects continuation of the recovery. The VAR forecast 

captures the general pattern quite well, but it forecasts quicker mean reversion than actually 

occurs, as is clear when comparing the forecast and realization in Fig. 7.7. This figure also 

makes clear that the recovery of housing starts from the recession of 1990 was slower than the 

previous recoveries in the sample, which naturally makes for difficult forecasting. The com-

pletions forecast suffers the same fate, as shown in Fig. 7.7, right. Interestingly, however, 

completions had not yet turned by 1991:12, but the forecast nevertheless correctly predicts the 

turning point.        
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Figure 7.7. Housing starts: history 1968:01-1991:12 and forecast and realization 

1992:01-1996:06 (left) and the same for completions (right)  

 

In Fig. 7.8 we display the impulse-response functions. First we consider the own-variable im-

pulse responses – that is, the effects of the starts innovation on subsequent starts (top, left) or a 

completions innovation on subsequent completions (bottom, right). The effects are similar: in 

each case, the impulse response is large and decays in a slow, approximately monotonic fash-

ion. In contrast,  

 

 0.8
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Figure 7.8. Responses to one standard deviation innovations  

 

the cross-variable impulse responses are very different. An innovation to starts produces no 

movement in completions at first, but the effect gradually builds and becomes large, peaking 

at about 14 months (it takes time to build houses). An innovation to completions, however, 

produces little movement in starts at any time.   

 

Note that in our case reversing the order of starts and completions in var box does not consid-

erably change Fig. 7.8.                                                                                                      

 

7.4. Vector Error Correction Model (VECM)  

 

Recall that the AR(p) process  

 

1 1 2 2 ...
t t t p t p t

Y t Y Y Yµ δ ϕ ϕ ϕ ε− − −= + + + + + +  

 

(see (5.1)) can be rearranged into  

 

1 1 1 1 1...
t t t p t p t

Y t Y Y Yµ δ ρ γ γ ε− − − − +∆ = + + + ∆ + + ∆ + ; 

 

the latter form is more convenient for the unit root testing
8
: 0ρ =  implies that 

t
Y  has a unit 

root. Similarly, the d - dimensional VAR process 

 

1 1 ...
t t t p t p t

Y Y Yµ ε− −= +Θ + +Θ +
� � � ��

 

                                                 
8
 Recall that have used the ADF test to this end. 
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(here the deterministic part 
t

µ
�

 is typically a polynomial in time, i.e., 
t

µ µ=
� �

 or 
t

tµ µ δ= +
�� �

,  

or 2
t

t tµ µ δ γ= + +
� �� �

) can be rewritten in VEC form (c.f. (6.5c)): 

 

                                         1t t t
Y Yµ −∆ = +Π +
� ��

1 1 1 1...
t p t p t

Y Y ε− − − +Γ ∆ + +Γ ∆ +
� � �

,               (7.6a) 

 

where  the long-run matrix 
1

p

ii
I

=
Π = Θ −∑  and 

1

p

i jj i= +
Γ = − Θ∑  or, alternatively, as 

 

t t
Y µ∆ = +
� �

1 1 1 1...
t p t p t p t

Y Y Y ε− − − + −Γ ∆ + +Γ ∆ +Π +
� � � �

� � � . 

 

Below we shall use Johansen test to test whether Π  equals 0 in some sense (in det 0Π =  or 

rank r dΠ = <  sense; more precisely, the test is aimed to test the number r  of cointegrating 

relationships). Thus the Johansen approach can be interpreted as a multivariate unit root test. 

Note the central fact: if Π  has rank r  (in other words, if ,1 ,( ,..., )
t t d

Y Y  has r  linearly inde-

pendent cointegrating relations), it can be written as the product T

d d d r r d
α β× × ×Π = , 

rank rank rα β= = . The rows of the matrix Tβ  form a basis for the r  cointegrating vectors 

and the elements of α  distribute the impact of the cointegrating vectors to the evolution of  

t
Y∆
�

 (they are usually interpreted as speed of adjustment to equilibrium coefficients). 

 

In the preceding discussion of VARs,  we assumed that all variables were stationary. If  all of 

the original variables have unit roots and are not cointegrated, then they should be differenced 

and the resulting stationary variables should be used in the VAR. This covers every case 

except one where the variables have unit roots and are cointegrated. Recall that in this case in 

the discussion of Granger causality, we recommended that you work with an ECM. The same 

strategy can be employed here. In particular, instead of working with a vector autoregression 

(VAR), you should work with a vector error correction model (VECM).  

 

 

To outline the strategy of dealing with multivariate time series, it is better to start with a two-

dimensional case ( , )
t t t

Y Y X ′=
�

 and recall the Engle-Granger (EG) procedure: 

1. Test whether each series, 
t

Y  and 
t

X , is integrated of the same order. 

2. If both series are (0)I , estimate VAR model in levels (no need for VECM).  

3. If both series are (1)I , estimate the cointegration regression 0 1t t t
Y X Zγ γ= + + , then 

test whether the residuals ˆ
t

Z  are stationary (this is called the Engle-Granger (EG) test, 

it is close to the ADF test). 

4. If 
t

Z  is (1)I , estimate a VAR model in differences 
t

Y∆  and 
t

X∆ . 

5. If  
t

Z  is stationary,  and
t t

Y X  are  cointegrated ; in this case, estimate the VEC model  

 

      

1 1
2 1 2 21 1 22 1 21 22

1 1
1 1 1 11 1 12 1 11 12

ˆ ...

ˆ ...

p p y

t t t t t p t p t

p p x

t t t t t p t p t

Y Z X Y X Y

X Z X Y X Y

α µ γ γ γ γ ε

α µ γ γ γ γ ε

− − − − −

− − − − −

∆ = + + ∆ + ∆ + + ∆ + ∆ +

∆ = + + ∆ + ∆ + + ∆ + ∆ +

          (7.7a) 
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or, to express it in a matrix form,  

 

       ( )1 1 1

1 2

1 ...
L Y

p

S Xt t t t p t

Y Y Y Y

X X X X

α ε
γ

α ε−
− − −

−∆ ∆ ∆          
= − + Γ + +Γ +          ∆ ∆ ∆          

       (7.7b) 

 

The order p  of this VEC model is chosen such that VAR( 1p + ) model fitted to the 

levels has minimum AIC or SC. If  0p = , i.e., a level VAR(1) has minimum, this may 

indicate that that the original series are stationary. 

6.  If necessary, use the model obtained to forecast 
t

Y  and 
t

X  (this can be done by 

rewriting the VEC model as a VAR model). For example, the model 1
T

t t
Y Yαβ −∆ = +
� �

 

1 1t t
Y ε−Γ ∆ +
� �

 can be expressed as VAR(2): 1 1 1 2( )T

t t t t
Y I Y Yαβ ε− −= +Γ + −Γ +
� � � �

.  �� 

 

Thus, in the case where our data consists of two (1)I  components, we use the EG test for 

cointegration (see 6.4 and 6.5; the test was to check whether 0 :H no cointegration or 1 :H Y  

and X  cointegrate is true). In a multidimensional case we use another cointegration test cal-

led the Johansen test. The first thing to note is that it is possible for more than one cointegra-

ting relationship to exist if you are working with several time series variables (all of which 

you have tested and found to have unit roots). To be precise, if you are working with d variab-

les, then it is possible to have up to 1d −  cointegrating relationships (and, thus, up to 1d −  

cointegrating residuals included in the VECM). For instance, in Ch. 6 we mentioned a finan-

cial theory arguing that the cay variables (i.e., (logarithms of) consumption, assets and inco-

me) are cointegrated. As we shall see below, there probably is just one cointegrating relation-

ship between these variables. That is, all c, a and y  have unit roots, but 1 2t t t
c a yβ β− −  is sta-

tionary. However, in theory it would be possible to have two cointegrating relationships (e.g., 

if 1
t t

c y− ⋅ were stationary
9
; it is evident that the VEC models depends on the number of coin-

tegrating relationships).  

 

To begin with, let us return to (7.6a): 

 

                                 1
T

t t t
Y Yµ αβ −∆ = + +
� ��

1 1 1 1...
t p t p t

Y Y ε− − − +Γ ∆ + +Γ ∆ +
� � �

,               (7.6b) 

 

• If 0rank β = , then only 1 1, 1 , 10 ... 0 0T

t t d t
Y Y Yβ − − −= ⋅ + + ⋅ ≡
�

 is stationary, in other 

words, 
t

Y

�
 is not cointegrated and VECM reduces to VAR(p-1) in differences. 

• If 0 rank r dβ< = < , 
t

Y

�
 is (1)I  with r  linearly independent cointegrating vectors and 

1 ~ (0)T

t
Y Iβ −

�
 

• If rank dβ = , then Π  has full rank and is invertible, therefore 1t
Y −

�
 be will a linear 

combination of stationary differences, therefore stationary itself. 

 

                                                 
9
 The ratio /

t t
C Y  should not deviate much from a constant, therefore it is probable that log( )/

t t
C Y =  

log log
t t t t

C Y c y− = −  is close to (another) constant, i.e., stationary. 
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Thus, it is often of interest to test, not simply for whether cointegrating is present or not, but 

also for the number of cointegrating relationships. Recall that any hypothesis is rejected if 

the test statistics exceeds the critical value. However, these critical values depend on the de-

terministic components of VECM such as constants and linear trends. In a similar situation 

when testing for a unit root, i.e., the hypothesis 0 : 0H ρ =  (see Table 5.2), we used two dif-

ferent critical values for the t -statistics of ρ̂  depending on the presence or absence of a de-

terministic trend. Now we have five different variants for calculating p − values.  The above-

mentioned five cases are: 

 

1. 0
t
µ =
��

(no constant) – all the series in 
t

Y

�
 are I(1) without drift and the cointegrating 

relations (1) ( )
1( ... )T M

t t M t
Y Y Yβ β β= + +
�

 have zero mean: 

 
1

1 1

pT

t t i t i ti
Y Y Yαβ ε−

− −=
∆ = + Γ ∆ +∑
� � � �

. 
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Figure 7.9. (Bivariate VECM) Case 1, simulated 
t

Y

�
 (left, no components have a 

drift); cointegrating term 1 2t t
Y Yβ−  (right) 

 

2. 0 0t
µ µ αρ= =

�� �
 (restricted constant) – the series in 

t
Y

�
 are I(1) without drift and the 

cointegrating relations T

t
Yβ
�

 have a non-zero mean: 

 
1

1 0 1
( )

pT

t t i t i ti
Y Y Yα β ρ ε−

− −=
∆ = + + Γ ∆ +∑
� � �� �

. 
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Figure 7.10. Case 2 - no components have a drift 

 

3. 0t
µ µ=
� �

 (unrestricted constant)  –  the series in 
t

Y

�
 are I(1) with drift vector 0µ

�
 and 

the cointegrating relations T

t
Yβ
�

 may have a non-zero mean: 

 
1

0 1 1

pT

t t i t i ti
Y Y Yµ αβ ε−

− −=
∆ = + + Γ ∆ +∑
� � � ��
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Figure 7.11. Case 3 - at least one component drifts 

 

4. 0 1t
tµ µ αρ= +
�� �

 (restricted trend) – the series in 
t

Y

�
 are I(1) with drift vector 0µ

�
 and 

the cointegrating relations T

t
Yβ
�

 may have a linear trend 1tρ
�

: 

 
1

0 1 1 1
( )

pT

t t i t i ti
Y Y t Yµ α β ρ ε−

− −=
∆ = + + + Γ ∆ +∑
� � �� ��
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Figure 7.12. Case 4 - at least one component drifts 

 

5. 0 1t
tµ µ µ= +

� � �
 (unrestricted constant and trend) – the series in 

t
Y

�
 are I(1) with a lin-

ear trend in VECM (and quadratic trend in levels) and the cointegrating relations T

t
Yβ
�

 

have a linear trend. 

 
1

0 1 1 1

pT

t t i t i ti
Y t Y Yµ µ αβ ε−

− −=
∆ = + + + Γ ∆ +∑
� � � �� �
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Figure 7.13. Case 5 - at least one component has a quadratic trend 

 

Note – if no components of 
t

Y

�
 drift, we use Cases 1 or 2; if at least one components of 

t
Y

�
 

drifts, we use Cases 3 or 4; and if at least one components of 
t

Y

�
 has a quadratic trend, we use 

Case 5. 
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Simulated data for the five cases for a bivariate cointegrated VAR(1) model (available, res-

pectively, in vecm1.txt,..., vecm5.txt files) are illustrated in Figures 7.9, ... 7.13. Case 1 is not 

really relevant for empirical work. The restricted contstant Case 2 is appropriate for non-

trending I(1) data like interest rates and exchange rates. The unrestriced constant Case 3 is 

appropriate for trending I(1) data like asset prices, macroeconomic aggregates (real GDP, con-

sumption, employment etc). The restricted trend case 4 is also appropriate for trending I(1) as 

in Case 3. However, notice the deterministic trend in the cointegrating residual in Case 4 as 

opposed to the stationary residuals in case 3. Finally, the unrestricted trend Case 5 is approp-

riate for I(1) data with a quadratic trend. An example might be nominal price data during ti-

mes of extreme inflation. 

 

The above-given figures and considerations are important in choosing the right variant to de-

fine critical values of the Johansen test. The basic steps in Johansen’s methodology are (we 

assume that all the series in 
t

Y

�
 are I(1)): 

 

1. Choose the right order p  for a VAR(p) model for levels 

2. Choose the right case out of the five ones (use graphs of 
t

Y

�
) 

3. Apply Johansen‘s test and find the number of cointegrating re-

lations  

4. Create VECM 

5. Use it to forecast 
t

Y

�
 

 

7.7 example.  Import vecm3.txt as Other time series starting at 1 and, following the above re-

commendations, create its VECM model.     

 

0. It is easy to show (through Variable| Unit 

root tests| Augmented Dickey-Fuller test) 

that both Y1 and Y2 have unit roots. 

1. Using Model| Time series| VAR lag selec-

tion..., we obtain that (Y1,Y2) is described 

as VAR(1). 

2. As both Y1 and Y2 are drifting, we should 

try both Cases 3 or Case 4 and choose the 

“better” one.  

3. To find the number of cointegrating rela-

tionships
10

 (in our two dimensional case, it 

can be zero or one), we shall apply Johan-

sen‘s test: go to Model| Time series| Coin-

tegration test| Johansen... and fill the box as 

shown on the right (thus, we begin with Ca-

se 3).  

 

 

The output of the test (see below) alows us to determine the rank r of Π . The estimated ei-

genvalues 
i
λ are sorted from largest to smallest and we apply a sequential procedure: both 

                                                 
10

 Or the rank of the matrix Π  (see (7.6)) or the number of non-zero eigenvalues of this matrix.  
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trace and Lmax tests rejects the null hypothesis 0 :H  0r = , but accepts the next null 

0 : 1H r =  (we derive the same conclusion, i.e., 1r = , if the option Unrestricted constant is 

replaced by Restricted trend).     

 
Case 3: Unrestricted constant 

 

Rank Eigenvalue Trace test  p-value  Lmax test  p-value 

   0    0.89453     223.86 [0.0000]     222.69 [0.0000] 

   1   0.011804     1.1755 [0.2783]     1.1755 [0.2783] 

 

 

 

4. Which one of the two competing models to choo-

se? Go to Model| Time series| VECM... and fill 

the box as shown on the right. The output reads 

AIC = 6.0256, which is slightly less than the cor-

responding AIC in the Unrestricted constant case. 

Thus, this Restricted trend case is our final VEC 

model and its output can be written more expli-

citely as given below (note that we misclassify 

the Case 3 process as Case 4). 

 

 

 

 
 

VECM system, lag order 1 

Cointegration rank = 1 

Case 4: Restricted trend, unrestricted constant 

 

beta (cointegrating vectors, standard errors in parentheses) 

 

Y1          1.0000  

          (0.00000)  

Y2         -1.8278  

         (0.078852)  

trend     0.026320  

         (0.015617)  

 

alpha (adjustment vectors) 

 

Y1        -0.76565  

Y2         0.53356  

 

AIC = 6.0256 

BIC = 6.1829 

HQC = 6.0893 

 

Equation 1: d_Y1 

 

             coefficient   std. error   t-ratio    p-value  

  --------------------------------------------------------- 

  const        2.02582     0.128566      15.76    2.27e-028 *** 

  EC1         -0.765654    0.0320605    -23.88    3.59e-042 *** 
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Equation 2: d_Y2 

 

             coefficient   std. error   t-ratio    p-value  

  --------------------------------------------------------- 

  const       -1.01562     0.132060     -7.691    1.28e-011 *** 

  EC1          0.533560    0.0329319    16.20     3.23e-029 *** 

 

 

Below is the same output given in a system of equations form:  

 

1 1

1 1

1 2.03 0.77 ( 1 1.83 2 0.03( 1))

2 1.02 ( 1 1.83 2 0.03( 10 5 )). 3

t t t

t t t

Y Y Y t

Y Y Y t

− −

− −

∆ = − ⋅ − + −

∆ = − + ⋅ − + −

 

 

(the true, i.e., simulated) model was  

 

1 1 1

1 1 2

1 1.9 0.8 ( 1 1.7 2 )

2 1 0.6 ( 1 1.7 2 )

t t t t

t t t t

Y Y Y

Y Y Y

ε

ε
− −

− −

∆ = − ⋅ − +

∆ = − + ⋅ − +

 

 

thus the estimate is close to it). 

 

The coefficient 1( ) 0.53α = is called an adjustment coefficient and indicates that 2Y will return 

to equilibrium in (1/0.53≈ ) 2 steps, ceteris paribus. 

 

 

5. Now we can use the model obtained to forecast 
t

Y

�
: in VECM window go to Analysis| 

Forecast and choose 10-years-ahead forecast for, first, YY  and then XX . 

 

 10
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Figure 7.14. VECM 10 years forecast for 1Y  and 2Y . 

 

The reader can verify that the assumption that the right model is Case3 practically does not 

change the forecast.       ��         

 6
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A few final remarks: 

 

1. If we have only two variables, both EG and Johansen tests are appropriate for testing 

cointegration. One can use the EG test in multidimensional case as well
11

, but if there 

exist more than one cointegrating relation, EG method will suffer from the omitted va-

riable bias. Thus, in multidimensional case use Johansen test. Note that the VEC mo-

del can also be created in the case where some components of the 
t

Y

�
 are (1)I  while 

others are (0)I . In this case, the situation is rather complicated, we send the interested 

reader to [H, p.652]. 

 

2. The most restricted model (Case 1) is unlikely to find general use because, at least, a 

constant will usually be included in the cointegration equation. The least restricted 

model (Case 5) allows for quadratic trends in the data which occurs quite rarely. The 

choice between Case 2 and Case 3 rests upon whether there is a need to allow for the 

possibility of linear trends in the data, a preliminary graphing of the data is often help-

ful in this respect. If Case 3 is preferred to Case 2, only then does Case 4 need to be 

considered since the data has to have a linear trend if we are to consider allowing a 

trend in the cointegration equation. As a rough guide, use case 2 if none of the series 

appear to have a trend. For trending series, use case 3 (default in gretl) if you believe 

all trends are stochastic; if you believe some of the series are trend stationary, use case 

4. However, the simplest way that also allows one to „automate“ selection is to choose 

the case according to the minimum of AIC of BIC of the model. 

 

3. Multivariate VAR is a complicated model and the previous material was just an intro-

duction to the relevant topics. Below we present some useful facts without proofs (see 

[L]). 

 

• To estimate the coefficients of  1 1 ...
t t p t p t

Y t Y Yα δ ε− −= + +Θ + +Θ +
�� � �� �

 use (conditional) 

maximum likelihood method assuming that innovations 
t
ε
�

 have a multivariate normal 

distribution. This is equivallent to the least squares method applied to each equation 

separately. 

• Maximum likelihood estimates are consistent even if the true innovations are non-

Gaussian. 

• Standard OLS t  and F  statistics applied to the coefficients of any single equation of 

the VAR are asymptotically valid.  

• The goal of unit root tests is to find a parsimonious representation of the data that gi-

ves a reasonable approximation of the true process, as opposed to determining whether 

or not the true process is literally (1)I . 

• If 
t

Y

�
 is cointegrated, a VAR estimated in levels is not misspecified but involves a loss 

of efficiency. 

• Let 
t

Y

�
 have a unit root, but no cointegration. A VAR in levels is not subject to the spu-

rious regression problem discussed above for single equation regressions. 

• Even if there is no cointegration among the variables in 
t

Y

�
, equation-by-equation OLS 

estimation of VAR in levels delivers consistent estimates of the VAR parameters. Un-

                                                 
11

 To test if 
1 1, 2 2, ,

...
t t M M t

Y Y Yα α α+ + +  is stationary for some 
1
, ...,

M
α α . 
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like a univariate regression, differencing is not required to obtain consistent estimates. 

Nevertheless, the small sample properties of the estimator may be improved by estima-

ting the VAR in differences. 

• Suppose that some of the M  variables are stationary while the other variables are each 

individually (1)I  and also cointegrated by, say, a single cointegration relation. In [H, 

p.651], one can find an explanation of how to construct a VEC model in this case. For 

example, if 4M = , (1)
t

Y  is stationary and (2) (2) (3) (4)( , , )
t t t t

Y Y Y Y=
�

 are cointegrated 

(1)I , then the VEC representation will be of the form 

 
(1)(1) (1)(1) (1)

11 1 11 12(2)
1(2) (1) (1) (2) (2)

2 2 21 22 1

...
t t t

t

t tt

YY
Y

Y Y

γ γ εµ π

µ π εγ γ

−
−

−

        
     = + + + +        ∆     ∆     

��
�

� �� � ��
, 

 

where the 4 3×  matrix  
1

2

π

π
 
 
 

�

�  is restricted to be of the form ba′
��

 where b

�
 is 4 1×  and 

a′
�

 is 1 3× .  

 

7.3 exercise. Create a VEC model for the data from the cay.txt file. 

7.4 exercise. Create a VEC model for the data from us-tbill.txt file. 

 

 

Revision questions 

 

7.1 Let the three-dimensional time series 1 2 3( , , )T

t t t t
Y Y Y Y=
�

 is stationary. How would you  

test the claim that 3Y  is a Granger-cause of 1Y ? 

7.2 Let all the components of the three-dimensional VAR(1) process 1 2 3( , , )T

t t t t
Y Y Y Y=
�

 

are I(1) bound by one cointegration relationship. Write a respective VEC model.  

7.3 What is the Johansen test used for? 
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8. Endogenous Right-Hand-Side Variables 

 

Consider a simple regression model 
t t t

Y X uα β= + + . We know that under the classical 

Gauss-Markov conditions, the OLS estimators of its coefficients are BLUE (Best Linear Un-

biased Estimator). However, if it happens that 
t

X  is correlated with 
t

u , then the OLS estima-

tors become biased, inconsistent and inefficient. This situation often arises when one or more 

of the explanatory variables is jointly determined with the dependent variable, typically 

through an equilibrium mechanism (this is called a simultaneous equations model.)  The lea-

ding method for estimating simultaneous equations models is the method of instrumental va-

riables (IV) and we start its exposition in a one equation case.  

 

8.1. One Equation 

 

Wooldridge, Schmidt Consider a simple model written as Y X uα β= + + , where we think 

that X  and u  are correlated: cov( , ) 0X u ≠  (thus, X  is an endogenous variable). In order to 

obtain consistent estimators of α  and β , suppose that we have an observable variable Z  that 

satisfies two assumptions: (1) Z  is uncorrelated with u , that is, cov( , ) 0Z u =  (we say that Z  

is exogenous variable), but (2) Z  is correlated with X , that is, cov( , ) 0Z X ≠  (we call Z  an 

instrumental variable for X , or sometimes simply an instrument for X .)  Recall that under 

the classical assumptions the usual 
�

�

cov( , )ˆ

var
LS

X Y

X

β =  is the solution of the following two mo-

ments equations : 
( )
( )

( ) 0 ~ 0

( ) 0 ~ cov( , ) 0

t t

t t t

Y X

XX

E

Y X

α β ε

α β ε

 − + = =


− + = =

∑
∑

.  

 

Now, as the second equation fails, we replace X  in it by the instrument Z  and obtain the 

(consistent
1
) instrumental variable estimator 

�

�

cov( , )ˆ

cov( , )
IV

Z Y

Z X

β =  (prove the formula). Quite of-

ten the lag 1t
X −  serves as a good instrument to ( )

t
X X= ; 1t

X −  will be a „good“ instrument if 

the correlation between 1t
X −  and 

t
X  is sufficiently high or, what is almost the same, the coef-

ficient 1δ  in the regression 0 1 1t t t
X X vδ δ −= + +  is significant.  

 

In what follows, we shall use Y  to denote endogenous variables and Z  exogenous. Thus our 

previous model can be rewritten as 1 2Y Y uα β= + + ; we also assume that we know Z . The 

model can be generalized to 1 1 2 2 1Y Y Z uα β β= + + + ; in order to use the IV method, we need 

another exogenous variable, call it 2Z , that does not appear in our equation. The last model 

can still be generalized to 1 1 2 2 1 1...
k k

Y Y Z Z uα β β β −= + + + + + , where we again assume that 

we have an instrument to 2Y , say 
k

Z . Now, to get the the IV estimators of β s, one has to sol- 

                                                 
1
 The IV estimator is biased in finite samples even if asymptotically consistent (the bias can be especially pro-

nounced when instruments are weak, i.e., when 
2

,X Z
r  is small).  
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ve the system 

( )
( )

( )

1 2 2 1 1,

1 2 2 1 1, 1

1 2 2 1 1,

( ... ) 0

( ... ) 0

....

( ... ) 0

t t t k k t

t t t k k t t

t t t k k t kt

Y Y Z Z

Y Y Z Z Z

Y Y Z Z Z

α β β β

α β β β

α β β β

−

−

−

 − + + + + =

 − + + + + =




− + + + + =

∑
∑

∑

 

 

What if we have two instruments for 2Y , 
k

Z  and 1k
Z + ? We can get two IV estimators of β ‘s 

, and neither of these would, in general, be efficient. To find the best IV, we choose the linear 

combination of all exogenous variables that is best correlated with 2Y .  This turns out to be 

given by 2 0 1 1 1 1
ˆ ˆ ˆ ˆ...

k k
Y Z Zπ π π + += + + + , where the π̂ s are the OLS estimates in respective mo-

del. We can use 2Ŷ  as an instrument to 2Y  or, alternatively, apply the following two stage 

least squares (2SLS) procedure:  1. Obtain the above mentioned estimator 2Ŷ  and 2. Replace 

2Y with 2Ŷ  in 1 1 2 2 1 1...
k k

Y Y Z Z uα β β β −= + + + + +  and once again apply OLS (gretl uses the 

second option).  Note that 2SLS can also be used in models with more than one endogenous 

explanatory variable. For example, consider the model 

1 1 2 2 3 3 1 4 2Y Y Y Z Zα β β β β= + + + + + 5 3Z uβ +  . To estimate β ‘s we need at least two more 

exogenous variables 4Z  and 5Z  that do not appear in this equation but that are correlated with 

2Y  and 3Y . On the first stage, we apply OLS and estimate 
(2) (2) (2)

2 1 550 1
ˆ ˆ ˆ ˆ...Y Z Zπ π π= + + +  and 

(3) (3) (3)
3 1 550 1
ˆ ˆ ˆ ˆ...Y Z Zπ π π= + + +  , and, on the second stage, replace 2Y  and 3Y  with, respective-

ly, 2Ŷ  and 3Ŷ  and estimate α  and β ‘s with OLS.  

8.1 example. In the 1960s, macroeconomists grew very interested in the relationship be-

tween unemployment and inflation. In 1958, A. W. Phillips had pointed out that British mac-

roeconomic data showed a negative correlation between the two variables; unemployment 

tended to be low when inflation was high and vice versa. Econometricians quickly confirmed 

that U.S. data showed the same pattern, which was given the name Phillips curve, see Fig. 8.1.  

 

 

 
 

Figure 8.1. A theoretical Phillips curve (left), the regression line based on phillips.txt data 

(center) and model with a shift (right) 
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There was not a very solid theoretical basis for the correlation, but economists became very 

interested in deriving one. They produced a variety of models that suggested that economic 

policies that stimulated the economy, and thus reduced unemployment, would be inflationary, 

and those policies that cooled the economy off and increased unemployment would reduce in-

flation also. 

 

In the early 1970s, however, inflation and unemployment rose simultaneously to levels not 

seen since the 1930s. As a result, data on unemployment and inflation rates fail to show the 

predicted pattern. From 1948 to 2000, there appears, in fact, to be a positive relationship be-

tween unemployment and inflation, as shown in Fig. 8.1, center. The graph presented a serious 

challenge to the theory of the Phillips curve, which suggested the two variables should not rise 

simultaneously.  

 

Our further analysis is based on data from phillips.txt: 

 
metai years 1948 through 2003 

unem civilian unemployment rate, % 

inf percentage change in CPI 

inf_1 inf(-1) 

unem_1 unem(-1) 

 
            metai         unem          inf        inf_1       unem_1 

 

1948         1948          3.8          8.1                           

1949         1949          5.9         -1.2          8.1          3.8 

1950         1950          5.3          1.3         -1.2          5.9 

1951         1951          3.3          7.9          1.3          5.3 

...................................................................... 

 

Economists were reluctant to abandon the Phillips curve. They realized that a shift of the 

curve, as shown in Fig. 8.1, right, could explain the macroeconomic events of the 1970s. Dur-

ing the 1960s, the low Phillips curve would permit the economy to enjoy relatively low levels of 

unemployment and inflation, or to have very low levels of one in return for a modest rise in the 

other. When the curve shifted out, sometime around 1970, this become impossible; the economy 

would then have fairly high levels of both inflation and unemployment, and could have a low 

level of one only by tolerating very high levels of the other. If the Phillips curve moves over 

time, however, it will be difficult to estimate it econometrically. We locate an economic rela-

tionship in data by observing many points derived from that relationship, expecting that the 

error terms will tend to average out if we observe enough points. But this works only if the un-

derlying relationship does not move. If the relationship changes over time, then each point is 

created by a different version of the regression equation and we never get more than one ob-

servation on each version. Only if we are willing to make some assumptions about how the 

relationship changes over time can we use those assumptions to estimate both the slope and 

intercept of the line, and the amount by which it has shifted. 

 

To take into account possible shift, we introduce a dummy variable D for the years 1973 

through 1983:  
 

genr D = (metai>=1973)&&(metai<=1983) 

ols inf const unem D 

genr infh = $yhat 

 



©   R. Lapinskas, PE.II - 2013 

      8. Endogenous Right-Hand-Side Variables 

 
8-4 

 

 
 

The graph in Fig. 8.2, left, presents unem on the x axis and inf with infh on the y axis.   

The OLS estimate of the slope 1β̂  in 1 2t t t t
inf unem D uα β β= + + +  is now negative (-0,37), 

though not significant (p-value=0.10).  

 

Figure 8.2. Scatter diagramm of  inf and infh vs unem (left); time series plot (inf and 

infh)(center); time series plot (inf and its forecast from the equation for 
t

inf∆ , see below) 

(right; note that the approximation, compared with the central graph, is much better) 

1
pred

t t t t
inf - inf unem uα β= + + , where 

pred

t
inf  is the prediction of 

t
inf  made at moment 1t −  

(the model is called the expectations-augmented Phillips curve.) We take the simplest, the so-

called naive prediction, given by the formula pred

t t-1
inf = inf  and rewrite our equation as  

t t t
inf unem uα β∆ = + + . The OLS estimate is as follows: 

 
Model 2: OLS, using observations 1949-2003 (T = 55) 

Dependent variable: d_inf 

 

             coefficient   std. error   t-ratio   p-value 

  ------------------------------------------------------- 

  const        2,82820      1,22487      2,309    0,0249  ** 

  unem        -0,517649     0,209045    -2,476    0,0165  ** 

 

Thus, a one-point increase in unem lowers unanticipated inflation by over one-half of a point 

which is closer to „classical“ theory. (To plot the graph in Fig. 9.2, right, go to the Model 2 

window and choose Analysis * Forecasts... * Produce forecast for inf). 

 

Our final point is to doubt the assumption that unem and u are uncorrelated (this is where we 

shall use the IV technique). If we assume that they are correlated, OLS is not a reliable me-

thod and we need an instrument for unemt.  To test whether unemt-1 could be used as an 

instrument, we regress unemt on unemt-1: 
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The techniques discussed in the preceding sections are very good for demonstrating that cur-

ves have moved, and if they have, by how much. However, they are extremely unsatisfactory 

for one reason: they do not explain why the curve shifted. Wooldridge, 387 kp; Schmidt, 212 

kp.  

One of the theories suggests the following economic relationship: 
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Dependent variable: unem 

 

             coefficient   std. error   t-ratio    p-value  

  --------------------------------------------------------- 

  const       1,48968      0,520203      2,864    0,0060    *** 

  unem_1      0,742382     0,0892927     8,314    3,54e-011 *** 

 

Since the regression coefficient is signicant, we can use 

unemt-1 as an instrument. We shall apply 2SLS: go to 

Model * Instrumental variables * Two-stage Least Squares 

and fill in the boxes as shown on the right
2
. The 

expectations-augmented Phillips curve estimated by IV is 

 
TSLS, using observations 1949-2003 (T = 55) 

Dependent variable: d_inf 

Instrumented: unem  

Instruments: const unem_1  

 

          coef   st.err       z p-value 

----------------------------------------------- 

const     0,63     1,66    0,38    0,70  

unem     -0,13     0,29   -0,46    0,65  

 

 

 

Hausman test - 

Null hypothesis: OLS estimates are consistent 

Asymptotic test statistic:  

Chi-square(1) = 5,0715 

with p-value = 0,0243223 

 

The 2SLS estimator is less efficient than OLS when the explanatory variables are exogenous. 

Therefore, it is useful to have a test for endogeneity of an explanatory variable that shows 

whether 2SLS is necessary. It is common to use Hausman test to test for exogeneity
3
: in our 

case its p-value is less than 0.05, therefore unem is endogenous and it is correct to use IV. 

Note that the IV estimate of β  (= - 0.13)
 
is much lower in magnitude than the OLS estimate 

(= - 0.52), and β̂  is not statistically different from zero. This means that the Phillips law in 

the present form is not applicable to our data.            �� 

 

The first case where endogeneous variable on the right-hand-side emerges is a measurement 

error in explanatory variable. Assume that the right model is Y X uα β= + +  but instead of 

X  we observe *
X X v= +  where 0Ev =  and v  does not depend on u . Thus our regression 

model is of the form * * *( )Y X u v Xα β β α β ε= + + − = + + , where *
X  is endogeneous be-

cause * * 2( , ) (( ) ( ) 0cor X E X v u v Evε β β= + ⋅ − = − ≠ . Recall, we want to estimate β  in Y =  

X uα β+ + , but since we do not have X , we replace it by endogenous *
X . Consequently, 

we have to look for an instrument for *
X .  

 

                                                 
2
 For a model to be identified, the Instruments list must be at least as long as that of Independent variables.  

3
 In the Hausman test, the null hypothesis is that OLS estimators are consistent, or in other words, there is no 

need to use IV. 
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8.1  exercise. Solution: Wooldridge teacher‘s book 140kp Use the data  in intdef.txt for 

this exercise. A simple equation relating the three-month T-Bill rate to the inflation rate 

(constructed from the consumer price index) is 3
t t t

i inf uα β= + + .  

 

(i) Estimate this equation by OLS, omitting the first time period for later comparisons. Report 

the results in the usual form. 

 

(ii) Some economists feel that the consumer price index mismeasures the true rate of inflation, 

so that the OLS from part (i) suffers from measurement error bias. Reestimate the equation 

from part (i), using 
t-1

inf  as an IV for 
t

inf . How does the IV estimate of β  compare with the 

OLS estimate? 

 

(iii) Now first difference the equation to obtain 3
t t t

i inf uβ∆ = ∆ + ∆ . Estimate this by OLS 

and compare the estimate of  β  with the previous estimates. 

 

(iv) Can you use 
t-1

inf∆  as an IV for 
t

inf∆  in the differenced equation in part (iii)? Explain. 

(Hint: Are 
t

inf∆  and 
t-1

inf∆  sufficiently correlated?)                  �� 

 

 

8.2. System of Equations 

 

Another important source of endogeneity is simultaneity. The reason that there are two 

equations in a supply and demand model is that there are two variables – Q  for equilibrium 

quantity and P  for equilibrium price – whose values the model explains:  

 

0 1 2

0 1 2

(demand equation)

(supply equation)

(equilibrium condition)

D D

t t t t

S S

t t t t

D S

t t t

Q P I

Q P W

Q Q Q

β β β ε

γ γ γ ε

 = + + +


= + + +


= =

;                                               (8.1)                     

 

the model can also contain some extra variables (in (8.1), it is I  (the income of buyers) and 

W  (the wage rate of seller‘s employees).) Note that (8.1) can be rewritten as  

 

0 1 2

0 1 2

(demand equation)

(supply equation)

D

t t t t

S

t t t t

Q P I

Q P W

β β β ε

γ γ γ ε

 = + + +


= + + +
 .                                                       (8.1*)  

 

A variable (such as Q  and P ) is endogenous to an economic model if its value is defined 

within the model. A variable (such as I  and W ) is exogenous to the model if its value is ta-

ken as given (i.e., is treated a fixed parameter) by the model (the market forces bring Q  and 

P  to equilibrium together, but market forces do not influence neither I  nor W ). These defi-

nitions are equivalent to the following ones: the right-hand-side variable of an equation is cal-

led endogeneous if it is correlated (and exogenous if it is uncorrelated) with the error term ε . 

Recall that the OLS estimates of the coefficients of an equation are BLUE only if certain 
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(Gauss-Markov) conditions are met, in particular, if all the right-hand-side variables are 

exogenous. But what happens if one of the right-hand-side variables is endogenous?  

 

• If all the Gauss-Markov assumptions are true except the one of exogeneity then the 

OLS estimators of the coefficients become biased, inconsistent and inefficient.   

 

Thus, we cannot apply the OLS to neither demand nor supply equation
4
. To cure the structural 

(or economic) system (8.1), solve the model for its endogenous variables – the new reduced 

(or econometric)   system of the model will take the form of 

 

0 1 2

0 1 2

Q

P

Q W I

P W I

δ δ δ ε

π π π ε

= + + +


= + + +
.                                                                                               (8.2) 

 

Since W  and I  are exogenous, respective estimates are BLUE. They provide a simple desc-

ription of the equilibrium of the model and of how it changes when the exogenous variables 

change. However, δ ‘s and π ‘s are not the slopes of the supply and demand lines. One possi-

bility is to work backward from these values to slopes
5
 but sometimes it is rather complicated 

or even impossible (in any case, it will not provide estimates of the standard errors of the β  

and γ  parameters which are necessary to test hypothesis about them.) Therefore, to estimate 

the coefficients of the original equation, we apply a two-stage least squares procedure. Let K  

be the number of all the exogenous variables in the model (including a constant) and 
j

H  the 

number of (unknown) coefficients in the j th structural equation. The necessary condition for 

the equation to be identified
6
 (or estimable) is 

j
K H≥ 7

. We shall explain the procedure by 

means of example. 

8.2 example.  In system (8.1*), the list of exogenous variables consists of a constant, I , and 

W , therefore, 3K = .  In the demand equation, we have three β ‘s, in the supply equation 

three γ ‘s, thus according to the order condition, we can proceed with both equations.  

 

Stage 1. Using OLS, regress the endogenous variables on all of the exogenous variables (you 

have to estimate both equations in (8.2)). 

 

Stage 2. Now estimate the structural equations (8.1) by OLS, replacing the endogenous va-

riables with their predicted values, ˆ
t

Q  and ˆ
t

P , from Stage 1: 

 
(1)

0 1 2

(2)
0 1 2

ˆ ˆ

ˆ ˆ

t t t t

t t t t

Q P I

Q P W

β β β ε

γ γ γ ε

 = + + +


= + + +
 

                                                 
4
 The purpose of our analysis is to solve both equations in (8.1*), i.e., to estimate all β ′ s and  γ ′ . Since the rhs‘s 

contain endogenous variables, the least squares method would give us „bad“ estimates. 
5
 This called the indirect least squares method. 

6
 This is called an order condition or counting rule. An equation is identified if we can find (consistent) estimates 

of all of its coefficients.  
7
 This condition is only necessary (that is, if 

j
K H< , the equation is definitely not estimable). The necessary 

and sufficient condition is rather complicated but, in practice, one can safely use the order condition to establish 

identifiability. 
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It can be proved that the estimated β̂ ‘s and γ̂ ‘s  from the second-stage regression are consis-

tent estimators of the true β  and γ  parameters. They are biased, but the bias diminishes as 

the sample grows larger.            �� 

 

The best way to memorize the above given identification rules is to learn the syntax of respec-

tive gretl command: the first equation of (8.1*) is solved with the help of the following com-

mand: 

 
tsls Q 0 P I ; 0 W I  

 

(here Q 0 P I denotes the equation while 0 W I presents the list of exogenous variab-

les.) The first right hand variable in the equation (a constant) is denoted by 0 and is explained 

by 0 behind the semicolon; another right hand variable, P, is endogenous but we have 

exogenous W which can be used as an instrument; finally, the right hand exogenous variable I 

is explained by I itself. Thus, we have enough intruments to solve the equation. 

 

Note that in a similar system  

 

0 1

0 1 2

D

t t t

S

t t t t

Q P

Q P W

β β ε

γ γ γ ε

 = + +


= + + +
 

 

2K = , 1 2H = , and 2 3H = , thus, the second equation is not identified (i.e., we cannot con-

sistently estimate γ ‘s from our data by any estimation method). Note that respective gretl 

command tsls Q 0 P W; 0 W will not work (the equation is not estimable) because we 

have three variables on the right-hand-side, but only two instruments.  

 

Finally, in the system 

 

0 1

0 1

D

t t t

S

t t t

Q P

Q P

β β ε

γ γ ε

 = + +


= + +
 

 

both equations are unidentified (i.e., if our data consists of the equilibrium data 

1 1( , ),..., ( , )
T T

Q P Q P  only, there is no way to estimate β ‘s and γ ‘s, see Fig. 8.3). Indeed, we 

can solve the system as  

,

,

t Q Q t

t P P t

Q

P

δ ε

δ ε

= +


= +
 

 

but we cannot restore four parameters 0 1 0, , ,β β γ  and 1γ  from two parameters 
Q
δ  and 

P
δ .  

 

 



©   R. Lapinskas, PE.II - 2013 

      8. Endogenous Right-Hand-Side Variables 

 
8-9 

 

 
 

 

Figure 8.3.     Both the demand and supply lines (i.e., the coefficients β ‘s and γ ‘s) are always the 

same; for every t ,  the shocks 
D

t
ε  and 

S

t
ε move the demand and supply lines up or down; the bold 

regression line is neither demand nor supply line; both equations are unidentified 

 

8.3 example.  Consider the following IS-LM model: 

 

11 12 13 14 1 1

21 22 23 2

t t t t t

t t t t

R M Y M u

Y R I u

β β β β

β β β
−= + + + +


= + + +

 

 

where R  denotes the interest rates, M  denotes the money stock, Y  is GDP, and I  is invest-

ment expenditure. In this model, R  and Y  are endogenous variables and M , ( 1)M − , and I  

are exogenous variables (the first (LM) equation is exactly identified and the second one (IS) 

is overidentified
8
). The data for this example are in the file simult.xls and are annual time se-

ries data from 1969 to 1997 for the UK economy. Asteriou, bp.238 After importing the data, 

copy the following script to the GRETL script window 
 

tsls R 0 M Y M(-1) ; 0 M M(-1) I 

tsls Y 0 R I ; 0 M M(-1) I 

 

and then run it. 

 
? tsls R 0 M Y M(-1) ; 0 M M(-1) I 

 

 

Model 1: TSLS, using observations 1970-1997 (T = 28) 

Dependent variable: R 

Instrumented: Y  

Instruments: const M M_1 I  

 

             coefficient   std. error       z      p-value 

  -------------------------------------------------------- 

  const      27,5275       11,1348        2,472    0,0134  ** 

  M           0,00187096    0,00185405    1,009    0,3129  

  Y          -0,264700      0,224145     -1,181    0,2376  

  M_1        -0,00172884    0,00175432   -0,9855   0,3244  

 

                                                 
8
 Overidentified means that there are more exogenous variables than coefficients to estimate. 
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Hausman test - 

  Null hypothesis: OLS estimates are consistent 

  Asymptotic test statistic: Chi-square(1) = 5,12934 

  with p-value = 0,0235247 

 

The coefficients of Y  as well as M are insignificant, suggesting that the LM function is very 

flat.  
 

? tsls Y 0 R I ; 0 M M(-1) I 

 

Model 2: TSLS, using observations 1970-1997 (T = 28) 

Dependent variable: Y 

Instrumented: R  

Instruments: const M M_1 I  

 

             coefficient     std. error       z      p-value 

  ---------------------------------------------------------- 

  const      98,7996        68,7067         1,438    0,1504  

  R          -4,04296        3,13059       -1,291    0,1966  

  I           0,000217952    0,000408970    0,5329   0,5941  

 

Mean dependent var   79,16429   S.D. dependent var   14,07352 

Sum squared resid    3191,649   S.E. of regression   11,29894 

R-squared            0,596911   Adjusted R-squared   0,564664 

F(2, 25)             19,97017   P-value(F)           6,57e-06 

rho                  0,354478   Durbin-Watson        1,283596 

 

Hausman test - 

  Null hypothesis: OLS estimates are consistent 

  Asymptotic test statistic: Chi-square(1) = 23,9747 

  with p-value = 9,76089e-007 

 

Interpreting this model, we can say that income and the rate of interest are negatively related, 

according to the theoretical prediction, and income is quite sensitive to changes in the rate of 

interest. Also, a change in investment is would cause the function to shift to the right, again as 

theory suggests.  

 

8.2  exercise. Repeat the analysis with the US data from US_all data for is-lm.xls.     

8.3  exercise. Import the data file gasdemand.xls, which contains monthly observations 

from 1978:1 to 2002:08 on the following variables: pricegas (cents per gallon), 

quantgas (thousands of barrels per day), persincome (personal income, billions of 

dollars), and carsales (millions of cars per year). Consider the following supply and 

demand model for unleaded gasoline, where the first equation represents demand and the 

second represents supply:    

 

0 1 2 3

0 1

(demand)

(supply)

D

S

pricegas quantgas persincome carsales

pricegas quantgas

β β β β ε

γ γ ε

= + + + +


= + +
 

 

a. What variables in this system are endogenous and which are exogenous? 
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b. Is the demand (supply) equation overindentified, underidentified, or exactly 

identified? 

c. Estimate the supply supply equation using (OLS and then) 2SLS. What value 

do you get for 1̂γ ? Does it take the sign you expect and, if so, is it statistically 

significantly different from zero? 

d. Can you estimate the demand curve by 2SLS? If not, what variables might you 

add to the supply curve, and exclude from the demand curve, in order to provi-

de instruments to estimate the demand curve? 

e. Estimate the demand curve by OLS. What is your estimated value for 1β ? This 

estimate is biased – is it biased upward or downward? What can you conclude 

about the slope of the demand curve from this information?  
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9. Simultaneous Equations 

 

Most economic models involve more than one equation. We know how to estimate each 

equation in, say, supply and demand models, but given the links between the equations, we 

might reasonably ask whether it is possible to estimate the equations jointly (it turns out that it 

is possible.) Sometimes this improves the efficiency of the estimators, sometimes it has no 

effect on their efficiency, and sometimes it makes things worse.  

 

There are two useful types of relationships between equations. First, there may be a relation-

ship between the error terms of the model. Second, there may be relationships between the 

parameters of the model themselves, either because two parameters take the same value or 

because some more general mathematical relationship exists between two or more parameters. 

      

9.1. Seemingly Unrelated Regression (SUR) 

 

In the example below, we consider five firms: GM, Chrysler, GE, Westinghouse, and U.S. 

Steel. The data in greene13_1.gdt consist of time series of 20 yearly observations for these 

firms and three variables: 

 

it
I  gross investment, 

it
F  market value of the firm at the end of the previous year, 

it
C                 value of the stock of plant and equipment at the end of the previous year. 

 

where 1,...,5, 1935,...,1954i t= = . At any moment t  we can write five equations: 

 

1 10 11 1 12 1 1

5 50 51 5 52 5 5

..................................................

t t t t

t t t t

I F C

I F C

β β β ε

β β β ε

= + + +


 = + + +

.                                                                                (9.1) 

 

Each equation can be estimated individually taking 1935,...,1954t = (each firm performs its 

own investment policy, therefore we can treat these equations as unrelated.) On the other 

hand, all the economic activities take place in the same economic envinroment, therefore the 

five shocks 1 5,...,
t t

ε ε  can be correlated. The procedure which takes into account this correla-

tion is called SUR. Generally, it differs from OLS except for the two cases: 

 

1. The equations (9.1) are really uncorrelated, i.e., cov( , ) 0
it js
ε ε = ,  t s≠  (and also 

cov( , ) ( )
it jt ij
ε ε σ=  does not depend on  t .) 

2. All the equations in (9.1) have the same explanatory variables on the right-hand-side, 

i.e., 1 5...
t t t

F F F= = =  etc (this is not true in our case.) 

 

Now, copy and paste the following script to GRETL script window: 

 
open greene13_1.gdt 

greene <- system       # greene will be the system name 
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 equation I_GM const F_GM C_GM 

 equation I_CH const F_CH C_CH 

 equation I_GE const F_GE C_GE 

 equation I_WE const F_WE C_WE 

 equation I_US const F_US C_US 

end system   # we shall apply two methods of estimation:                        

estimate greene method=sur # for the whole system with sur 

estimate greene method=ols # for each equation individually with ols 

 

For simplicity, we shall present SUR and OLS models for only 1I  (that is, for GM invest-

ment): 

 
Equation system, greene 

Estimator: Seemingly Unrelated Regressions 

 

Equation 1: SUR, using observations 1935-1954 (T = 20) 

Dependent variable: I_GM 

 

             coefficient   std. error   t-ratio   p-value  

  -------------------------------------------------------- 

  const      -162,364      89,4592      -1,815    0,0872   * 

  F_GM          0,120493    0,0216291    5,571    3,38e-05 *** 

  C_GM          0,382746    0,0327680   11,68     1,52e-09 *** 

 

Mean dependent var   608,0200   S.D. dependent var   309,5746 

Sum squared resid    144320,9   S.E. of regression   84,94730 

R-squared            0,921330   Adjusted R-squared   0,912075 

 

***** 

***** 
 

Equation system, greene 

Estimator: Ordinary Least Squares 

 

Equation 1: OLS, using observations 1935-1954 (T = 20) 

Dependent variable: I_GM 

 

             coefficient   std. error    t-ratio   p-value  

  --------------------------------------------------------- 

  const      -149,782      105,842       -1,415    0,1751   

  F_GM          0,119281     0,0258342    4,617    0,0002   *** 

  C_GM          0,371445     0,0370728   10,02     1,51e-08 *** 

 

Mean dependent var   608,0200   S.D. dependent var   309,5746 

Sum squared resid    143205,9   S.E. of regression   91,78167 

R-squared            0,921354   Adjusted R-squared   0,912102 

 

***** 

***** 
 

The difference between two estimating methods is hardly noticable, probably, because of 

small correlation between the errors. Generally, using SUR to jointly estimate the equations of 

the system, allowing for correlation between the errors of the equations, will improve the effi-

ciency of estimation, but usually not much.                                �� 

 
 

There is one potential problem with with simultaneous equations, which is that it requires the 

Gauss-Markov assumptions to be true for all equations. Suppose that the Gauss-Markov as-
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sumptions are true for one equation but not for another. For example, one equation might have 

an omitted right-hand-side variable or an endogeneous one. The estimating by SUR will gene-

rally no longer be unbiased or consistent for any of the equations. In such a case, OLS would 

remain unbiased and consistent for those equations for which the Gauss-Markov assumptions 

held. Estimating equation by equation has the advantage that, if there is a problem with one 

equation, the problem is limited to that equation and cannot spill over to the estimates of the 

parameters of the other equations.     
 

9.1  exercise.  In this problem we shall look at a multiple equation model of international trade 

flows, and show SUR provides more efficient estimates than least squares does. Open the data 

file intltrade.xls, which contains monthly data from January 1990 to December 2000 on the 

following variables: 

 

TRADEDEFCANADA US trade deficit with Canada 

TRADEDEFJAPAN US trade deficit with Japan 

EXRATECANADA Canadian dollars per US dollars 

EXRATEJAPAN yen per US dollar 

RATECANADA Canadian government bond interest rate 

RATEJAPAN Japanese government bond interest rate 

RATEUS  US Treasury bill interest rate  

a. Estimate the OLS regression 0log( )TRADEDEFCANADA β= + 1β ⋅  

EXRATECANADA+ 2RATECANADAβ +  3 Ct
RATEUSβ ε+ . Observe that we have cho-

sen the semilogarithmic functional form. If the Canadian dollar depreciates from 1.1 per 

US dollar to 1.2 per US dollar, by what percent does the US trade deficit with Canada ri-

se, fall, or not change? Does it move in the direction you would expect to move? 

b. Estimate the OLS regression log( )TRADEDEFJAPAN = 0γ + 1EXRATEJAPANγ +   

2RATEJAPANγ + 3RATEUSγ +
Jt
ε , also in the semilogarithmic functional form. Is it 

reasonable to exclude EXRATECANADA  and RATECANADA  from this equation? If Ja-

panese interest rates rise from 3 to 4 percent, does the trade balance rise, fall, or not chan-

ge? Is this the answer you expect? 

c. Would you expect 
Ct
ε  and 

Jt
ε  to be positively or negatively correlated? 

d. Estimate both equations simultaneously using SUR? Have the parameter estimates chan-

ged a lot, or only slightly? Look at the standard errors of the parameter estimates. Are 

they larger or smaller than the standard errors of the single-equation estimates? Which 

technique is more eficient?                          �� 

 

     

Up to now, we have not made use of the economic connection between the equations in the 

system. We have allowed for the error terms to correlated, and we have some economic ideas 

about why the errors would be correlated, but the errors might well be correlated by coinci-

dence even if there was no economic link between the equations at all. We may do better if we 

can use economic theory to suggest direct links between the parameters of the equations of the 

system. For example, the condition 2 2 ( )β γ δ= =  in 9.1 exercise is called a cross-equation 

restriction. If we use OLS to estimate individually both equations from the above system, we 

have to minimize 1 0 1 3 2 0 1 3( , , , ) ( , , , )RSS RSS RSSβ β δ β γ γ δ γ= + . In the case where we use 
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SUR to estimate the parameters, we have to generalize RSS  and to include the effects of the 

correlation of the error terms.        
 

9.1 example.   In this example we shall see the effect of imposing a cross-equation restriction 

on the efficiency of SUR estimates. Open the data file intltrade, which was described in 10.1 

exercise. 

 

a. Consider the equations  

 

0 1 2 3

0 1 2 3

log( )

log( )

C

J

TRADEDEFCANADA EXRATECANADA RATECANADA RATEUS

TRADEDEFJAPAN EXRATEJAPAN RATEJAPAN RATEUS

β β β β ε

γ γ γ γ ε

= + + + +


= + + + +
 

If a 1 percentage point increase in the interest rate of a foreign country has the same effect on 

trade for all countries, then what should be true about the model's parameters?  

 

b. Estimate each equation separately with OLS. What estimated values do you get for 2β  and 

2γ ? How far apart are the two values? What are their standard errors? Does it look plausible 

that they might have the same true value? Hint. Import the file, add logs of the left-hand-side 

variables, go to Model * Simultaneous equations…, fill in the box with expressions similar to 

equation I_GM const F_GM C_GM ,  and choose Estimator OLS.    

 

c. Estimate the two equations by SUR, and test the null hypothesis 2 2β γ= . Do you 

reject or fail to reject this hypothesis? Hint. Repeat the above procedure but replace OLS with 

SUR; go to Tests * Linear restrictions and type in b[1,3]-b[2,3]=0. The bottom lines  

 
F test for the specified restrictions: 

F(1,256) = 1.15328 [0.2839] 

 

mean that there is no ground to reject the null.  

 

d. What value do you get for their common value? If the interest rate of a foreign country rises 

by 1 percent, how much does the U.S. trade deficit with that country fall? 

 

9.2 example.  To estimate a VAR(1) model in two variables one can use either the command 

var 1 Y X 

 

or  

 
system method=sur 

equation X const  X(-1) Y(-1) 

equation Y const X(-1) Y(-1) 

end system 
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9.2.  Multiple Equations with Endogeneous Right-hand-side Variables 

SUR is a useful technique for models that can be estimated by least squares. However, it can-

not be used if the Gauss-Markov assumptions are not satisfied. In particular, if the equations 

contain endogenous right-hand-side variables, SUR will be biased and inconsistent. Any time 

we have two equations solving for the values of two variables, such as the supply and demand 

model, there will be endogenous right-hand-side variables and SUR will not be appropriate. 

Fortunately, we can simultaneously estimate equations by two-stage least squares in exactly 

the same way that we simultaneously estimate them by ordinary least squares. Doing so re-

quires a three-step process: 

1. Regress each endogenous variable on all exogenous variables in the system of equations, 

and calculate predicted values for the endogenous variables. 

2. Estimate the structural equations by least squares, replacing the endogenous right-hand-side 

variables with their predicted values from step 1. 

3. Calculate the estimated variances and covariances of the residuals from step 2, and reesti-

mate the structural equations using the SUR method. 

 

This technique, known as three-stage least squares, is the instrumental variables equivalent to 

SUR. It has the same general relationship to two-stage least squares that SUR has to OLS. Its 

advantage is that it will be more efficient than two-stage least squares for large samples, as 

long as the right-hand-side variables of the equations are not the same in all equations. It is not 

unbiased—but two-stage least squares is not unbiased either, so that is not a disadvantage of 

three-stage least squares. Its main disadvantage is that, as with SUR, simultaneous estimation 

permits a violation of the Gauss-Markov assumptions in one of the equations to spread to the 

other equations. 

**************************************************** 

 

We have already discussed the problem of the endogenous right-hand-side variables and we 

presented three methods to deal with it. The first one was a rather cumbersome indirect least 

squares method, the other were two- and three-stages least square methods. Now we shall 

briefly describe two more methods presented in GRETL. The single equation or limited-

information methods (specifically, the limited information maximum likelihood method) was 

introduced in 1949 and was popular until the advent of 2SLS. Computationally it is rather 

complicated but if the equation under consideration is exactly identified, then LIML and 2SLS 

give identical estimates.  

 

To estimate the coefficients of an equation, LIML uses the information of that equation only. 

In contrast, in system or full-information methods we use information on the restrictions on all 

equations.  

 

9.3 example.  In 1950, L. Klein proposed the dynamic model of macroeconomics which was 

later called Klein Model 1. It is described by the following system: 
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0 1 2 1 3 1

0 1 2 1 3 1 2

0 1 2 1 3 3

1

( ) (consumption)

(investment)

(demand for labor)

(equilibrium demand)

(private sector revenue)

p g

t t t t t t

t t t t t

p

t t t t t

t t t t

p

t t t t

t t

C P P W W

I P P K

W X X A

X C I G

P X T W

K K

α α α α ε

β β β β ε

γ γ γ γ ε

−

− −

−

−

= + + + + +

= + + + +

= + + + +

= + +

= − −

= (capital) ,
t

I










 +

 

 

where  

 

C consumption expenditure 

I investment expenditure 

G government expenditure 

P profits 

W
p
 private wage bill 

W
g
 government wage bill 

K capital stock 

T taxes 

X income after tax 

A time trend 

 

In the preceding model, the left-hand-side variables C, I, W, Y, P, and K are treated as jointly 

dependent, or endogenous, variables, , , , andg
G T W A  as exogenous, and the variables 

1 1,
t t

P K− − , and 1t
X −  are treated as predetermined. In all, there are six equations (including the 

three identities) to study the interdependence of six endogenous variables. 

 

Note that because of the interdependence among the endogenous variables, in general they are 

not independent of the stochastic disturbance terms, which therefore makes it inappropriate to 

apply the method of OLS to an individual equation in the system (the estimators thus obtained 

are inconsistent, they do not converge to their true population values even when the sample 

size is very large.)  

When estimating, we shall apply all the methods we know. 

 
open klein.gdt 

 

genr W = Wp + Wg 

genr A = t + (1918 - 1931) 

genr K1 = K(-1) 

 

# set the model up as a system 

"Klein Model 1" <- system 

 equation C 0 P P(-1) W  

 equation I 0 P P(-1) K1 

 equation Wp 0 X X(-1) A 

 identity P = X - T - Wp 

 identity W = Wp + Wg 

 identity X = C + I + G 

 identity K = K1 + I 

 endog C I Wp P W X K 

end system 
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# and estimate it in various ways 

estimate "Klein Model 1" method=ols 

estimate "Klein Model 1" method=tsls 

estimate "Klein Model 1" method=3sls 

estimate "Klein Model 1" method=fiml --verbose 

estimate "Klein Model 1" method=liml     

 

9.2  exercise. Consider the following IS-LM model: 

 

11 12 13 14 1 1

21 22 23 2

(LM relationship)

(IS relationship) ,

t t t t t

t t t t

R M Y M u

Y R I u

β β β β

β β β
−= + + + +


= + + +

 

 

where R  denotes the interest rate, M  denotes the money stock, Y  is GDP, and I  is invest-

ment expenditure. In this model, R  and  Y  are the endogenous variables and M  and I  are 

the exogenous variables. The first equation is exactly identified and the second one is overi-

dentified (check). The annual data (from 1969 through 1997) are in the file simult.xls. Use 

appropriate methods to estimate the system. Hint. Use Model * Simultaneous equations... * 

choose tsls (or other relevant option), fill in the box with  

 
equation R 0 M Y M(-1) 

equation Y 0 R I 

instr 0 M M(-1) I   # or: endog R Y  

 

and click OK. Draw relevant graphs through  Analysis * Forecasts. 

9.3  exercise. In 9.3_full.xls, monthly data are provided on commercial banks‘ loans to 

bussiness firms in the United States for 1979:01-1984:12.  

 
            N            Q            R           RD            X       RS       y 

 

1979:01     1        251.8        11.75         9.25        150.8     9.35    994.3 

1979:02     2        255.6        11.75         9.26        151.5     9.32   1002.5  

1979:03     3        259.8        11.75         9.37        152.0     9.48    994.0 

................................................................................... 

 

 

The following demand-supply model has been estimated. Maddala, 3ed, 363p.  

 

Demand for loan by business firms:  0 1 2 3Q R RD X uβ β β β= + + + +  

and supply by banks of commercial loans: 0 1 2 3Q R RS y vα α α α= + + + +  

 

where  

 

Q total commercial loans (billions of dollars) 

R average prime rate charged by banks 

RS 3-month Treasure bill rate (represents an alternative rate of return for banks) 

RD AAA corporate bond rate (represents the price of alternative financing to firms) 

X industrial production index and represents firms‘ expectation about future eco- 

                     nomic activity 

y total bank deposits (represents a scale variable) (billions of dollars) 

 



©   R. Lapinskas, PE.II - 2013 

      9. Simultaneous Equations 

 
9-8 

 

 
 

Draw the necessary graphs. Is it true that both equations are overidentified? Which methods to 

estimate the system you can choose? 
t

R  is expected to have a negative sign in the demand 

function and a positive sign in the supply function. The coefficient of 
t

RS  is expected to be 

negative. The coefficients of , , and
t t t

RD X y  are expected to be positive.  

 

R 

Library(systemfit) 

Dokumentacija – KMENTA ETC 

 

Ito, 1993, Encyclopedic Dictionary of Mathematics 

 

************************ 

 

Here is a summary of this chapter: the set of economic variables 1,...,
k

Y Y  is determined 

through a market equilibrium mechanism and we want to analyze the structure of relationships 

that determines the equilibrium. Suppose that 1( ,..., )
n

Y Y Y=
�

 is a vector consisting of n eco-

nomic variables, among which there exist n relationships that determine the equilibrium levels 

of the variables. We also suppose that there exist x variables 1( ,..., )
x

Z Z Z=
�

 that are inde-

pendent of the economic relations but affect the equilibrium. The variables Y

�

 are called en-

dogenous variables, and the Z

�

are called exogenous variables. If we assume linear relation-

ships among them, we have an expression such as  

 

                                                              Y BY Z u= +Γ +
� � �

�

                                              (*) 

 

where B and Γ are matrices with constant coefficients and u
�

 is a vector of disturbances or 

errors. (*) is called the linear structural equation system and is a system of simultaneous equa-

tions. By solving the equations formally, we get the so-called reduced form 

 

                                                               Y Z v= Π +
� �

�

                                                    (**) 

 

where 1 1( ) , ( )I B v I B u
− −Π = − Γ = −
� �

. The relation of Y

�

 to Z

�

is determined through the re-

duced form (**), and if we have enough data on Y

�

 and Z

�

, we can estimate Π . The problem 

of identification is to decide whether we can determine the unknown parameters in B and Γ  

uniquely from the parameters in the reduced form. A necessary condition for the parameters in 

one of the equations in (*) to be identifiable is that the number of unknown variables in the 

equation not be greater than  x + 1. If it is exactly equal to  x + 1, the equation is said to be just 

identified, and if it is less than  x + 1, the equation is said to be overidentified.  

 

If all the equations in the system are just identified, for arbitrary Π  there exist unique B  and 

Γ  that satisfy 1( )I B
−Π = − Γ . Therefore, if we denote the least squares estimator of Π by 

Π̂ , we can estimate B and Γ  from the equation ˆ ˆ ˆ( )I B− Π = Γ . This procedure is called the 

indirect least squares method and is equivalent to the maximum likelihood method if we as-

sume normality for u
�

. 

 

When some of the equations are overidentified, the estimation problem becomes complicated. 

Three kinds of procedures have been proposed: (1) full system methods, (2) single equation 
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methods, and (3) subsystem methods. In full system methods all the parameters are considered 

simultaneously, and if normality is assumed, the maximum likelihood estimator can be ob-

tained by minimizing | ( )( ) |Y Z Y Z ′−Π −Π
� � � �

. Since it is usually difficult to compute the maxi-

mum likelihood estimator, a simpler, but asymptotically equivalent, three stage least squares 

method has been proposed. The single equation methods and the subsystem methods take into 

consideration only the information about the parameters in one equation or in a subset of the 

equations, and estimate the parameters in each equation separately. There is a single equation 

method, called the limited information maximum likelihood method, based on the maximum 

likelihood approach, and also a two-stage least squares method, which estimates Π first by 

least squares, computes 
ˆ ˆY Z= Π
� �

, and then applies the least squares method to the model 

ˆ
ˆY BY Z u= +Γ +

� � �

. These two and also some others are asymptotically equivalent. Among as-

ymptotically equivalent classes of estimators corresponding to different information structures 

it has been established that the maximum likelihood estimators have asymptotically higher-

order efficiency than other estimators, and Monte Carlo and numerical studies show that they 

are in most cases better than others if properly adjusted for the biases. 

 

In many simultaneous equation models which have been applied to actual macroeconomic 

data, the values of endogenous variables obtained in the past appear on the right-hand sides of 

equations (*). Such variables are called lagged variables, and they can be treated, at least in 

the asymptotic theory of inference, as though they were exogenous. Hence exogenous varia-

bles and lagged endogenous variables are jointly called predetermined variables. When many 

lagged variables appear over many time periods and when some structure among the coeffi-

cients of those lagged variables can be assumed, such a model is called a distributed lag mod-

el. 
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10.   Panel Data Analysis 

 

Panel data combines the cross section and time series data.  Here we have a cross section, but 

we observe the cross section over time.  If the same people or states or units, sampled in the 

cross section, are then re-sampled at a different time we call this a panel data set (usually there 

will be many cross sectional units and several time periods). For example, in order to estimate 

the production function, we can use the model  

 
(1) (2)

1 2 , 1,..., , 1,...,
it i itit it

Y X X u i I t Tα β β= + + + = =  

 

where 
it

Y  is the output and 
(1) (2)

,
it it

X X  are the inputs for the i th firm in the t th period; 
i

α  

capture firm specific inputs (e.g., managerial skills) assumed to be constant over time (this 

model later will be called a fixed effects model).   

 

The famous Grunfeld panel data (see gg.txt) consists of 5 large US manufacturing firms over 

20 years (100 observations):      

   
   invest  value capital             firm year 

   317.60 3078.5     2.8   General_Motors 1935 

   391.80 4661.7    52.6   General_Motors 1936 

   410.60 5387.1   156.9   General_Motors 1937 

   257.70 2792.2   209.2   General_Motors 1938 

   330.80 4313.2   203.4   General_Motors 1939 

   461.20 4643.9   207.2   General_Motors 1940 

   512.00 4551.2   255.2   General_Motors 1941 

   448.00 3244.1   303.7   General_Motors 1942 

   499.60 4053.7   264.1   General_Motors 1943 

   547.50 4379.3   201.6   General_Motors 1944 

   561.20 4840.9   265.0   General_Motors 1945 

   688.10 4900.9   402.2   General_Motors 1946 

   568.90 3526.5   761.5   General_Motors 1947 

   529.20 3254.7   922.4   General_Motors 1948 

   555.10 3700.2  1020.1   General_Motors 1949 

   642.90 3755.6  1099.0   General_Motors 1950 

   755.90 4833.0  1207.7   General_Motors 1951 

   891.20 4924.9  1430.5   General_Motors 1952 

  1304.40 6241.7  1777.3   General_Motors 1953 

  1486.70 5593.6  2226.3   General_Motors 1954 

    40.29  417.5    10.5         Chrysler 1935 

    72.76  837.8    10.2         Chrysler 1936 

………………………………………………………………………………………………………………………… 

    90.08 1193.5   174.8     Westinghouse 1953 

    68.60 1188.9   213.5     Westinghouse 1954 

   209.90 1362.4    53.8         US_Steel 1935 

   355.30 1807.1    50.5         US_Steel 1936 

   469.90 2676.3   118.1         US_Steel 1937 

   262.30 1801.9   260.2         US_Steel 1938 

   230.40 1957.3   312.7         US_Steel 1939 

   261.60 2202.9   254.2         US_Steel 1940 

   472.80 2380.5   261.4         US_Steel 1941 

   445.60 2168.6   298.7         US_Steel 1942 

   361.60 1985.1   301.8         US_Steel 1943 

   288.20 1813.9   279.1         US_Steel 1944 
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   258.70 1850.2   213.8         US_Steel 1945 

   420.30 2067.7   232.6         US_Steel 1946 

   420.50 1796.7   264.8         US_Steel 1947 

   494.50 1625.8   306.9         US_Steel 1948 

   405.10 1667.0   351.1         US_Steel 1949 

   418.80 1677.4   357.8         US_Steel 1950 

   588.20 2289.5   342.1         US_Steel 1951 

   645.20 2159.4   444.2         US_Steel 1952 

   641.00 2031.3   623.6         US_Steel 1953 

   459.30 2115.5   669.7         US_Steel 1954 

 

Here invest = 
it

I  denotes real gross investment for firm i  in year t , value = 
it

F  is the 

real value of the firm (shares outstanding), and  capital = 
it

C  is the real value of the capi-

tal stock. When importing gg.txt in GRETL, you must choose the panel structure of dataset. 

Note that the names of the firms in GRETL will be replaced by their numbers.  

 

The above presentation is termed a stacked time series (one time series is stacked above an-

other). If one cross-section is above another, this is called a stacked cross section
1
. If we re-

move the firm and year attributes and do not make any distinction between cross section and 

time series, this is called a pooled data organization. 

 

 

10.1.   Panel Data Models 

 

Basically, there are three models for panel data – pooled OLS, fixed and random effects mod-

els. We want to explain I  in terms of F  and C and thus to estimate the following investment 

equation:  

 

1 2 , 1,...,5, 1935,...,1954
it it it it

I F C u i tα β β= + + + = = . 

 

The simplest is the pooled model where   

 

1 2 , 1,...,100
s s s s

I F C u sα β β= + + + = . 

 

(i.e., the same intercept α  and the same slopes 1β  and 2β  for all observations). To create it, 

go to Model| Ordinary Least Squares… etc 

 

 
Model 1: Pooled OLS, using 100 observations 

Included 5 cross-sectional units 

Time-series length = 20 

Dependent variable: invest 

 

             coefficient   std. error   t-ratio    p-value  

  --------------------------------------------------------- 

  const      -48.0297      21.4802      -2.236    0.0276    ** 

  value        0.105085     0.0113778    9.236    5.99e-015 *** 

  capital      0.305366     0.0435078    7.019    3.06e-010 *** 

 

                                                 
1
 No matter whether your original data is organized as stacked cross sections or stacked time series, GRETL 

always stores and displays the panel data as stacked time series. 
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Mean dependent var   248.9570   S.D. dependent var   267.8654 

Sum squared resid     1570884   S.E. of regression   127.2583 

R-squared            0.778856   Adjusted R-squared   0.774296 

F(2, 97)             170.8140   P-value(F)           1.65e-32 

Log-likelihood      -624.9928   Akaike criterion     1255.986 

Schwarz criterion    1263.801   Hannan-Quinn         1259.149 

rho                  0.936605   Durbin-Watson        0.218933 

 

The model is fairly good (correct signs of the coefficients, high R-squared), however note i) 

the heteroscedasticity of the residuals (go to the model window, select Save| Residuals, then 

go to the GRETL window, right-click on uhat1 and choose Panel plot…| single graph: 

groups in sequence| OK, see Fig. 10.1, left) and ii) low Durbin-Watson statistics (the residuals 

must form WN, but this will be only when DW 2≈ ; now they are probably serially correlat-

ed).  Recall that  often  the cause of the serial  correlation is not  the  autoregressive  structure 

of the  
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Figure 10.1. Residuals uhat1 of the pooled model (left, note different levels of the residuals) and 

the residuals uhat2 of the fixed effects model (right, note more homoscedastic behavior) 

 

time series but wrong specification of the model. To be more concrete, it is quite possible that 

every firm has the same slopes 
i
β  but different intercepts. We shall express this in different 

words – in another, fixed effects (FE), model we decompose the error term 
it

u  into a unit-

specific (and time invariant) component 
i

α  and observation-specific error 
it
ε :  

 

1 2 , 1,...,5, 1,..., 20
it it it i it

I F C i tβ β α ε= + + + = = . 

 

The 
i

α s are then treated as fixed parameters
2
 which must be estimated. However, these indi-

vidual intercepts are typically not of much inherent interest and also their estimated values are 

difficult to judge because there is often little data being used to estimate them (the time series 

are usually short). Instead, we are usually more interested in the slope coefficients.  

 

                                                 
2
 

i
α  may be treated as the mean of the error in the i th unit. 
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Note that the model can be written differently, in a more explicit way: 

1,1 1 1 1,1 2 1,1 1,1

1,20 1 1 1,20 2 1,20 1,20

2,1 2 1 2,1 2 2,1 2,1

.........................................................

**************************************

.................

I F C e

I F C e

I F C e

α α β β

α α β β

α α β β

= + + + +

= + + + +

= + + + +

2,20 2 1 2,20 2 2,20 2,20

.........................................

**************************************

....................................................

*************************************

I F C eα α β β= + + + +

5,1 5 1 5,1 2 5,1 5,1

5,20 5 1 5,20 2 5,20 5,20

*

............................................................

I F C e

I F C e

α α β β

α α β β

















 = + + + +


 = + + + +

 

 

To create the model, go to Model| Panel| Fixed or random effects..., fill in the dialog boxes 

and choose Fixed effects: 

 

 
Model 2: Fixed-effects, using 100 observations 

Included 5 cross-sectional units 

Time-series length = 20 

Dependent variable: invest 

 

             coefficient   std. error   t-ratio    p-value  

  --------------------------------------------------------- 

  const      -62.5944      29.4419      -2.126    0.0361    ** 

  value        0.105980     0.0158910    6.669    1.82e-09  *** 

  capital      0.346660     0.0241612   14.35     2.63e-025 *** 

 

Mean dependent var   248.9570   S.D. dependent var   267.8654 

Sum squared resid    444288.4   S.E. of regression   69.11798 

R-squared            0.937454   Adjusted R-squared   0.933419 

F(6, 93)             232.3194   P-value(F)           1.07e-53 

Log-likelihood      -561.8468   Akaike criterion     1137.694 

Schwarz criterion    1155.930   Hannan-Quinn         1145.074 

rho                  0.606057   Durbin-Watson        0.774518 

 

Test for differing group intercepts - 

  Null hypothesis: The groups have a common intercept 

  Test statistic: F(4, 93) = 58.9557 

  with p-value = P(F(4, 93) > 58.9557) = 1.07556e-024 

 

The residuals of the model now are more homogeneous (see Fig. 10.1, right), the Akaike sta-

tistics is lower (remember that now we have four more parameters), and the last lines of the 

model table tell us that the hypothesis 0 :H all '
i

α s are equal must be rejected; thus the 

F − test (what it exactly does?) tells us that this FE model is preferred to the previous, pooled 

OLS model. 
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Figure 10.2. The fixed effects model (right) fits invest better that the pooled model (left) 

 

To display the intercepts, in the Model 2 window go to Save| Per-unit constants, then in 

GRETL‘s window right-click on ahat2, choose Panel plot etc (note that the unit-specific 

constants vary a lot, between  -250 and 100). 

 

For the random effects (RE) model we write 
it i it

u v ε= + , so the model becomes  

 

                         1 2 , 1,...,5, 1,..., 20
it it it i it

I F C v i tβ β ε= + + + = = .                             (10.1) 

 

In contrast to the FE model , the 
i

v s are now treated not as fixed parameters but as random 

drawings from a given probability distribution (thus, 
i

ν  have no particular meaning, they are 

just realizations of a certain random variable).  

 

To create this model, go to Model| Panel| Fixed or random effects..., fill in the dialog boxes 

and choose Random effects: 

 
Model 3: Random-effects (GLS), using 100 observations 

Included 5 cross-sectional units 

Time-series length = 20 

Dependent variable: invest 

 

             coefficient   std. error   t-ratio    p-value  

  --------------------------------------------------------- 

  const      -60.2905      54.4839      -1.107    0.2712    

  value        0.104886     0.0147972    7.088    2.20e-010 *** 

  capital      0.346016     0.0242535   14.27     1.48e-025 *** 

 

Log-likelihood      -625.6905   Akaike criterion     1257.381 

Schwarz criterion    1265.196   Hannan-Quinn         1260.544 

 

'Within' variance = 4777.3  # = 
2ˆεσ  

'Between' variance = 11191  # = 
2ˆνσ  

theta used for quasi-demeaning = 0.853903 
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Breusch-Pagan test - 

  Null hypothesis: Variance of the unit-specific error = 0 

  Asymptotic test statistic: Chi-square(1) = 453.822 

  with p-value = 1.06252e-100 

 

Hausman test - 

  Null hypothesis: GLS estimates are consistent 

  Asymptotic test statistic: Chi-square(2) = 3.30507 

  with p-value = 0.191563 

 

This model table contains the outputs of several tests.  

 

1. In the Breusch–Pagan test, the null hypothesis is that the variance of 
i

v  in equation 

(10.1) equals zero: if this hypothesis is not rejected, then we conclude that the simple 

pooled model is adequate (in our case, we conclude that pooled model is inadequate). 

2. The same and even more concrete conclusion can be infered from the theta value – if 

1θ ≈ , then the FE estimator is optimal; if 0θ ≈ , then the pooled model is optimal. 

Thus, in our case we choose FE model. 

3. The Hausman test (see PE.I, Lecture Notes, p. 4-55 or PE.II, Lecture Notes, p.8-5) 

probes the  null hypothesis that RE model is preferrable to that of the fixed effects (we 

see that in our case there is no ground to discard RE model). However, note that Akai-

ke‘s criterion in RE case exceeds that of FE. Also, if you plotted  the graphs of the fit-

ted values and residuals of the RE model (do this), they appear to be inferior to those 

of the FE model. Thus, at the moment we stick to the FE model.   

 

There are several means to augment the model.  

 

1. Include in the FE model time dummies dt_1,..., dt_20 (it is quite possible that in-

vestment policy changes over time). 

2. Define unit dummies du_1,..., du_5 and create a model with these variables in the in-

tercept (this is exactly the same as FE model). 

3. Add also these dummies to the slopes of value and capital
3
 (this is the same as separate 

models for each firm). 

 

It appears that the „best“ model is the following: 

 
Model 8: Pooled OLS, using 100 observations 

Dependent variable: invest 

 

             coefficient   std. error   t-ratio    p-value  

  --------------------------------------------------------- 

  const      -30.7689      29.4704      -1.044    0.2993    

  value        0.156761     0.0211516    7.411    6.89e-011 *** 

  capital      0.423923     0.0945327    4.484    2.17e-05  *** 

  c_du1       -0.0428438    0.0978435   -0.4379   0.6625    

  c_du2       -0.111477     0.165965    -0.6717   0.5035    

  c_du3       -0.268581     0.110130    -2.439    0.0167    ** 

  c_du4       -0.411074     0.343709    -1.196    0.2349    

  v_du1       -0.0653505    0.0180792   -3.615    0.0005    *** 

  v_du2       -0.0444975    0.0442948   -1.005    0.3178    

  v_du3       -0.120664     0.0207684   -5.810    9.55e-08  *** 

  v_du4       -0.0522707    0.0619619   -0.8436   0.4012    

Mean dependent var   248.9570   S.D. dependent var   267.8654 

                                                 
3
 Add new variables c_du1 = capital * du_1 etc   
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Sum squared resid    352185.1   S.E. of regression   62.90577 

R-squared            0.950420   Adjusted R-squared   0.944850 

F(10, 89)            170.6096   P-value(F)           1.45e-53 

Log-likelihood      -550.2310   Akaike criterion     1122.462 

Schwarz criterion    1151.119   Hannan-Quinn         1134.060 

rho                  0.584909   Durbin-Watson        0.834968 

 

 

Recall that we usually create panel data models which assume different intercepts and equal 

slopes for all units; however, as you have just seen, sometimes it is better to take the same 

constant and individual slopes. 

 

The common problem with the panel data is to decide which panel method should one use, FE 

or RE? We have already discussed some tests which help to decide upon the model (and the 

best approach is to make use of these tests). However, some heuristic considerations are also 

sometimes helpful. If the panel comprises observations on a fixed and relatively small set of 

units of interest (say, the member states of the European Union), there is a presumption in fa-

vor of fixed effects. If it comprises observations on a large number of randomly selected indi-

viduals (as in many epidemiological and other longitudinal studies), there is a presumption in 

favor of random effects. 

 

Note that some panel data sets contain variables whose values are specific to the cross-

sectional unit but which do not vary over time (for example, the sex of an individual). If you 

want to include such variables in the model, the fixed effects option is simply not available 

(when the FE approach is implemented using dummy variables, the problem is that the time-

invariant variables are perfectly collinear with the per-unit dummies). In this case, you should 

use RE approach (but test first that the individual effects 
i

v  are not correlated with some of 

the explanatory variables - this is what the Hausman test probes).  

 

10.2.  Autoregressive Panel Models 

 

Panel data models are after all regression models, therefore we can analyze dynamic regres-

sion models as well, for example 

 

                         , 1 ( ), 1,..., , 1,...,
it i t it i it

Y Y X v i N t Tα γ β ε−= + + + + = = .                      (10.2) 

 

However, some specific problems arise when a lag of the dependent variable is included 

among the regressors in a panel model (this is connected with the fact that , 1i t
Y −  is bound to be 

correlated with the error term 
i

v  and, in this case, the OLS estimators of the coefficients will 

be biased and inconsistent). One strategy for handling this problem is to take first differences 

of (10.2) for sweeping out the group effects: 

 

                                       , 1 , 1( )
it i t it it i t

Y Y Xγ β ε ε− −∆ = ∆ + ∆ + − .                                        

To remove the still existing correlation between , 1i t
Y −∆  and , 1it i t

ε ε −− , it is suggested to use 

an instrument
4
 for , 1i t

Y −∆  (it can be , 2i t
Y −  or , 2i t

Y −∆ ) . 

                                                 
4
 In GRETL, this is accomplished by the two stage least squares procedure tsls. 
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10.1 example.  We shall analyze the panel data set penngrow.txt (or penngrow.gdt  from Open 

Data| Sample files) – it contains 94 states in 6 time moments:  

 
   country year        Y       X 

1       53 1960 7.987185      NA 

2       53 1965 8.403801 1.62254 

3       53 1970 8.896177 1.76904 

4       53 1975 9.033126 1.78886 

5       53 1980 9.217117 1.78772 

6       53 1985 9.373394 1.73075 

7       70 1960 8.544225      NA 

8       70 1965 8.720297 1.46819 

9       70 1970 8.923191 1.57635 

.............................. 

 

where 

 

country country code 

year year of observation 

Y log of real per capita GDP 

X log(savings)-log(population growth) (5-year average) 

 

The well-known convergence theory claims that the lower the starting level of real per capita 

GDP, relative to the long run of steady state position, the faster is the growth rate which 

means that developing countries will finally catch with the richer ones.  

 

Testing the growth convergence hypothesis, in this context, resolves largely around the coeffi-

cient γ  in (10.2) (the rate of convergence equals 1/ , 0 1γ γ< < ). If (the estimate of) γ  is 

much less than 1, the implication is that on average countries with low initial values are 

growing faster than those with high initial values and is therefore evidence of convergence. 

Whereas, if this coefficient is close to one, perhaps even slightly larger than one, the implica-

tion is that initial values have little or no effect or even a perverse one on subsequent growth 

(such a finding is therefore evidence against the neoclassical theory which implies convergen-

ce). For example, if 0.9γ = , convergence to within 90 per cent of final equilibrium occurs 

only in 22 periods, which, given quinquennial data, implies 110 years! Similarly, 0.7 requires 

32 years, while 0.2 requires only 7 years.  

 

The estimates of γ  for the level model presented below using crosscountry quinquennial data 

are generally in excess of 0.7 no matter what econometric procedure is employed, but vary 

over a wide range depending on the method, 0.7 to 0.98. But for the differenced model, many 

estimates of γ  are much smaller in the vicinity of 0.5. It is apparent that, for all practical pur-

poses, coefficients in excess of 0.7 represent negligible convergence, since it would take more 

than a generation to achieve 90 per cent of equilibrium real per capita GDP. 

 

Despite the fact that the FE model is unsatisfactory (because of the correlation problem), we 

shall use it as a reference point. The (10.2) model can be created from the meniu bar but it still 

simplier to run the line  

 
panel Y 0 Y(-1) X 

  

from the script window (note that we obtain 0.72γ = ): 
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Model 1: Fixed-effects, using 470 observations 

Included 94 cross-sectional units 

Time-series length = 5 

Dependent variable: Y 

 

             coefficient   std. error   t-ratio    p-value  

  --------------------------------------------------------- 

  const       2.12389      0.178932     11.87     8.50e-028 *** 

  Y_1         0.720369     0.0236765    30.43     3.36e-103 *** 

  X           0.165589     0.0193324     8.565    2.85e-016 *** 

 

Log-likelihood       386.8309   Akaike criterion    -581.6618 

 

 

The second (still unsatisfactory) model is that of  RE (note that now 0.93γ = ): 

 
panel Y 0 Y(-1) X --random-effects 

 
Model 2: Random-effects (GLS), using 470 observations 

 

             coefficient   std. error   t-ratio    p-value  

  --------------------------------------------------------- 

  const       0.527612     0.0755693     6.982    1.01e-011 *** 

  Y_1         0.932259     0.0104997    88.79     1.40e-294 *** 

  X           0.138248     0.0122326    11.30     2.40e-026 *** 

 

Log-likelihood       259.5798   Akaike criterion    -513.1595 

 

 

Thus none could be characterized as evidence of reasonably rapid convergence. 

 

Parameter estimates for the model in first differences can be obtained through the following 

lines: 

 
diff Y X # take differences of all variables 

tsls d_Y d_Y(-1) d_X ; 0 d_X Y(-2) 

tsls d_Y d_Y(-1) d_X ; 0 d_X d_Y(-2) 

 

The output is presented below. 

 
tsls d_Y d_Y(-1) d_X ; 0 d_X Y(-2)  # use Y(-2) as instrument 

 

 

Model 3: TSLS, using 376 observations 

Dependent variable: d_Y 

Instrumented: d_Y_1  

Instruments: const d_X Y_2  

 

             coefficient   std. error     z       p-value  

  -------------------------------------------------------- 

  d_Y_1       0.686966     0.0644896    10.65    1.70e-026 *** 

  d_X         0.148424     0.0211451     7.019   2.23e-012 *** 

 

******************* 

 

? tsls d_Y d_Y(-1) d_X ; 0 d_X d_Y(-2)  # use d_Y(-2) as instrument 
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Model 4: TSLS, using 282 observations 

Dependent variable: d_Y 

Instrumented: d_Y_1  

Instruments: const d_X d_Y_2  

 

             coefficient   std. error     z      p-value  

  ------------------------------------------------------- 

  d_Y_1       0.584359     0.0717879    8.140   3.95e-016 *** 

  d_X         0.134747     0.0218480    6.167   6.94e-010 *** 

 

 

Now the (presumably, more correct) γ s are lower thus implying more rapid convergence to 

equilibrium. In any case, any substantive study on growth rate convergence, should include 

additional explanatory variables such as, for example, the stock of human capital, infrastructu-

re investment, and so forth. 

 

 

 

A key issue in dealing with the panel data is whether the unobserved effect /α ν  is “fixed” or 

“random”. (The panel data literature has many other names for the variable /α ν , such as 

“unobserved component”, “latent variable”, “unobserved heterogeneity”, or “individual ef-

fect”. And the error term 
it
ε  is often called the “idiosyncratic error” or the “idiosyncratic dis-

turbance”.) Strictly speaking, we are always treating  /α ν  as a variable so it is always “ran-

dom”. On the other hand, for a given “unit” (person, firm, etc.) we always treat /α ν  as fixed 

over time, although /α ν  varies over units. (...) The real issue is whether Cov(xt, c) = 0 or ≠ 

0. Following standard (albeit somewhat misleading) terminology, we call a model a random 

effects model if Cov(xt, c) = 0, and we call it a fixed effects model if Cov(xt, c) ≠ 0. 

 

 

Revision questions 

 

10.1 aret 

10.2 aertb  

10.3 weqrb w 

10.4 How to test that FE model is preferred to pooled? 

10.5 Wė yw 

10.6 Wt q  



The Rules of Summation

�
n

i¼1
xi ¼ x1 þ x2 þ � � � þ xn

�
n

i¼1
a ¼ na

�
n

i¼1
axi ¼ a �

n

i¼1
xi

�
n

i¼1
ðxi þ yiÞ ¼ �

n

i¼1
xi þ �

n

i¼1
yi

�
n

i¼1
ðaxi þ byiÞ ¼ a �

n

i¼1
xi þ b �

n

i¼1
yi

�
n

i¼1
ðaþ bxiÞ ¼ naþ b �

n

i¼1
xi

x ¼
�
n

i¼1
xi
n

¼ x1 þ x2 þ � � � þ xn

n

�
n

i¼1
ðxi � xÞ ¼ 0

�
2

i¼1
�
3

j¼1
f ðxi; yjÞ ¼ �

2

i¼1
f ðxi; y1Þ þ f ðxi; y2Þ þ f ðxi; y3Þ½ �

¼ f ðx1; y1Þ þ f ðx1; y2Þ þ f ðx1; y3Þ
þ f ðx2; y1Þ þ f ðx2; y2Þ þ f ðx2; y3Þ

Expected Values & Variances

EðXÞ ¼ x1 f ðx1Þ þ x2 f ðx2Þ þ � � � þ xn f ðxnÞ
¼ �

n

i¼1
xi f ðxiÞ ¼ �

x
x f ðxÞ

E gðXÞ½ � ¼ �
x
gðxÞ f ðxÞ

E g1ðXÞ þ g2ðXÞ½ � ¼ �
x
g1ðxÞ þ g2ðxÞ½ � f ðxÞ

¼ �
x
g1ðxÞ f ðxÞ þ �

x
g2ðxÞ f ðxÞ

¼ E g1ðXÞ½ � þ E g2ðXÞ½ �
E(c) ¼ c

E(cX ) ¼ cE(X )

E(a þ cX ) ¼ a þ cE(X )

var(X ) ¼ s2 ¼ E[X � E(X )]2 ¼ E(X2) � [E(X )]2

var(a þ cX ) ¼ E[(a þ cX)�E(a þ cX)]2 ¼ c2var(X )

Marginal and Conditional Distributions

f ðxÞ ¼ �
y
f ðx; yÞ for each value X can take

f ðyÞ ¼ �
x
f ðx; yÞ for each value Y can take

f ðxjyÞ ¼ P X ¼ xjY ¼ y½ � ¼ f ðx; yÞ
f ðyÞ

If X and Y are independent random variables, then

f (x,y) ¼ f (x)f (y) for each and every pair of values

x and y. The converse is also true.

If X and Y are independent random variables, then the

conditional probability density function of X given that

Y ¼ y is f ðxjyÞ ¼ f ðx; yÞ
f ðyÞ ¼ f ðxÞ f ðyÞ

f ðyÞ ¼ f ðxÞ

for each and every pair of values x and y. The converse is

also true.

Expectations, Variances & Covariances

covðX;YÞ ¼ E½ðX�E½X�ÞðY�E½Y�Þ�
¼�

x
�
y
x� EðXÞ½ � y� EðYÞ½ � f ðx; yÞ

r ¼ covðX;YÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðXÞvarðYÞp

E(c1X þ c2Y ) ¼ c1E(X ) þ c2E(Y )

E(X þ Y ) ¼ E(X ) þ E(Y )

var(aXþ bYþ cZ )¼ a2var(X)þ b2var(Y )þ c2var(Z )

þ 2abcov(X,Y ) þ 2accov(X,Z ) þ 2bccov(Y,Z )

If X, Y, and Z are independent, or uncorrelated, random

variables, then the covariance terms are zero and:

varðaX þ bY þ cZÞ ¼ a2varðXÞ
þ b2varðYÞ þ c2varðZÞ

Normal Probabilities

If X � N(m, s2), then Z ¼X � m

s
�Nð0; 1Þ

If X � N(m, s2) and a is a constant, then

PðX � aÞ ¼ P Z � a� m

s

� �
If X �Nðm;s2Þ and a and b are constants; then

Pða � X � bÞ ¼ P
a�m

s
� Z � b� m

s

� �

Assumptions of the Simple Linear Regression

Model

SR1 The value of y, for each value of x, is y ¼ b1 þ
b2x þ e

SR2 The average value of the random error e is

E(e) ¼ 0 sincewe assume thatE(y) ¼ b1 þ b2x

SR3 The variance of the random error e is var(e) ¼
s2 ¼ var(y)

SR4 The covariance between any pair of random

errors, ei and ej is cov(ei, ej) ¼ cov(yi, yj) ¼ 0

SR5 The variable x is not random and must take at

least two different values.

SR6 (optional) The values of e are normally dis-

tributed about their mean e � N(0, s2)

Least Squares Estimation

If b1 and b2 are the least squares estimates, then

ŷi ¼ b1 þ b2xi

êi ¼ yi � ŷi ¼ yi � b1 � b2xi

The Normal Equations

Nb1 þ Sxib2 ¼Syi

Sxib1 þ Sx2i b2 ¼ Sxiyi

Least Squares Estimators

b2 ¼ Sðxi � xÞðyi � yÞ
S ðxi � xÞ2

b1 ¼ y� b2x



Elasticity

h ¼ percentage change in y

percentage change in x
¼ Dy=y

Dx=x
¼ Dy

Dx
� x
y

h ¼ DEðyÞ=EðyÞ
Dx=x

¼ DEðyÞ
Dx

� x

EðyÞ ¼ b2 �
x

EðyÞ
Least Squares Expressions Useful for Theory

b2 ¼ b2 þ Swiei

wi ¼ xi � x

Sðxi � xÞ2

Swi ¼ 0; Swixi ¼ 1; Sw2
i ¼ 1=Sðxi � xÞ2

Properties of the Least Squares Estimators

varðb1Þ ¼ s2 Sx2i

NSðxi � xÞ2
" #

varðb2Þ ¼ s2

Sðxi � xÞ2

covðb1; b2Þ ¼ s2 �x

Sðxi � xÞ2
" #

Gauss-Markov Theorem: Under the assumptions

SR1–SR5 of the linear regression model the estimators

b1 and b2 have the smallest variance of all linear and

unbiased estimators of b1 and b2. They are the Best

Linear Unbiased Estimators (BLUE) of b1 and b2.

If we make the normality assumption, assumption

SR6, about the error term, then the least squares esti-

mators are normally distributed.

b1 � N b1;
s2 � x2i

NSðxi � xÞ2
 !

; b2 � N b2;
s2

Sðxi � xÞ2
 !

Estimated Error Variance

ŝ2 ¼ Sê2i
N � 2

Estimator Standard Errors

seðb1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibvarðb1Þq

; seðb2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibvarðb2Þq

t-distribution

If assumptions SR1–SR6of the simple linear regression

model hold, then

t ¼ bk � bk

seðbkÞ � tðN�2Þ; k ¼ 1; 2

Interval Estimates

P[b2 � tcse(b2) � b2 � b2 þ tcse(b2)] ¼ 1 � a

Hypothesis Testing

Components of Hypothesis Tests

1. A null hypothesis, H0

2. An alternative hypothesis, H1

3. A test statistic

4. A rejection region

5. A conclusion

If the null hypothesis H0 : b2 ¼ c is true, then

t ¼ b2 � c

seðb2Þ � tðN�2Þ

Rejection rule for a two-tail test: If the value of the

test statistic falls in the rejection region, either tail of

the t-distribution, then we reject the null hypothesis

and accept the alternative.

Type I error: The null hypothesis is true and we decide

to reject it.

Type II error: The null hypothesis is false andwe decide

not to reject it.

p-value rejection rule:When the p-value of a hypoth-

esis test is smaller than the chosen value of a, then the

test procedure leads to rejection of the null hypothesis.

Prediction

y0 ¼ b1 þ b2x0 þ e0; ŷ0 ¼ b1 þ b2x0; f ¼ ŷ0 � y0

bvarð f Þ ¼ ŝ2 1þ 1

N
þ ðx0 � xÞ2
Sðxi � xÞ2

" #
; seð f Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffibvarð f Þq

A (1 � a) � 100% confidence interval, or prediction

interval, for y0
ŷ0 	 tcseð f Þ

Goodness of Fit

Sðyi � yÞ2 ¼ Sðŷi � yÞ2 þ Sê2i

SST ¼ SSRþ SSE

R2 ¼ SSR

SST
¼ 1� SSE

SST
¼ ðcorrðy; ŷÞÞ2

Log-Linear Model

lnðyÞ ¼ b1þb2xþ e;blnð yÞ ¼ b1 þ b2x

100� b2 
 % change in y given a one-unit change in x:

ŷn ¼ expðb1 þ b2xÞ
ŷc ¼ expðb1 þ b2xÞexpðŝ2=2Þ
Prediction interval:

exp blnðyÞ � tcseð f Þ
h i

; exp blnð yÞ þ tcseð f Þ
h i

Generalized goodness-of-fit measureR2
g¼ðcorrðy; ŷnÞÞ2

Assumptions of theMultiple RegressionModel

MR1 yi ¼ b1 þ b2xi2 þ � � � þ bKxiK þ ei

MR2 E(yi)¼b1þb2xi2þ � � � þbKxiK , E(ei) ¼ 0.

MR3 var(yi) ¼ var(ei) ¼ s2

MR4 cov(yi, yj) ¼ cov(ei, ej) ¼ 0

MR5 The values of xik are not random and are not

exact linear functions of the other explanatory

variables.

MR6 yi � N½ðb1 þ b2xi2 þ � � � þ bKxiKÞ;s2�
, ei � Nð0;s2Þ

Least Squares Estimates in MR Model

Least squares estimates b1, b2, . . . , bK minimize

Sðb1, b2, . . . , bKÞ ¼ �ðyi � b1 � b2xi2 � � � � � bKxiKÞ2

Estimated Error Variance and Estimator

Standard Errors

ŝ2 ¼ � ê2i
N � K

seðbkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibvarðbkÞq



Hypothesis Tests and Interval Estimates for Single Parameters

Use t-distribution t ¼ bk � bk

seðbkÞ � tðN�KÞ

t-test for More than One Parameter

H0 : b2 þ cb3 ¼ a

When H0 is true t ¼ b2 þ cb3 � a

seðb2 þ cb3Þ � tðN�KÞ

seðb2 þ cb3Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibvarðb2Þ þ c2bvarðb3Þ þ 2c�bcovðb2; b3Þq

Joint F-tests

To test J joint hypotheses,

F ¼ ðSSER � SSEUÞ=J
SSEU=ðN � KÞ

To test the overall significance of the model the null and alternative

hypotheses and F statistic are

H0 : b2 ¼ 0; b3 ¼ 0; : : : ; bK ¼ 0

H1 : at least one of the bk is nonzero

F ¼ ðSST � SSEÞ=ðK � 1Þ
SSE=ðN � KÞ

RESET: A Specification Test

yi ¼ b1 þb2xi2 þb3xi3 þ ei ŷi ¼ b1 þ b2xi2 þ b3xi3

yi ¼ b1 þb2xi2 þb3xi3 þg1ŷ
2
i þ ei; H0 : g1 ¼ 0

yi ¼ b1 þb2xi2 þb3xi3 þg1ŷ
2
i þg2ŷ

3
i þ ei; H0 : g1 ¼ g2 ¼ 0

Model Selection

AIC ¼ ln(SSE=N) þ 2K=N

SC ¼ ln(SSE=N) þ K ln(N)=N

Collinearity and Omitted Variables

yi ¼ b1 þ b2xi2 þ b3xi3 þ ei

varðb2Þ ¼ s2

ð1� r223Þ� ðxi2 � x2Þ2

When x3 is omitted; biasðb�2Þ ¼ Eðb�2Þ � b2 ¼ b3

bcovðx2; x3Þbvarðx2Þ
Heteroskedasticity

var(yi) ¼ var(ei) ¼ si
2

General variance function

s2
i ¼ expða1 þ a2zi2 þ � � � þ aSziSÞ

Breusch-Pagan and White Tests for H0: a2 ¼ a3 ¼ � � � ¼ aS ¼ 0

When H0 is true x2 ¼ N � R2 � x2
ðS�1Þ

Goldfeld-Quandt test for H0 :s
2
M ¼ s2

R versus H1 : s
2
M 6¼ s2

R

When H0 is true F ¼ ŝ2
M=ŝ

2
R � FðNM�KM ;NR�KRÞ

Transformed model for varðeiÞ¼ s2
i ¼ s2xi

yi=
ffiffiffiffi
xi

p ¼ b1 1=
ffiffiffiffi
xi

pð Þ þ b2 xi=
ffiffiffiffi
xi

pð Þ þ ei=
ffiffiffiffi
xi

p

Estimating the variance function

lnðê2i Þ ¼ lnðs2
i Þ þ vi ¼ a1 þ a2zi2 þ � � � þ aSziS þ vi

Grouped data

varðeiÞ ¼ s2
i ¼

s2
M i ¼ 1; 2; . . . ; NM

s2
R i ¼ 1; 2; . . . ; NR

(

Transformed model for feasible generalized least squares

yi

. ffiffiffiffiffi
ŝi

p
¼ b1 1

. ffiffiffiffiffi
ŝi

p� �
þ b2 xi

. ffiffiffiffiffi
ŝi

p� �
þ ei

. ffiffiffiffiffi
ŝi

p

Regression with Stationary Time Series Variables

Finite distributed lag model

yt ¼aþ b0xt þ b1xt�1 þ b2xt�2 þ � � � þ bqxt�q þ vt

Correlogram

rk ¼ � ðyt � yÞðyt�k � yÞ=� ðyt � yÞ2

For H0 : rk ¼ 0; z ¼
ffiffiffiffi
T

p
rk � Nð0; 1Þ

LM test

yt ¼ b1 þb2xt þ rêt�1 þ v̂t Test H0 :r¼ 0 with t-test

êt ¼ g1þg2xt þ rêt�1þ v̂t Test using LM¼ T �R2

AR(1) error yt ¼ b1þb2xt þ et et ¼ ret�1 þ vt

Nonlinear least squares estimation

yt ¼ b1ð1� rÞ þ b2xt þ ryt�1 � b2rxt�1 þ vt

ARDL(p, q) model

yt ¼ dþ d0xt þ dlxt�1 þ � � � þ dqxt�q þ ulyt�1

þ � � � þ upyt�p þ vt
AR(p) forecasting model

yt ¼ dþ ulyt�1 þ u2yt�2 þ � � � þ upyt�p þ vt

Exponential smoothing ŷt ¼ ayt�1 þ ð1� aÞŷt�1

Multiplier analysis

d0 þ d1Lþ d2L
2 þ � � � þ dqL

q ¼ ð1� u1L� u2L
2 � � � � � upL

pÞ
� ðb0 þ b1Lþ b2L

2 þ � � �Þ
Unit Roots and Cointegration

Unit Root Test for Stationarity: Null hypothesis:

H0 : g ¼ 0

Dickey-Fuller Test 1 (no constant and no trend):

Dyt ¼ gyt�1 þ vt

Dickey-Fuller Test 2 (with constant but no trend):

Dyt ¼ aþ gyt�1 þ vt

Dickey-Fuller Test 3 (with constant and with trend):

Dyt ¼ aþ gyt�1 þ lt þ vt

Augmented Dickey-Fuller Tests:

Dyt ¼ aþ gyt�1 þ �
m

s¼1
asDyt�s þ vt

Test for cointegration

Dêt ¼ gêt�1 þ vt
Random walk: yt ¼ yt�1 þ vt
Random walk with drift: yt ¼ aþ yt�1 þ vt
Random walk model with drift and time trend:

yt ¼ aþ dt þ yt�1 þ vt

Panel Data

Pooled least squares regression

yit ¼ b1 þ b2x2it þ b3x3it þ eit

Cluster robust standard errors cov(eit, eis) ¼ cts

Fixed effects model

yit ¼ b1i þ b2x2it þ b3x3it þ eit b1i not random

yit � yi ¼ b2ðx2it � x2iÞ þ b3ðx3it � x3iÞ þ ðeit � eiÞ
Random effects model

yit ¼b1iþb2x2itþb3x3itþeit bit ¼b1þui random

yit�ayi ¼b1ð1�aÞþb2ðx2it�ax2iÞþb3ðx3it�ax3iÞþv�it

a¼ 1�se

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ts2

uþs2
e

q
Hausman test

t ¼ ðbFE;k � bRE;kÞ
�bvarðbFE;kÞ�bvarðbRE;kÞh i1=2
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