
 

 

 

REMIGIJUS LAPINSKAS 
 

  

 

 

 

PRACTICAL ECONOMETRICS. II. 

TIME SERIES ANALYSIS 

 

COMPUTER LABS 

 

*** 

 

 

PRAKTINĖ EKONOMETRIJA. II. 

LAIKINĖS SEKOS 

 

PRATYBOS KOMPUTERIŲ KLASĖJE  
 

 

 

remigijus.lapinskas@mif.vu.lt 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vilnius 2013 



 

Contents – Computer Labs 
 

 

1. Time series: Examples 

• White Noise 

• Random Walk 

• Time Series and R 

2.   Stationary Time Series 

 2.1    AR processes 

 2.2    MA processes 

 2.3    ARMA Processes 

 2.4    Forecasting Stationary Processes 

        2.5   ARCH and GARCH Processes 

3.   Time Series: Decomposition 

• Once Again on White Noise 

• Decomposition 

• The Global Method of OLS 

• The Global Nonlinear Method of Least Squares 

• The Local Method of Exponential Smoothing 

• Local Linear Forecast Using Cubic Splines 

4.   Difference Stationary Time Series 

       4.1  Unit Roots 

       4.2  SARIMA (=Seasonal ARIMA) Models 

5.    Regression with Time Lags: Autoregressive Distributed Lags Models 

6.    Regression with Time Series Variables 

       6.1. Time Series Regression when Both Y and X are Stationary 

       6.2. Time Series Regression when Both Y and X are Trend Stationary: Spurious   

              Regression  

       6.3. Time Series Regression when Y and X Have Unit Roots: Spurious Regression 

       6.4. Time Series Regression when Y and X have Unit Roots: Cointegration 

       6.5. Time Series Regression when Y and X are Cointegrated: the Error Correction Model 

7.   Multivariate Models 

      7.1. Granger Causality 

      7.2. Cointegration 

      7.3. VAR: Estimation and Forecasting 

      7.4. Vector Error Correction Model (VECM)  

      

 

************************************************ 

 

Contents – Lecture Notes 
 

0.  Introduction 

 0.1    Preface 

 0.2    Statistical data and their models     

 0.3    Software 

1.  Time series: Examples 

2.  Stationary Time Series 



 2.1    White Noise - 1 

 2.2    Covariance Stationary Time Series 

 2.3    White Noise - 2 

 2.4    The Lag Operator 

 2.5    The general Linear Process 

 2.6    Estimation and Inference for the Mean, Autocorrelation, and Partial Autocorrelation   

                Functions 

        2.7   Moving-Average (MA) Process 

        2.8   Autoregressive (AR) Models 

        2.9   Autoregressive Moving-Average (ARMA) Models 

        2.10 Specifying and Estimating Models 

        2.11 Forecasting 

        2.12 Financial Volatility and the ARCH Model 

3.  Trend Stationary Time Series 

 3.1  The Global Method of Decomposition 

 3.2  One Local Method of Decomposition 

4.  Difference Stationary Time Series 

       4.1  Unit Roots 

       4.2  Testing in the AR(p) with deterministic trend model 

       4.3. Appendix 

5.  Regression with time lags: autoregressive distributed lags model 

       5.1  Selection of lag order 

       5.2  Dynamic models with stationary variables     

6.  Regresion with time series variables 

        6.1  Time series regression when X  and Y  are stationary 

        6.2  Time series regression when X  and Y  have unit roots: spurious regression 

        6.3  Time series regression when X  and Y  have unit roots: cointegration 

        6.4  Estimation and testing with cointegrated variables 

        6.5  Time series regression when X  and Y  are cointegrated: the error correction model 

        6.6  The long-run and short-run multipliers 

        6.7  Summary 

7.  Multivariate models 

        7.1  Granger causality 

        7.2  VAR: estimation and forecasting 

        7.3  VAR: impulse-response function 

        7.4  Vector error correction model (VECM)  

8.  Endogenous right-hand-side variables 

        8.1  One equation 

        8.2  System of Equations 

9.  Simultaneous equations 

        9.1  Seemingly unrelated regression (SUR) 

        9.2  Multiple equations with endogenous right-hand-side variables 

10. Panel data analysis 

       10.1 Panel data models 

       10.2 Autoregressive panel models  

 

References 

 

 

 



Introduction 

 

These computer labs are to accompany the Lecture Notes „Practical econometrics.II. Time 

series analysis“. We shall use two software programs, GRETL and R, interchangeable. 
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1. Time Series: Examples 

                                                 

In Fig.1.1, one can see a graph of a typical time series 
t

y
1
 together with three of its components. 

Time series can usually be split into three components: clearly seen regular part, a so-called 

trend 
t

Tr , seasonal part 
2
 

t
S  (there are less passengers in the winter time) and, hopefully, not 

very big random errors 
t
ε ; in general, we shall write 

t t t t
Y Tr S ε= + + . Note that in Fig. 1.1 not 

the trend 
t

Tr  is drawn but only its estimate � tTr  (the same applies to other components, ˆ
t

S  and 

ˆ
t t

e ε= , but we shall not be too pedantic). One of the objectives of the time series analysis is to 

extract from tY  these three components and use them for analysis, comparison or forecast.  

 
help.search("AirPassengers");library(datasets) 

data(AirPassengers);dec=decompose(log(AirPassengers)) # extracts three comp. 

plot(dec) 

Time

lo
g
(A

ir
P

a
s
s
e
n
g
e
r
s
)

1950 1954 1958

5
.0

5
.5

6
.0

6
.5

Time

T
re

n
d
a
s

1950 1954 1958

4
.8

5
.2

5
.6

6
.0

Time

S
e
z
o
n
in
ė
 d

a
lis

1950 1954 1958

-0
.2

-
0
.1

0
.0

0
.1

0
.2

Time
M

o
d
e
lio

 l
ik

u
č
ia

i

1950 1954 1958

-
0
.1

0
-
0
.0

5
0
.0

0
0
.0

5

 

Fig. 1.1. The graphs of the time series log(AirPassengers) and its three 

components (trend, seasonal part and residuals) 

 

If residuals make a stationary process, we assume that we have created a proper model (i.e., the 

components were extracted correctly). Recall that the process is stationary if its trajectories 

randomly and more or less regularly fluctuate around a constant (its mean). The stationary 

process also has a mean reversion property, that is, whatever is its value, it tends to get back to 

the mean. The right-most graph is similar to that of stationary process (though one can see 

something like periodicity in it; on the other hand, the amplitude of oscillations in the middle is 

less than elsewhere – anyway, we assume that our procedure (described in what follows) has 

correctly decomposed the time series).    

 

 

• White Noise 

 

This is a fundamental example of stationary process – the white noise is a sequence of 

uncorrelated random variables with zero mean and constant variance. Note that we do not 

mention the distribution of the random variables but often it is assumed that they are normal or 

                                                 
1
 This is the classical Box and Jenkins‘s airline data set (it contains monthly, 1949-1960, totals of international 

airline passengers; the set can be found in the datasets package, data set AirPassengers). Notice that in Fig. 

1.1 the logarithms are drawn. This data is also analysed in 1.12 exercise. 
2
 Both trend and seasonal components are treated as nonrandom curves. 
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Gaussian. The white noise is a model of absolutely chaotic process of uncorrelated observations, 

a process which immediately forgets its past.  

 

Let us plot three trajectories of (normal) white noise, (1) (2) (3), ,
t t t

y y y (it is impossible to plot all the 

trajectories of random process (because there are infinitely many of them), therefore we shall 

artificially create some of them).    

 

We start with a few remarks on the set.seed function. R „knows“ how to generate a (very 

very long) sequence of uniformly in the interval [0,1] distributed random numbers (r.n.). A part 

of the sequence we can produce with the runif (=r+unif) function: 

 
> runif(10) 

 [1] 0.81878843 0.13345228 0.07379024 0.01138173 0.13101318 

 [6] 0.20613918 0.16512315 0.51821997 0.47321645 0.52996317 

 

If we apply the function once again, it will produce the next ten numbers of that sequence: 

 
 > runif(10) 

 [1] 0.01618378 0.15645068 0.10320850 0.46572912 0.53319667 

 [6] 0.34754886 0.57468911 0.17348361 0.57527263 0.82605006 

 

To generate always the same sequence of r.n., R must know from where to begin the sub- 

sequence. This can be achieved by indicating the starting point with the set.seed function 

before starting  runif anew. All the other r.n. (normal, Poisson etc) can be obtained from the 

uniform, therefore, in order to get the same sequence, one has to point the starting point with  

set.seed(int), where int is any integer.  

 
set.seed(10)    # fix the beginning 

opar=par(mfrow=c(1,3)) 

y=ts(rnorm(50));plot(y,ylim=c(-2.5,2.5));abline(0,0) # 50 elements long seq. 

y=ts(rnorm(50));plot(y,ylim=c(-2.5,2.5));abline(0,0) # Another sequence 

y=ts(rnorm(50));plot(y,ylim=c(-2.5,2.5));abline(0,0) # Continuation 

par(opar) 
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Fig. 1.2.  Three trajectories (paths) 
(1) (2) (3)

, ,
t t t

y y y of normal white noise (note that some 

trajectories do not seem „quite regular“)  

 

We shall use the symbol 
t

W  in the future to denote white noise; its trajectories (realizations) will 

be denoted by 
t

w . 
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• Random Walk 

 

The random walk process is in a way opposite to stationary (it does not oscillate around a 

constant, it is characterized by long excursions up and down, it does not have the mean reversion 

property). 

  

1.1 example.  The gambler begins with an initial capital of 0y =$10 and during each play he 

wins or loses $1 with probability 0.5. It is easy to verify that his capital at moment t is expressed 

by the formula 0 1

t

t ti
Y y ε

=
= +∑  where 

t
ε  are his (uncorrelated) gains at moment t. The process 

t
Y  is called the random walk. It does not „more or less regularly fluctuate around a constant“ 

because its variance increases: var
t

Y ct const= ≠ (can you prove that?).  

 

set.seed(10) 

opar=par(mfrow=c(1,3)) 

wn1=sample(c(-1,1), 100, replace = TRUE)  # Random sampling from a set of  

    # -1 and 1.  

rw1=cumsum(wn1)+10   # cumsum:(x1,x2)→(x1,x1+x2) 

 

plot(rw1,type="l") 

wn2=sample(c(-1,1), 100, replace = TRUE) # generates gains 

rw2=cumsum(wn2)+10   # generates cumulative capital 

plot(rw2,type="l") 

wn3=sample(c(-1,1), 100, replace = TRUE) 

rw3=cumsum(wn3)+10 

plot(rw3,type="l") 

par(opar) 
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Fig. 1.3.  Three trajectories of Bernoulli random walk; note long excursions up and 

down. 

 

�� Note that the construction of random walk rw consists of two steps:  

 

1) Generate any white noise wn (for example, wn1 – does it satisfy the definition of white 

noise?); it will represent random gains. 

2) Use cumsum(wn) and generate your accumulated capital rw.  

 

 

1.1 exercise. Generalize this (Bernoulli) random walk by assuming that the gain is a normal r.v. 

N(0,1). Hint. To generate this wn use the function rnorm(100)(=rnorm(100,mean=0)).� 
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This process can still be generalized by assuming that during each play the gambler gets not only 

his gainings but also a premium of a=$0.20: 1 2 1( ) ( ) ...t t tt t tY a YY a aε ε ε− − −= + + = + + + + =   

0
1

t

s

s

y taε

=

= + +∑  (this is a a random walk with a drift a ). 

 

1.2 exercise. Draw two paths of a random walk with drift with 0 10y =  and 0.2a = . Hint. 

Replace rnorm(100) by  rnorm(100,mean=0.2). 
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Fig. 1.4.  Two graphs of a random walk till bankruptcy (left) and two paths of a random 

walk with drift (right; the black line denotes the mean value of the process: 

10 0.2y n= + ). 

 

• Time Series and R  

 

In R, a time series is a vector with some additional attributes. Select the Courier New text below 

and using Copy+Paste move it to the console of R:  

 
shipm1 = c(42523, 46029, 47485, 46692, 46479, 48513, 42316, 45717, 48208, 

47761, 47807, 47772, 46020, 49516, 50905, 50226, 50678, 53124, 47252, 47522, 

52612, 53800, 52019, 49705, 48864, 53281, 54668, 53740, 53346, 56421, 49603, 

52326, 56724, 57257, 54335, 52095, 49714, 53919, 54750, 53190, 53791, 56790, 

49703, 51976, 55427, 53458, 50711, 50874, 49931, 55236, 57168, 56257, 56568, 

60148, 51856, 54585, 58468, 58182, 57365, 55241, 54963, 59775, 62049, 61767, 

61772, 64867, 56032, 61044, 66672, 66557, 65831, 62869, 63112, 69557, 72101, 

71172, 71644, 75431, 66602, 70112, 74499, 76404, 75505, 70639, 71248, 78072, 

81391, 80823, 82391, 86527, 77487, 83347, 88949, 89892, 85144, 75406) 

 
> class(shipm1) 

[1] "numeric" 
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The vector shipm1 is value of shipments, in millions of dollars, monthly from January, 1967 to 

December, 1974. This represents manufacturers' receipts, billings, or the value of products 

shipped, less discounts, and allowances, and excluding freight charges and excise taxes. 

Shipments by foreign subsidiaries are excluded, but shipments to a foreign subsidiary by a 

domestic firm are included. Source: U. S. Bureau of the Census, Manufacturer's Shipments, 

Inventories and Orders.  

 

To transform the vector to time series object, one should indicate the initial date and monthly 

frequency
3
:  

 
shipm = ts(shipm1, start=1967, freq=12)  
 
> shipm 

       Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec 

1967 42523 46029 47485 46692 46479 48513 42316 45717 48208 47761 47807 47772 

1968 46020 49516 50905 50226 50678 53124 47252 47522 52612 53800 52019 49705 

............................................................................ 

1973 63112 69557 72101 71172 71644 75431 66602 70112 74499 76404 75505 70639 

1974 71248 78072 81391 80823 82391 86527 77487 83347 88949 89892 85144 75406 

 

Now shipm has a time series structure: 

 
> class(shipm) 

[1] "ts" 

 

Inside R, shipm is now expressed as follows: 
 

> dput(shipm) # The function dput describes the internal structure of shipm 

structure(c(42523, 46029, 47485, 46692, 46479, 48513, 42316, 45717, 48208, 47761, 

47807, 47772, 46020, 49516, 50905, 50226, 50678, 53124, 47252, 47522, 52612, 53800, 

52019, 49705, 48864, 53281, 54668, 53740, 53346, 56421, 49603, 52326, 56724, 57257, 

54335, 52095, 49714, 53919, 54750, 53190, 53791, 56790, 49703, 51976, 55427, 53458, 

50711, 50874, 49931, 55236, 57168, 56257, 56568, 60148, 51856, 54585, 58468, 58182, 

57365, 55241, 54963, 59775, 62049, 61767, 61772, 64867, 56032, 61044, 66672, 66557, 

65831, 62869, 63112, 69557, 72101, 71172, 71644, 75431, 66602, 70112, 74499, 76404, 

75505, 70639, 71248, 78072, 81391, 80823, 82391, 86527, 77487, 83347, 88949, 89892, 

85144, 75406), .Tsp = c(1967, 1974.91666666667, 12), class = "ts") 

 

> tsp(shipm) 

[1] 1967.000 1974.917   12.000               

> start(shipm) 

[1] 1967    1     

> end(shipm) 

[1] 1974   12 

> frequency(shipm) 

[1] 12 

> attributes(shipm) 

$tsp 

[1] 1967.000 1974.917   12.000 

$class 

[1] "ts" 
 

 

The function plot draws the graphs of shipm1 and shipm; note that the shape of the graph 

depends on the class of the object. 

 
opar=par(mfrow=c(1,2)) 

plot(shipm1) # The graphs are different for different classes 

                                                 
3
 If  freq=12, R will treat the data as monthly; if freq=4 as quarterly.  
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plot(shipm) 

par(opar) 
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Fig. 1.5. The graphs of a vector shipm1 and the time series shipm 

 

1.3 exercise. Assign a time series structure to the random walk from 1.2 exercise and draw its 

graph. Experiment with number of observations, start and freq attributes. 

 

1.4 exercise.  

 
help.search("housing")  # find the data set housing 

library(fma) # attach the package fma 

library(help=fma) # description of the package   

data(housing) # unzip the file housing 

housing  # the data set 

?housing  # description of the data 

class(housing) 

dim(housing) 

 

When begins and when ends this three dimensional time series? What is its frequancy? Plot its 

graph. What is the meaning of each series?  

 

1.5 exercise. Find the data set AirPassengers and explore it (class, start, frequency etc). 
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2. Stationary Time Series 

 

Once we have „correctly“ decomposed a time series into three components: t t t tY T S ε= + + , the 

errors tε
1
 must constitute a stationary process. If this stationary process is WN, its near and distant 

forecasts are trivial – it is just its mean, i.e., 0. In other cases, the forecast depends on the structure 

of a stationary process, more specifically, on its past values. This chapter is to describe some classes 

of stationary processes. 

 

2.1. White Noise 

 

The simplest stationary process is a white noise (this is a sequence of uncorrelated r.v. with a cons-

tant, often zero, mean and constant variance). In R, the functions rnorm(n), runif(n,-a,a) 

and like generate namely a white noise. To learn that your sequence Y(=lh) is white noise, per-

form two steps:  

 
library(datasets) 

?lh 

data(lh); plot(lh) 

 

1)  Visual inspection.   

 
library(forecast) 

tsdisplay(lh)   # lh is time series 

 

Follow the rule: if all the first 5-10 bars in both ACF and PACF are inside the blue lines, the time 

series is most probably a white noise. In our case, lh is most probably not a white noise (the first 

ACF and PACF bars are outside the blue band).    �� 

 

Before taking Step 2, a few words about the stationary ARIMA model whose general form is ARI-

MA(p,0,q)(P,0,Q)[freq]. The time series 
t

Y  is a white noise if it is described by ARI-

MA(0,0,0)(0,0,0)[freq] or, in a shorter form, ARIMA(0,0,0) (in this case 
t

Y = const + 

t
ε ). Now, to take the  final decision, go to Step 2: 

 

2)  perform the Ljung-Box test with 0 :H Y is a white noise. Follow the rule: if at least one of 

the first 5-10 bubles is below the 5% critical blue line, reject 0H  (in other words, Y is then not a 

white noise).  

 
mod.000 <- arima(lh, c(0,0,0))  # to express lh as const + res. 

mod.000 

Coefficients: 

      intercept 

         2.4000  # Note: 2.400± 2*0.0788 does not include 0⇒intrc. is signif.     

s.e.     0.0788 

 

sigma^2 estimated as 0.2979:  log likelihood = -39.05,  aic = 82.09 

                                                 
1
 In reality, we observe residuals t̂ teε = , which should not differ much from the errors 

t
ε . 
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tsdiag(mod.000)  # mod.000 is a model 

 

Note that tsdisplay is applicable to time series Y whereas tsdiag to arima model (tsdiag 

expresses lh as 2.4000 + mod.000$res and tests whether residuals make a white noise). Our 

conclusion: according to its graph, lh is a stationary time series but according to ACF and PACF as 

well as Ljung-Box test, not a white noise.  � 

 

2.1 example. The file cret.ret.txt contains montly returns on citigroup stock starting from 1990:01. 

 
cret=ts(scan(file.choose(),skip=1),start=c(1990,1),freq=12) 

cret 

plot(cret) 

tsdisplay(cret) 

cret.000=arima(cret,c(0,0,0)) 

tsdiag(cret.000) 

 

Both steps confirm that our data is WN (why?). In the future, we shall try to answer the question “is 

cret a WN or not?“ using the function auto.arima from the forecast package:  

 
(cret.auto=auto.arima(cret)) 

Series: cret  

ARIMA(2,0,0)(1,0,0)[12] with non-zero mean  

 

Coefficients: 

          ar1      ar2     sar1  intercept 

      -0.0393  -0.0889  -0.1289     0.0277 

s.e.   0.0960   0.0959   0.1173     0.0075 

 

sigma^2 estimated as 0.009589:  log likelihood=97.59 

AIC=-185.18   AICc=-184.6   BIC=-171.77 

 

The auto.arima function returns the best ARIMA model according to the smallest AIC value 

and claims that our model is not a white noise (because it is not an ARIMA(0,0,0)). Note that the 

function does not care whether coefficients are 

significant (the seasonal AR(1) term sar1 is not 

significant because the confidence interval -0.1289 

± 2*0.1173 includes 0; we shall explain what sea-

sonality means later) and whether residuals make a 

WN. To see whether these two models differ signi-

ficantly, run 

 
plot(cret) 

lines(fitted(cret.000),col=2,lwd=2) 

lines(fitted(cret.auto),col=3,lwd=2) 

 

The cret.auto model is more precise (it 

follows cret more closely) but we would like to 

apply the general rule – all the coefficients must be 

significant. We improve the cret.auto model 

by forbidding insignificant seasonal term: 

 
(cret.auto.noS=auto.arima(cret,seasonal=FALSE)) 

Series: cret  

ARIMA(0,0,0) with non-zero mean  

Time

c
re

t

1990 1992 1994 1996 1998

-0
.3

-0
.1

0
.1

0
.2
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Coefficients: 

      intercept 

         0.0269 

s.e.     0.0095 

 

AIC=-189.19   AICc=-189.08   BIC=-183.83 

 

Surprisingly, this single improvement brings us back to a more natural model ARIMA(0,0,0).  

 

To forecast cret 24 months ahead, run 
 

par(mfrow=c(1,2)) 

plot(forecast(cret.000),include=48,main="cret.000")  # 2*12 months forecast  

abline(mean(cret),0,col=2) 

plot(forecast(cret.auto),include=48,main="cret.auto") # leave only 48 histor. 

                       # observations in plot 

abline(mean(cret),0,col=2) 
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Thus, if the model is WN, the forecast (left) is just the mean of the time series. If the model is not a 

WN (right), the forecast tends to the mean.    �� 

 

2.2. Stationary Processes 

 

Recall that 
t

Y  is stationary if its mean and variance do not change in time (all trajectories of statio-

nary process fluctuate around its mean with more or less constant spread). The process 
t

Y  is stable 

if its distribution tends to stationary (if the process starts at a point far from its mean, its trajectory 

will tend towards the mean; we say that a stable process has the mean reverting property). The con-

cept of stable process is close to stationarity: stationary process is stable, stable process tends to 

stationary. 

 

The known Wold‘s decomposition theorem claims that practically any stationary
2
 process  

, ,
t

Y t∈Z  may be expressed as a linear combination of the values 
t j

w −  of some WN process:  

                                                 
2
 More specifically, stationary in wide or covariance sense. 
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2

0
,

t j t j jj
Y k w kµ

∞

−=
= + < ∞∑ ∑ ; 

 

to simplify notation, we shall assume that the number µ  (it is the (constant) mean of 
t

Y ) equals ze-

ro. The mean of a stationary process µ  and its variance 2 2 2 2

0
( )

Y w ii
kσ σ σ

∞

=
= = ∑  are constant, there-

fore all the information about the process is contained in its (auto)covariance function (ACF) ( )sγ  

or (auto)correlation function ( )sρ : 

 

( )2

0
( ) cov( , ) ,

( ) corr( , ) (what is its definition ?), 1,2,...

t t s w i i si

t t s

s Y Y k k

s Y Y s

γ σ

ρ

∞

+ +=

+

= =

= = =

∑
. 

 

One should distinguish a theoretical covariance function ( )sγ  and its estimate (sample covariance 

function) 
min( , )

max(1, )

1
( ) ( )( ),

n s n

i s i

i s

c s Y Y Y Y
n

−

+
= −

= − −∑  

 

which is only for „large“ n close (because of the law of large numbers) to ( )sγ . The same proposi-

tion holds for the correlation function ( )sρ  and its estimate  ( ) ( ) / (0)r s c s c=  (the ACF graph plots 

namely this function). 

 

We usually have only a finite number of time series observations, therefore it is impossible to „res-

tore“ (that is, estimate) infinitely many coefficients 
j

k . The famous Box - Jenkins‘s ARMA model 

was introduced to approximate a stationary process by a process described by a finite number of 

parameters. 

 

•   A process 
t

Y  is called the AR(p) process (AutoRegressive process of order p), if it satisfies 

the equation 0 1

p

t i t i ti
Y a a Y w−=
= + +∑  (the simplest variant is AR(1) described by 

t
Y =  

0 1 t i t
a a Y w−+ + ; it is stationary if 1| | 1a < and its constant mean then equals 0 1/ (1 )a a− ).  

 

•   A process 
t

Y  is called the MA(q) process (Moving Average process of order q)), if
3
 

t
Y =      

00
, 1,

q

j t ji
b w bµ −=

+ =∑  (the simplest variant is MA(1) described by 1 1t t t
Y w b wµ −= + + , it is 

always stationary and its mean equals µ ). 

•   A process 
t

Y  is called the ARMA(p,q) process
4
, if 

1 0

p q

t i t i j t ji j
Y a Y b wµ − −= =
= + +∑ ∑ (the sim-

plest variant is ARMA(1,1) process 1 1 1 1t t t t
Y a Y w b wµ − −= + + +  and its mean equals 

1/ (1 )aµ − ). 

 

Each type can be recognized by its ACF and PACF plots but we shall use auto.arima function 

to do the job (if necessary, slightly correct the output and test whether residuals ˆ
t

w  make a WN) 

                                                 
3
   When defining the MA process, we do not need to know both the variance σ

2
 of the process wt and the coefficient 

0b ;  we choose 0 1b = . 
4
   Some authors define ARMA in a different way. 
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Most of the functions for the analysis of the ARMA processes are in the MASS, tseries and 

forecast packages.  

• AR 

2.2 example. Generate and plot 100 values of the AR(1) process with 0 1a =  and 1) 1 0.7a = , 2) 

1 1a = , and 3) 1 1.2a = . Forecast the 1st variant (why is it stationary?) 20 time periods ahead.  

 
N=100 

a0=1 

a1=c(0.7,1,1.2) 

y=vector("list",3)  # save space for 3 time series 

set.seed(12) 

for(j in 1:3) 

{ 

y[[j]][1]=5     # all series begin in 1Y =5 

 for(i in 2:N)   # this loop generates 100 observations 

 { 

 y[[j]][i]=a0+a1[j]*y[[j]][i-1]+rnorm(1)  

 } 

} 

yts07=ts(y[[1]],freq=4)  # assign ts attributes 

yts07 

yts10=ts(y[[2]],freq=4) 

yts10 

yts12=ts(y[[3]],freq=4) 

yts12 

 

par(mfrow=c(1,3)) 

plot(yts07)     # see Fig. 2.1 

plot(yts10) 

plot(yts12) 
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Fig. 2.1. Stationary with 1 0.7a =  (left), random walk with 1 1.0a =  (center), and explosion (for 

example, hyperinflation) with 1 1.2a =  (right); only the left variant is stationary 

 

 

 

 

 



© R. Lapinskas, PE.II–Computer Labs - 2014 

2. Stationary Time Series 

 

 2 - 6  

(y.mod07=auto.arima(yts07)) 

 

ARIMA(1,0,0) with non-zero mean  

Coefficients: 

         ar1  intercept 

      0.6976     3.3560 

s.e.  0.0713     0.2794 

 

par(mfrow=c(1,3)) 

plot(forecast(y.mod07,20),include=40)  # see. Fig. 2.2, left 

abline(10/3,0,col=2) 

 

The AR process (here it is AR(2)) may also be generated with the arima.sim function:   

 
set.seed(1) 

Y3 <- arima.sim(200, model=list(ar=c(0.5,0.1))) 

plot(forecast(auto.arima(Y3),h=10),include=30) 

abline(0,0,col=2)   # see Fig. 2.2, center 

 

# the second path: 

Y4 <- arima.sim(200, model=list(ar=c(0.5,0.1))) 

plot(forecast(auto.arima(Y4),h=10),include=30) 

abline(0,0,col=2)   # see Fig. 2.2, right 

 

Forecasts from ARIMA(1,0,0) with non-zero mean

20 25 30

1
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3
4
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7

Forecasts from ARIMA(2,0,0) with zero mean    
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2

-1
0

1
2

 
 

Fig. 2.2. The forecasts tend to the mean of the process. 

2.1 exercise.  Assume that we have forgoten the origin of the time series Y3. Create its model with 

auto.arima, test residuals for WN and forecast the model 24 time periods ahead.  

2.2 exercise. The file unemp.txt in the folder PEdata contains quarterly data on the U.S. unemp-

loyment, 1948:01 iki 1978:01. Analyze the data and determine its model with auto.arima. Do 

the residuals constitute WN? (apply tsdisplay and tsdiag5 functions from the forecast 

package). Forecast unemployment two years ahead, draw respective graph.     

 

2.3 exercise. The R‘s data set presidents contains the (approximately) quarterly approval ra-

ting for the President of the United States from the first quarter of 1945 to the last quarter of 1974. 

Create an appropriate AR model. 
 

                                                 
5
 The argument to tsdisplay is time series and to tsdiag its arima model. 
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2.4 exercise. On p. 2 - 1 we saw that lh is not a WN. Can you find a better model for this time 

series? 

 

 

• MA and ARMA 
 

We have already mentioned that AR(p) in „good“ cases is a stationary process (but not a WN; when 

AR(1) is stationary?) Here is one more example of a stationary process: the process 

0 1 1 0... , 1,
t t t q t q

Y b w b w b w bµ − −= + + + + =  is called a Moving Average process of the q-th order and 

denoted MA(q) (the simplest MA process is MA(1):  1 1t t t
Y w b wµ −= + + ). 

 

2.3 example. The internet site http://www.stat.pitt.edu/stoffer/tsa2/ contains the file varve.dat 

where the yearly time series varve is presented. Here is the description of the file:  

 

Melting glaciers deposit yearly layers of sand and silt during the spring melting seasons, which can 

be reconstructed yearly over a period ranging from the time deglaciation began in New England 

(about 12,600 years ago) to the time it ended (about 6,000 years ago). Such sedimentary deposits, 

called varves, can be used as proxies for paleoclimatic parameters, such as temperature, because, in 

a warm year, more sand and silt are deposited from the receding glacier. Fig. 2.3 shows the thick-

nesses of the yearly varves collected from one location in Massachusetts for 634 years, beginning 

11,834 years ago. Because the variation in thicknesses increases in proportion to the amount deposi-

ted, a logarithmic transformation could remove the nonstationarity observable in the variance as a 

function of time. Fig. 2.3 shows the original and transformed varves, and it is clear that this impro-

vement has occurred. The ordinary first differences 1log( ) log( )
t t

Y Y −−  will also improve stationari-

ty. 

 

One can import the data as follows: 

 
varv = ts(scan("http://www.stat.pitt.edu/stoffer/tsa2/data/varve.dat")) 

 

As proposed, we shall analyze logarithmic differences.  

 
lvarv=log(varv) 

dlvarv=diff(log(varve))  # create log-differences 

par(mfrow=c(1,3))    # see Fig. 2.3  

plot(varv)    # nonstationary with varying mean and amplitude 

plot(lvarv))   # nonstationary with varying mean 

plot(dlvarv)   # stationary, see Fig. 2.3, right 

par(mfrow=c(1,1)) 

 

Recall that the meaning of the log-differences is the yearly percentage change (of varv in our ca-

se), this series is often stationary.  
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Fig. 2.3. The right graph of varv is statio-

nary 

 

To create the model of dlvarv, run  

 
(varv.mod1=auto.arima(dlvarv)) 

Series: dlvarv  

ARIMA(1,0,1) with zero mean      

 

Coefficients: 

         ar1      ma1 

      0.2330  -0.8858 

s.e.  0.0518   0.0292 

 

AIC=868.88   AICc=868.91   BIC=882.23 

 

(thus dlvarv is described by ARMA(1,1)) and it 

is a good model because its both terms are signifi-

cant (why?) and residuals constitute a WN: 
 

tsdiag(varv.mod1)  # see to the right 

 

To forecast varv 10 years ahead, run 
 

plot(forecast(varv.mod1),include=50) 

 

Note that if 
t

Y  is described by the model ARIMA(p,1,q), it means that the first difference 
t

Y∆ =  

1t t
Y Y −−  is ARIMA(p,0,q) or, in short, ARMA(p,q). In other words, if lvarv = log(varv) is 

described by ARIMA(1,1,1) then dlvarv by ARIMA(1,0,1) (this explains the meaning of the let-

ter I). Indeed, 

 
(varv.mod2=auto.arima(lvarv)) 

Series: lvarv  

ARIMA(1,1,1)                     

 

Coefficients: 

         ar1      ma1 

      0.2330  -0.8858 

s.e.  0.0518   0.0292 

AIC=868.88   AICc=868.91   BIC=882.23 
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2.5 exercise. Use arima.sim to generate any MA(3) process (choose the parameters yourself). 

Use auto.arima to create a respective model.         �� 

• ARMA 

We already know that stationary processes can be written as infinite or finite sums: 
2

0
,

t j t j jj
Y k w kµ

∞

−=
= + < ∞∑ ∑ . We cannot estimate infinitely many parameters therefore we try to 

simplify the model and replace the infinite sequence of coefficients 2 31, , ,...k k  with an appropriate 

finite set
6
.  

 

Recall that  

• if the process 
0

j

t j tj
Y k L w

∞

=
=∑  (where 1t t

LY Y −= ) is satisfactory described by the process 

( ) 00
, 1

q
j

j tj
b L w b

=
=∑  (i.e., 1 1 ...

t t t q t q
Y w b w b w− −= + + + ), it is called an MA(q) process,  

• if by the process 
2

1 2

1

1 ...
tp

p

w
a L a L a L− − − −

 (i.e., 1 1 ...
t t p t p t

Y a Y a Y w− −= + + + ), an AR(p) 

process, 

• and if by the process 1

2

1 2

1 ...

1 ...

q q

tp

p

b L b L
w

a L a L a L

+ + +
− − − −

 (i.e., 1 1 ...
t t p t p t

Y a Y a Y w− −= + + + +  

1 1 ...
t q t q

b w b w− −+ + ), an ARMA(p,q) process
7
. The ARMA(p,q) (or ARIMA(p,0,q)) process 

could also be expressed as 
1 0

p q

t i t i j t ji j
Y a Y b w− −= =
= +∑ ∑  or 1(1 ... )p

p t
a L a L Y− − − =  

1(1 ... )q

q t
b L b L w+ + +  where, if necessary, a constant on the right hand side is added. 

 

2.6 exercise. Generate
8
  

 

• 200-observation-long white noise 

• 150-observation-long MA(2) process (for example, 20.3 (1 1.3 0.4 )
t t

y L L w= + − + ) 

• AR(1) process with 100 observations (for example, (1 0.7 ) 1.8
t t

L y w− = + ) 

• ARMA(1,1) process with 300 observations (for example, (1 0.9 ) 0.7 (1 0.5 )
t t

L y L w− = + − ) 

 

Plot the processes and their sample ACF and PACF. Use the following rule to determine the type 

and order of respective process: 

 

AR(p) – ACF declines, PACF = 0 if k > p 

MA(q) – ACF = 0 if k > q, PACF declines 

ARMA(p,q) – both ACF and PACF decline 

 

This rule is easy to apply theoretically but not so easy for sample ACF and PACF, therefore parallel 

your analysis with auto.arima.        �� 

                                                 
6
 That is, to approximate original stationary time series with a simpler stationary process. 

7
 It is not so easy to divide a polynomial by a polynomial, therefore the estimation procedure is rather complicated. 

8
 This can be done with the arima.sim function (it generates a process with a zero mean, thus if necesary you have to 

calculate the mean of the process and add it to the time series generated) or directly following the definition and using 

the necessary loop in R. 
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2.7 exercise. Below you can see the seasonally adjusted quarterly Canadian employment data, 

1961:01-1994:04. 

 
caemp = structure(c(83.09, 82.8, 84.634, 85.377, 86.198, 86.579, 88.05, 87.925, 88.465, 88.398, 89.449, 90.556, 

92.272, 92.15, 93.956, 94.811, 96.583, 96.965, 98.995, 101.138, 102.882, 103.095, 104.006, 104.777, 104.702, 

102.564, 103.558, 102.986, 102.098, 101.472, 102.551, 104.022, 105.094, 105.195, 104.594, 105.813, 105.15, 

102.899, 102.355, 102.034, 102.014, 101.836, 102.019, 102.734, 103.134, 103.263, 103.866, 105.393, 107.081, 

108.414, 109.297, 111.496, 112.68, 113.061, 112.377, 111.244, 107.305, 106.679, 104.678, 105.729, 107.837, 

108.022, 107.282, 107.017, 106.045, 106.371, 106.05, 105.841, 106.045, 106.651, 107.394, 108.669, 109.629, 

110.262, 110.921, 110.74, 110.049, 108.19, 107.058, 108.025, 109.713, 111.41, 108.765, 106.289, 103.918, 100.8, 

97.4, 93.244, 94.123, 96.197, 97.275, 96.456, 92.674, 92.854, 93.43, 93.206, 93.956, 94.73, 95.567, 95.546, 

97.095, 97.757, 96.161, 96.586, 103.875, 105.094, 106.804, 107.787, 106.596, 107.31, 106.897, 107.211, 107.135, 

108.83, 107.926, 106.299, 103.366, 102.03, 99.3, 95.305, 90.501, 88.098, 86.515, 85.114, 89.034, 88.823, 88.267, 

87.726, 88.103, 87.655, 88.4, 88.362, 89.031, 91.02, 91.673, 92.015), .Tsp = c(1961, 1994.75, 4), class = "ts") 

 

Analyze the series. �� 

 

• Forecasting Stationary Processes 

 

The white noise process is a process with „no memory“
9
, therefore its forecast is of no interest – it 

is always the mean. On the other hand, AR, MA, or ARMA processes correlate with their past, thus 

we may use this information. If the process is modeled with the arima function, forecast it with 

the forecast function from the forecast package.    

 

AR(1) 

 
library(forecast) 

set.seed(1) 

par(mfrow=c(1,1)) 

ar1=arima.sim(n=200,list(ar=0.8)) 

ar1.est=arima(ar1,order = c(1, 0, 0)) 

# or use auto.arima 

plot(forecast(ar1.est,20),include=30) 

abline(mean(ar1),0,col=5) 

 

The forecast exponentially fast tends to the 

(sample) mean of the time series. 

 

AR(2) 

 
set.seed(2) 

par(mfrow=c(1,2)) 

ar2=arima.sim(n=200,list(ar=c(-0.8,-0.6))) 

ar2.est=arima(ar2,order = c(2, 0, 0)) 

# or use auto.arima 

plot(forecast(ar2.est,10),include=30) 

abline(mean(ar2),0,col=5) 

 

ar2=arima.sim(n=200,list(ar=c(0.15,0.4))) 

ar2.est=arima(ar2,order = c(2, 0, 0)) 

# or use auto.arima 

plot(forecast(ar2.est,10),include=30) 

abline(mean(ar2),0,col=5) 

 

                                                 
9
 Because it is a sequence of uncorrelated random variables. 

Forecasts from ARIMA(1,0,0) with non-zero mean

170 180 190 200 210 220
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In the first case, the roots of the inverse characteristic equation 11 ... 0p

p
a z a z− − − =  are bigger in 

modulus than 1 (it means that the process is stationary) and complex , therefore the forecast tends to 

the mean oscillating; in the second case, the roots are real and therefore the convergence is monoto-

ne. 

2.8 exercise. Analyze the behavior of the forecast in MA and ARMA cases. 

2.9 exercise. Forecast the caemp time series two years ahead. 

 

Forecasts from ARIMA(2,0,0) with non-zero mean

170 180 190 200 210

-3
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3

Forecasts from ARIMA(2,0,0) with non-zero mean
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Fig. 2.4. If the inverse equation has a complex root, the forecast oscillates (left); if all the 

roots are real, the convergence to the mean is monotone (right). 

 

2.10 exercise. In the data set GermanMoneySystem.txt, the variable R is the nominal long-term in-

terest rate (quarterly data, 1972:1-1998:4). Plot necessary graphs. Remove the quadratic trend. Do 

residuals make WN? Choose the right model for residuals. Do the differences   1t t t tD R R R −= ∆ = −  

make WN? Choose the best model for differences.    �� 

 

2.3. ARIMA model and arima and auto.arima functions  

 

Here are some examples which should help you to systematize you knowledge about the stationary 

ARIMA(p,d,q) model (the necessary, but not sufficient, condition for stationarity is d=0; for 

example, the process ARIMA(1,0,0) is stationary if 1| | 1a < ). 

 

• If 
t

X  is ARIMA(p,0,q) or ARMA(p,q), i.e., 0 1 1 ...
t t p t p

X a a X a X− −− − − − =  1 1 ...
t t

bε ε −+ +  

q t q
b ε −+ , 2~ (0, )

t
WN εε σ , its parameters 

i
a  and 

j
b  are estimated with arima(x, 

c(p,0,q)), for example, 
 
library(lmtest) 

library(forecast) 

?unemployment 

unp=unemployment[,1] 

tsdisplay(unp) 

arima(unp,c(2,0,3))  # ARIMA(2,0,3) 

 

ARIMA(2,0,3) with non-zero mean  
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Coefficients: 

         ar1      ar2      ma1      ma2     ma3  intercept 

      1.7443  -0.7839  -0.6930  -0.4890  0.1821     6.4157 

s.e.  0.1022   0.1010   0.1583   0.1168  0.1416     0.2279 

 

AIC=423.26   AICc=424.63   BIC=440.76 

 

Is the ARMA(2,3) model good for unp? - no, because ma3 term is insignificant. Remove it and 

continue until you will get all significant terms (you will get ARMA(1,1)). 

 

• If 
t

X  is ARIMA(p,0,0) or ARMA(p,0) or AR(p), i.e., 0 1 1 ...
t t p t p t

X a a X a X ε− −− − − − = , 

2~ (0, )
t

WN εε σ , its parameters 
i

a  are estimated with arima(x,c(p,0,0))or ar(x) 

(the latter function chooses the order p by the minimum of AIC), for example, 
 

ar(unp) 

 

Coefficients: 

      1        2        3        4   

 1.0876  -0.4760   0.2978  -0.1920   

 

Order selected 4  sigma^2 estimated as  6.165 

 

or, once you know the order, 

 
arima(unp,c(4,0,0)) 

 

ARIMA(4,0,0) with non-zero mean  

 

Coefficients: 

         ar1      ar2     ar3      ar4  intercept 

      1.1171  -0.5594  0.4292  -0.2806     6.3341 

s.e.  0.1020   0.1536  0.1598   0.1083     0.8399 

 

AIC=422.83   AICc=423.85   BIC=437.83 

 

(coefficients of the two models slightly disagree because the estimation formulas differ). The latter 

model is acceptable in the sense that all its terms are significant (for example, the interval 

1.1171± 2*0.1020 does not include 0), but do its residuals make a WN? 

 
library(forecast) 

tsdiag(arima(unp,c(4,0,0)))  # residuals make WN 

 

Yes, they do but is it the simplest (with minimum number of coefficients) correct model? 

 
auto.arima(unp) 

  

ARIMA(1,0,1) with non-zero mean  

 

Coefficients: 

         ar1     ma1  intercept 

      0.6322  0.5105     6.3720 

s.e.  0.0947  0.1143     1.0182 

 

AIC=422.68   AICc=423.15   BIC=432.68 

 
tsdiag(auto.arima(unp))  # residuals make WN 
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Thus, the simplest acceptable model of unp is ARMA(1,1) (it has only 3 coefficients, all the coeffi-

cients are significant and residuals are described by WN). This is quite a common situation – high 

order AR(p) can often be replaced by a simpler ARMA(1,1). 

 

• The parameters of supposedly ARIMA(1,0,0) or ARMA(1,0) or AR(1) process 

0 1 1t t t
X a a X ε−− − =  are estimated with arima(x,c(1,0,0)). 

t
X  is AR(1) if the term 

1t
X −  is significant and residuals of the model make a WN. 

2.11 exercise. Is the time series unp an AR(1) process?  

 

• The parameter of supposedly WN or ARIMA(0,0,0) process 0t t
X a ε− =  is estimated with 

arima(x,c(0,0,0)). 
t

X  is WN if  residuals of the model make a WN. 

2.12 exercise. Is the time series unp a WN? 

 

Each type can be recognized by its ACF and PACF plots but we shall use auto.arima function 

to do the job (if necessary, slightly correct the output and leave only significant terms; then test 

whether residuals ˆ
t

w  make a WN) 

 

The functions arima or auto.arima can be generalized to include the I part of the model (
t

X  is 

ARIMA(p,1,q) if its first differences 1t t t
X X X −∆ = −  form an ARIMA(p,0,q) time series). The 

ARIMA model can also include a seasonal part – the quarterly process 0 1 4t s t t
X a a X ε−= + +  can 

be treated as ARIMA(0,0,0)(1,0,0)[4] process and estimated with arima(x,order= 

c(0,0,0),seasonal=list(order=c(1,0,0))).  

 

The model 

0 1

1 1 , ~

t t

t t t t

X t u

u a u WN

β β

ε ε−

= + +


= +
 

 

or, what is the same, 

 

( )1 1 0 1 0 1 1 1 1 1 0 1( ) (1 )
t t t t t

X a X a a t a X B B tβ β β β ε ε− −= + − − + − + = + + +  

 

describes a process such that its deviations from a straight line make an AR(1) process (it is estima-

ted with arima(x, order = c(1,0,0),xreg = 1:length(x)) . 

 

2.4 example.  As an artificial example, consider  

 
uuu=unp+0.5*1:90 

plot(uuu) 

uuu.mod=arima(uuu, order = c(1,0,0),xreg = 1:90)  

lines(fitted(uuu.mod),col=2)  

tsdiag(uuu.mod) 

 

Is it a good model? What if you replace 1 by 2? 
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2.4. ARCH and GARCH processes 

 

Typically, for financial series, the return does not have a constant conditional variance (i.e., 
2
t

σ = 1var( | )
t t

Y −Ω ≡const ), and highly volatile periods tend to be clustered together. In other 

words, there is a strong dependence of sudden bursts of variability in a return on the series own 

past. Such processes are described by the endless family of ARCH models (ARCH, GARCH, 

EGARCH, TGARCH, GJRGARCH, AVGARCH, NGARCH, NAGARCH, APARCH, IGARCH etc). 

 

The relevant R functions are contained in the fGarch, tseries, gogarch, and rugarch packages. 

 

2.5 example. To start with, we shall repeat 2.8 example from the Lecture Notes. To import 

stock.xls from the dataPE folder, open the file, select and then copy both columns of it. Next, type 

 
stock=ts(read.delim2("clipboard",header=T)) 

lStock=stock[,2]    # logged stock prices 

d_lstock=diff(lStock)  # create log-differences, i.e., returns 

mod1=lm(d_lstock~1) 

uhat1=mod1$res ; sq_uhat1 = uhat1^2  # centered and squared returns  

par(mfrow=c(1,2)); plot(d_lstock); plot(sq_uhat1,col="blue",type="l") 

 

library(dynlm) 

mod2=dynlm(sq_uhat1~L(sq_uhat1)) # create the "naive" model 

summary(mod2) 
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Fig. 2.5. Logged stock prices (left) and squared residuals (right) 

Start = 2, End = 207 

 

Coefficients: 

             Estimate Std. Error t value Pr(>|t|)     

(Intercept) 2.408e-06  1.484e-06   1.622    0.106     

L(sq_uhat1) 7.370e-01  4.733e-02  15.572   <2e-16  

 

The significant coefficient in this “naive“ model of volatility 2 0.0000024tu = + 0.737 2
1t tu w− +  indi-

cates that 
t

u  is probably an ARCH(1) (=garch(1,0)) process. To create a respective model, type   

 
library(fGarch) 
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mod3=garchFit(~garch(1,0), d_lstock, trace=F) 

mod3 

Error Analysis: 

        Estimate  Std. Error  t value Pr(>|t|)     

mu     1.048e-03   1.132e-04    9.259  < 2e-16 *** 

omega  2.400e-06   3.904e-07    6.148 7.85e-10 *** 

alpha1 6.599e-01   1.571e-01    4.199 2.68e-05 *** 

 

which means that the respective model coincides with 

what was produced by GRETL:   

 

�2 2 6 2
1 1

ˆ^ _ 0.001048

2.400*10 0.660
t t t

d lstock

u u

φ µ

σ ω α −
− −

 = = =


= + = +
. 

 

Now it is the right time to recall that d_lstock is 

not a WN: 

 
library(forecast) 

tsdisplay(d_lstock) 

 

(the correlogram on the right indicates that d_stock 

is possibly an AR(6) process). 

 

To find the proper conditional mean model mod3 for d_lstock we use the auto.arima func-

tion. Then we create an AR(7) - ARCH(1) model mod4 of the d_lstock:   

 
mod4=auto.arima(d_lstock,max.p=10,max.q=0)   

mod4   # auto.arima chooses an AR(7) process 

mod5=garchFit(~arma(7,0)+garch(1,0), d_lstock, trace=F) 

mod5 

Error Analysis: 

         Estimate  Std. Error  t value Pr(>|t|)     

mu      1.194e-03   1.730e-04    6.899 5.22e-12 *** 

ar1    -1.237e-01   7.070e-02   -1.749 0.080257 .   

ar2     8.081e-02   4.428e-02    1.825 0.067996 .   

ar3    -3.826e-02   4.559e-02   -0.839 0.401336     

ar4    -1.069e-01   3.933e-02   -2.719 0.006544 **  

ar5     7.209e-03   3.970e-02    0.182 0.855914     

ar6     1.636e-01   3.580e-02    4.568 4.92e-06 *** 

ar7    -1.125e-01   3.389e-02   -3.318 0.000905 *** 

omega   2.046e-06   3.567e-07    5.735 9.75e-09 *** 

alpha1  6.503e-01   1.722e-01    3.777 0.000159 *** 

 

To explore the GARCH predictions of volatility, we calculate and plot 51 observations from the 

middle of the data along with the one-step-ahead predictions of the corresponding volatility
10

, 
�2

t
σ : 

 

sigma=mod5@sigma.t 

plot(window(d_lstock, start=75, end=125),ylim=c(-0.020,0.035), ylab="l_stock") 

lines(window(d_lstock-2*sigma, start=75, end=125), lty=2, col=4) 

lines(window(d_lstock+2*sigma, start=75, end=125), lty=2, col=4) 

abline(mean(d_lstock),0) 

                                                 
10

 The value of the garchFit function is an not a list (S3 object), but an S4 object; its components are accessed not 

with the $ symbol but with @. 
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Fig. 2.6. d_lstock and its 2
t

σ± confidence region 

To predict our process (see Fig. 2.7), use  

 
predict(mod5, n.ahead = 2, mse="cond", plot=T)    # �� 

 

 

0 10 20 30 40 50

-0
.0

0
4

-0
.0

0
2

0
.0

0
0

0
.0

0
2

0
.0

0
4

0
.0

0
6

Index

x

Prediction with confidence intervals

X
^

t+h

X
^

t+h − 1.96 MSE

X
^

t+h + 1.96 MSE

 

Fig. 2.7. Last 50 observations and 2-step-ahead prediction 

 

2.6 example. (GRETL)  The file S&P.txt contains monthly data on the S&P Composite index re-

turns ret over the period 1954:1-2001:9, the consumer price index (CPI) inflation rate infl, and 

the change in the three-month Treasury bill (T-bill) rate dTbill
11

. We begin by modelling the re-

turns series  tret  as a function of a constant, one lag of returns t-1ret , one lag of the inflation 

                                                 
11 The returns series includes dividends and is calculated using the formula 1 1( ) /

t t t t t
r P D P P− −= + − . The inflation 

series is calculated as the first-difference of the natural logarithm of the CPI, and the T-bill series is the three-month T-

bill rate, 1t t t
dTbill Tbill Tbill −= − . All data are converted into percentages. 
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rate t-1infl  and one lag of the first-difference of the three-month T-bill rate t-1dTbill . We 

expect our model to be of the form 0 1 1, 1,... ( ,...)
t t t t

Y X X wβ β σ= + + +  where 
t

w  are i.i.d.r.v.‘s  with 

conditional mean 0 and conditional variance 1. We begin by adding the first lags of the necessary 

variables and create a usual OLS model; then we test the hypothesis 0 :H residuals of Model 1 are 

normal. In conventional regression models, rejection of the null would lead to the change of speci-

fication, but non-normality is an inherent feature of the errors from regression models for financial 

data, and here, as in all cases henceforth, robust standard errors must be calculated (this means that 

you have to check the Robust standard errors box). Note that all coefficients of corrected Model 2 

are significant and have expected signs:  

 

Model 2: OLS, using observations 1954:02-2001:08 (T = 571) 

Dependent variable: ret 

HAC standard errors, bandwidth 6 (Bartlett kernel) 

 

             coefficient   std. error   t-ratio   p-value  

  -------------------------------------------------------- 

  const        1.17715     0.239720      4.911    1.19e-06 *** 

  infl_1      -1.17945     0.533158     -2.212    0.0274   ** 

  dTbill_1    -1.25007     0.343281     -3.642    0.0003   *** 

  ret_1        0.207991    0.0445415     4.670    3.77e-06 *** 

 

R-squared            0.101059   Adjusted R-squared   0.096303 

Log-likelihood      -1482.848   Akaike criterion     2973.697 

Schwarz criterion    2991.086   Hannan-Quinn         2980.481 

rho                  0.015237   Durbin-Watson        1.945707 

 

Residuals of Model 2 constitute WN (test) but their squares do not, residuals are still non-normal 

(test), thus we shall test the residuals for ARCH(6) – in the Model 2 window, go to Tests| ARCH:   
 

Test for ARCH of order 6 

 

             coefficient    std. error    t-ratio    p-value  

  ----------------------------------------------------------- 

  alpha(0)    7.40357       1.26960       5.831      9.31e-09 *** 

  alpha(1)    0.105877      0.0440643     2.403      0.0166   ** 

  alpha(2)   -0.00339383    0.0442404    -0.07671    0.9389   

  alpha(3)    0.0552574     0.0442307     1.249      0.2121   

  alpha(4)   -0.000128459   0.0442403    -0.002904   0.9977   

  alpha(5)    0.0521755     0.0442754     1.178      0.2391   

  alpha(6)    0.102231      0.0441054     2.318      0.0208   ** 

 

  Null hypothesis: no ARCH effect is present 

  Test statistic: LM = 16.1293 

  with p-value = P(Chi-square(6) > 16.1293) = 0.0130763 

 

 

The alpha(6) coefficient is significant and the hypothesis 0 1 6: ... 0H α α= = =  in  

 

2 2 2 2
1 1 1( | ) ...

t t t

t t t t q t q

w

E

ε σ

σ ε ω α ε α ε− − −

=


= Ω = + + +
 

 

is rejected, thus the residuals of Model 2 make ARCH(6). As a next step, we combine the Model 1 

for conditional mean and Model 2 for conditional variance: in the main GRETL window, go to Mo-
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del| Time series| GARCH...  | check the „Robust standard errors“ box, and choose GARCH p: 0, 

ARCH q: 4 (alas, GRETL does not allow for higher order of ARCH): 
 

Model 3: GARCH   

Dependent variable: ret 

 

             coefficient   std. error      z      p-value  

  -------------------------------------------------------- 

  const       1.32794      0.240500      5.522    3.36e-08 *** 

  infl_1     -1.33020      0.567450     -2.344    0.0191   ** 

  dTbill_1   -1.10767      0.409915     -2.702    0.0069   *** 

  ret_1       0.203983     0.0526545     3.874    0.0001   *** 

 

  alpha(0)    6.78984      1.18074       5.750    8.90e-09 *** 

  alpha(1)    0.155438     0.100847      1.541    0.1232   

  alpha(2)    0.0338954    0.0441612     0.7675   0.4428   

  alpha(3)    0.190236     0.123270      1.543    0.1228   

  alpha(4)    0.0189580    0.0389964     0.4861   0.6269   

 

Log-likelihood      -1473.048   Akaike criterion     2966.096 

Schwarz criterion    3009.570   Hannan-Quinn         2983.057 
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Fig. 2.8. The conditional heteroscedasticity of the S&P returns is clearly visible in both graphs (to 

obtain conditional error variance h3, go to Save| Predicted error variance); the spike in the conditio-

nal variance around observation 1988 corresponds to the crash of October 1987 

 

GRETL, like R, allows to extend it by down-loading packages from the main server: in the GRETL 

window, go to File| Function files| On server...| gig (the gig function allows to take order higher 

than 4 and also to choose out of many more ARCH variants). If you do not find gig (= GARCH in 

GRETL) package on server, download it from http://www.econ.univpm.it/lucchetti/gretl/gig.zip and 

copy the unzipped folder to Program Files\ gretl\functions). Now go to File| Function files| On local 

machine…, click on gig and fill in the boxes as shown on the right. 
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Model: GARCH(0,6) [Bollerslev] (Normal)* 

Dependent variable: ret 

Sample: 1954:02-2001:08 (T = 571), VCV me-

thod: Robust 

 

    Conditional mean equation 

 

             coefficient   std. error     z      p-value  

  ------------------------------------------------------- 

  const        1.21848     0.270645      4.502   6.73e-06 *** 

  ret_1        0.218684    0.0542242     4.033   5.51e-05 *** 

  infl_1      -0.918096    0.796982     -1.152   0.2493   

  dTbill_1    -0.966632    0.427802    ˆ-2.260   0.0239   ** 

 

    Conditional variance equation 

 

             coefficient   std. error      z      p-value  

  -------------------------------------------------------- 

  omega      5.33612       1.20031      4.446     8.76e-06 *** 

  alpha_1    0.123039      0.0855170    1.439     0.1502   

  alpha_2    0.0146264     0.0508976    0.2874    0.7738   

  alpha_3    0.133004      0.104548     1.272     0.2033   

  alpha_4    0.00135661    0.0325198    0.04172   0.9667   

  alpha_5    0.124912      0.129797     0.9624    0.3359   

  alpha_6    0.147888      0.0853039    1.734     0.0830   * 

 

 Llik:  -1467.41584  AIC:   2956.83168 

 BIC:    3004.65296  HQC:   2975.48864 

 

The Model is ARCH(6), i.e., a model of high order with many parameters, and a common advice is 

to replace the model by GARCH(1,1).  
 

 

Model 4: GARCH, using observations 1954:02-2001:08 (T = 571) 

Dependent variable: ret 

QML standard errors 

 

             coefficient   std. error     z       p-value  

  -------------------------------------------------------- 

  const        1.31222     0.224066      5.856   4.73e-09  *** 

  infl_1      -1.31716     0.577148     -2.282   0.0225    ** 
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  dTbill_1    -1.19681     0.370105     -3.234   0.0012    *** 

  ret_1        0.185278    0.0449396     4.123   3.74e-05  *** 

 

  alpha(0)     1.19981     0.556395      2.156   0.0311    ** 

  alpha(1)     0.119459    0.0511436     2.336   0.0195    ** 

  beta(1)      0.775665    0.0691383    11.22    3.29e-029 *** 

 

Mean dependent var   0.994713   S.D. dependent var   3.428556 

Log-likelihood      -1472.312   Akaike criterion     2960.624 

Schwarz criterion    2995.403   Hannan-Quinn         2974.193 

 

 

The parameters on infl_1 and dTbill_l maintain their negative signs, and the estimated pa-

rameters in the equation for the conditional variance are highly significant. The information criteria 

computed (Akaike, Schwarz and Hannan-Quinn) allow the fit of competing models to be compared 

while penalizing for additional variables (the aim is to minimize the criteria). On the basis of the 

Schwarz criteria, which is often the preferred method of comparing fitted models in applied time 

series analysis, the GARCH(1,1) specification would be preferred to the ARCH(4) specification. 

 

(R)  Similar analysis may be performed in R with the help of the following script. 

 
SP = ts(read.table(file.choose(),header=TRUE), 

freq=12,start=1954) # navigate to S&P.txt  

head(SP) 

library(dynlm) 

mod1 = dynlm(ret~L(ret)+L(infl)+L(dTbill),data=SP) 

summary(mod1) 

shapiro.test(mod1$res) # normality is rejected 

library(sandwich) 

library(lmtest) 

# variance-covariance matrix Heteroskedasticity Corrected 

# „HC“ means White‘s estimator 

# z test (using a normal approximation) is performed 

coeftest(mod1,df=Inf,vcov=vcovHC(mod1,"HC")) # all coefficients are still signi- 

                                             # ficant 

z test of coefficients: 

 

             Estimate Std. Error z value  Pr(>|z|)     

(Intercept)  1.177149   0.228283  5.1565 2.516e-07 *** 

L(ret)       0.207991   0.048629  4.2771 1.893e-05 *** 

L(infl)     -1.179451   0.521536 -2.2615 0.0237285 *   

L(dTbill)   -1.250071   0.328941 -3.8003 0.0001445 *** 

 

library(forecast) 

mod1res = mod1$res 

# mod1$res is probably an ARCH process: 

tsdisplay(mod1res)     # WN 

windows()        # open a new graphical window 

tsdisplay(mod1res^2)   # not WN 

 

library(fGarch) 

fit60 = garchFit(formula = ~ garch(6,0), trace = FALSE, data=mod1res) 

summary(fit60) 

 

fit11 = garchFit(formula = ~ garch(1,1), trace = FALSE, data=mod1res) 

summary(fit11) 

 

Error Analysis: 

         Estimate  Std. Error  t value Pr(>|t|)     
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mu     -1.510e-16   1.292e-01    0.000  1.00000     

omega   1.151e+00   5.183e-01    2.221  0.02636 *   

alpha1  1.139e-01   4.002e-02    2.846  0.00442 **  

beta1   7.851e-01   6.584e-02   11.925  < 2e-16 *** 

 

Standardised Residuals Tests: 

                                Statistic p-Value      

 Jarque-Bera Test   R    Chi^2  36.679    1.084565e-08 # Residuals are 

 Shapiro-Wilk Test  R    W      0.9851698 1.482773e-05 # non-normal. 

 Ljung-Box Test     R    Q(10)  10.01125  0.4395069    # Residuals 

 Ljung-Box Test     R    Q(15)  22.05404  0.1063948    # form 

 Ljung-Box Test     R    Q(20)  27.39449  0.1245256    # a WN. 

 Ljung-Box Test     R^2  Q(10)  7.909245  0.6377014    # Squared residuals 

 Ljung-Box Test     R^2  Q(15)  13.07198  0.5967378    # form 

 Ljung-Box Test     R^2  Q(20)  17.00733  0.6524979    # a WN. 

 LM Arch Test       R    TR^2   8.202932  0.7690776    # No more ARCH in res. 

 

Information Criterion Statistics: 

     AIC      BIC      SIC     HQIC  

5.172060 5.202514 5.171962 5.183941 

 

Here we did the ARCH analysis in two steps and the green output is quite close to GRETL’s Model 

4. The R’s package rugarch allows to include the regression part into the model and combine 

these two steps in one:  

 
library(rugarch) 

 

ret=SP[,1];infl=SP[,2];dTbill=SP[,3] 

SPEC06=ugarchspec(variance.model=list(garchOrder=c(0,6)), 

mean.model=list(armaOrder=c(0,0),include.mean=TRUE, 

external.regressors=cbind(ret[1:571],infl[1:571],dTbill[1:571]))) 

FIT06 = ugarchfit(data = ret[2:572], spec = SPEC06) 

FIT06 

 

SPEC11=ugarchspec(variance.model=list(garchOrder=c(1,1)),mean.model= 

list(armaOrder=c(0,0),include.mean=TRUE, 

external.regressors=cbind(ret[1:571],infl[1:571],dTbill[1:571]))) 

FIT11 = ugarchfit(data = ret[2:572], spec = SPEC11) 

FIT11 

 

Robust Standard Errors: 

        Estimate  Std. Error  t value Pr(>|t|) 

mu       1.31189    0.230362   5.6949 0.000000 

mxreg1   0.18500    0.043915   4.2126 0.000025 

mxreg2  -1.31970    0.547745  -2.4093 0.015982 

mxreg3  -1.19513    0.361096  -3.3097 0.000934 

omega    1.19863    0.597928   2.0046 0.045001 

alpha1   0.11992    0.047741   2.5118 0.012011 

beta1    0.77568    0.069656  11.1358 0.000000 

    

(the FIT11 model is very close to Model 4!)  Explain the meaning of numbers below: 
 

Q-Statistics on Standardized Residuals 

------------------------------------ 

              statistic p-value 

Lag[1]          0.09045  0.7636 

Lag[p+q+1][1]   0.09045  0.7636 

Lag[p+q+5][5]   4.87537  0.4313 

d.o.f=0 

H0 : No serial correlation 
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Q-Statistics on Standardized Squared Residuals 

------------------------------------ 

              statistic p-value 

Lag[1]         0.002856  0.9574 

Lag[p+q+1][3]  1.136267  0.2864 

Lag[p+q+5][7]  7.423113  0.1910 

d.o.f=2 

 

ARCH LM Tests 

------------------------------------ 

             Statistic DoF P-Value 

ARCH Lag[2]      1.179   2  0.5547 

ARCH Lag[5]      2.436   5  0.7862 

ARCH Lag[10]     7.898  10  0.6388 

 

forc11 = ugarchforecast(FIT11, n.ahead=20) 

forc11 

plot(forc11,which="all") 
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Fig. 2.9. Historical data of the ret series ± 2 conditional standards (center) and the 20-

steps-ahead forecast of conditional standard (right)  

 

2.13 exercise. The ARCH effects are better seen in high frequency (for example, daily) data. The 

data set dmbp in rugarch contains two columns:  

1. The daily percentage nominal returns ret computed as 1100 (log log )
t t

P P−−  where 
t

P  is the 

bilateral Deutschemark/British pound rate constructed from the corresponding U.S. dollar rates. 

2. A dummy variable  mo that takes the value of 1 on Mondays and other days following no tra-

ding in the Deutschemark or British pound/ U.S. dollar market during regular European trading 

hours and 0 otherwise. 

 

a) Some people say that means and/or variances of returns on mo==1 differ from those on the rest 

days. Test. 
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b) Use GRETL or R and test ret for ARCH effects. Add  mo to both conditional mean and condi-

tional variance parts of the model. Are these terms necessary? Create a proper GARCH(1,1) mo-

del. 

c) Forecast conditional variance or standard 10 days ahead. 

d) Plot several relevant graphs. 

 
ret=dmbp[,1] 

mo=dmbp[,2] 

plot(ret,type=“l“) 

abline(mean(ret),0) 

mean(ret[mo==0]) 

mean(ret[mo==1]) 

mod=lm(ret~mo) 

summary(mod) 

var(ret[mo==0]) 

var(ret[mo==1]) 

var.test(ret[mo==0],ret[mo==1]) 

mod=lm(ret~mo) 

eps=mod$res 

tsdisplay(eps) 

tsdisplay(eps^2) 

# with mo  

sp11=ugarchspec(variance.model=list(garchOrder=c(1,1),external.regressors=matrix

(mo,ncol=1)), 

mean.model=list(armaOrder=c(0,0),include.mean=TRUE,external.regressors=matrix(mo

,ncol=1))) 

fi11 = ugarchfit(data = ret, spec = sp11) 

fi11 

 

# without mo 

s11=ugarchspec(variance.model=list(garchOrder=c(1,1),external.regressors=matrix(

mo,ncol=1)), 

mean.model=list(armaOrder=c(0,0),include.mean=TRUE)) 

f11 = ugarchfit(data = ret, spec = s11) 

f11 

 

for11 = ugarchforecast(f11, n.ahead=10) 

for11 

plot(for11,which="all") 
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3. Time Series: Decomposition 

 

 
• Once Again on White Noise 

 

Often it is important to establish whether a stationary process under consideration is WN. To 

achieve this, we shall use the graphs of the ACF and PACF functions produced by the 

tsdisplay function of the forecast package:  

 
library(forecast) 

set.seed(50) 

rn=rnorm(100)  # what is the difference between  

rn1=ts(rn)    # rn and rn1?  

tsdisplay(rn1) 

rn2=ts(rnorm(100)) 

tsdisplay(rn2) 

rn1

0 20 40 60 80 100

-3

5 20

-0
.3

0
.1

Lag

A
C

F

5 20

-0
.3

0
.1

Lag

P
A

C
F

 
 

Fig. 3.1. Rule: if the first five to ten bars of both ACF and PACF plots are inside the 

blue strip, the process under consideration is WN     

 
In “clear cases“ it suffices to use the tsdisplay 

procedure. However, if the correlogram is ambiguous (bars 

in ACF and/or PACF are close to or slightly outside the 

blue band), the above could be followed by the tsdiag 

procedure which tests the residuals of the model for WN: 

 

mod1=arima(rn1,c(0,0,0))  # 01
t t

rn β ε= +  

tsdiag(mod1)       # mod1$res ~ WN? 

  

(note: if 
t
ε  is zero-mean WN, then 1

t
rn  is 0β −mean 

WN). All the bubles (p values) in the bottom graph are 

above the 0.05 blue line, thus rn1 is a white noise.  
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Maybe the simplest way, but not equivalent
1
 to the previous ones,  is to use 

 
auto.arima(rn1) 

 

ARIMA(0,0,0) with zero mean      

sigma^2 estimated as 0.9883:  log likelihood=-141.31 

AIC=284.61   AICc=284.65   BIC=287.22 

 

Thus, the auto.arima also chooses the ARIMA(0,0,0) or WN model for rn1 as the “best“.  

 

The following function conducts a tripple test on whiteness: 

 
trippleWN <- function(x) { 

library(forecast) 

print(auto.arima(x)) 

tsdisplay(x) 

oask <- devAskNewPage(TRUE) 

tsdiag(arima(x,c(0,0,0))) 

on.exit(devAskNewPage(oask)) 

} 

 

As an illustration: 

 
set.seed(123) 

trippleWN(rnorm(100)) 

 

Series: x  

ARIMA(0,0,0) with zero mean     # yes, WN 

 

sigma^2 estimated as 0.8331:  log likelihood=-132.76 

AIC=267.52   AICc=267.57   BIC=270.13 

Waiting to confirm page change... # click on the graph 

 

 

Fig. 3.2. ... and also both the correlogram (left) and the Ljung-Box test (right) confirm 

whiteness. 

 

                                                 
1
 Recall that auto.arima looks for an ARIMA model with minimum AIC (the function does not care whether the 

coefficients are significant nor whether residuals make white noise). 
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• Decomposition 

 
The general mathematical representation of the decomposition approach is: 

   

                                                   ( , , )t t t tY f Tr S ε= ,                                                     (*) 

 

where 

   tY  is the time series value (actual data) at period t 

   tTr  is the trend-cycle component at period t 

   tS  is the seasonal component (or index) at period t 

    tε  is the irregular (or remainder) component at period t 

 

The exact functional form of (*) depends on the decomposition method actually used. A 

common approach is to assume that the (*) equation has the additive form  

 

t t t tY Tr S ε= + + . 

 

That is, the trend-cycle, seasonal and irregular component are simply added together to give the 

observed series. 

 

There are many methods to decompose a time series into its components. 

 

3.1 example. To plot Fig. 3.2 in Lecture Notes, run the following script where the moving 

average method is used: 

Time

la
t

1950 1954 1958

5
.0

5
.5

6
.0

6
.5

lat

trend

trend+seas

2 4 6 8 10 12

-0
.2

-0
.1

0
.0

0
.1

0
.2

Seasonal

1:12

la
t.
s

 
 

library(fma); data(airpass) 

lat=log(airpass) 

par(mfrow=c(1,2)) 

plot(lat,lwd=2)        # plot original time series 

lat.tr=filter(lat,filter=c(1/24,rep(1/12,11),1/24)) 

lines(lat.tr,col=2)      # add trend 

lat.sez=lat-lat.tr 

lat.se=matrix(lat.sez,ncol=12,byrow=TRUE) 
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lat.s=apply(lat.se,2,mean,na.rm=TRUE)   # estimate the seasonal component 

lines(lat.tr+lat.s,col=3)        # lat.s cyclically repeats 

legend(1949,6.4,c("lat","trend","trend+seas"),lty=1,col=c(1,2,3)) 

plot(1:12,lat.s,type="l",main="Seasonal") 

 

Note that this method does not allow to produce forecasts. However, this is possible when using 

the methods introduced below.  

 

• The Global Method of OLS 

 

Consider the airpass data set from the fma package. 

 
library(fma); data(airpass);plot(airpass) 

at=time(airpass); at       # at is the sequence of dates 

# only quadratic trend 

air1.lm=lm(airpass~at+I(at^2)) 

summary(air1.lm) 

time.f=seq(1949,1964-1/12,by=1/12)  # our time sequence plus 36 months for forecast 

air1.f=predict(air1.lm,data.frame(at=time.f)) 

par(mfrow=c(1,3)); plot(time.f,air1.f,type="l",lty=2);lines(airpass,col=2) 

 

# quadratic trend and monthly seasonality 

month = seasonaldummy(airpass) 

air2.lm=lm(airpass~at+I(at^2)+month);summary(air2.lm) 

air2.f=predict(air2.lm,data.frame(at=time.f,month=I(rbind(month,seasonaldummyf(airpass

,36))))) 

plot(time.f,air2.f,type="l",lty=2);lines(airpass,col=2) 

 

# model for logs 

air3.lm=lm(log(airpass)~at+I(at^2)+month);summary(air3.lm) 

air3.f=predict(air3.lm,data.frame(at=time.f,month= 

I(rbind(month,seasonaldummyf(airpass,36))))) 

plot(time.f,air3.f,type="l",lty=2) 

lines(log(airpass),col=2) 
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Fig. 3.3.   Three quadratic trends and forecasts. Dependent variable is airpass - without 

seasonal part (left) and with seasonal component (center); dependent variable is 

log(airpass) – with seasonal component (right)   

 

The central graph in Fig. 3.2 corresponds to the OLS model 2
0 1 2t

airpass t tβ β β= + + +    

3,1 3,111 ... 11
t t t

dm dmβ β ε+ + + , extended for 36 months into the future. Clearly, it is not a very 

good model since airpass fluctations are increasing in size together with the level of 
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airpass and additive model is unable to catch this effect. 

The common solution to this problem is to take logarithms 

of airpass. The model  
2

0 1 2log( )
t

airpass t tβ β β= + + + 3,1 1 ...
t

dmβ +

3,11 11
t

dmβ+ +
t
ε  is free of the above mentioned weakness. 

The only problem appears when we move back to 

airpass – the “true“ formula is �
t

airpass =  

� 2ˆexp(log( ) / 2)
t

airpass σ+  (note that 2ˆexp( / 2) 1.02σ = , 

thus this correction is almost invisible): 

 
par(mfrow=c(1,1))                     

plot(time.f,exp(air3.f+ 

summary(air3.lm)$sigma/2), 

type="l",lty=2,ylab="air4.f") 

lines(airpass,col=2) 

3.1 exercise. Analyze the residuals of all three models using the functions of the form 

plot(air1.lm$res,type = "l"). Are the residuals stationary? (decide by eye). Do the 

residuals make a WN? (use tsdisplay). 

3.2 exercise. Extract linear, quadratic, and cubic trends from shipm. Do the residuals make 

WN? Should we include a seasonal component? Wouldn‘t it be better to use logs of shipm? 

Choose the best model (that is, the one whose 1. Residuals are WN and 2. AIC is minimal) and 

forecast shipm 36 months ahead.  

3.3 exercise. The monthly time series co2, 1959:01 – 1997:12, contains atmospheric 

concentrations of  2CO  expressed in parts per million (ppm). Describe the data through linear, 

quadratic and cubic trends with, probably, seasonal component. Which model is the best?  

 

3.2 example. Earlier we assumed that the lh series is stationary and created its model (see 2.4 

exercise). However, it seems that the series is trending (TS?), therefore we shall present another 

model of that series here. 

 
library(datasets) 

data(lh)  

lh          # length=48 

plot(lh)         # it seems that the series contains incr. trend(?) 

 

lh.lm=lm(lh~time(lh))  # what is time(lh)? 

abline(lh.lm,col=2) 

 

summary(lh.lm)     # significant trend; however, residuals 

trippleWN(lh.lm$res)  # do not make WN, lm is not reliable 

 

library(forecast) 

lh1.arima=auto.arima(lh,xreg=time(lh))  # with linear trend 

summary(lh1.arima)   # ar(3) term not significant, trend significant 

lh2.arima=auto.arima(lh,max.p=1,xreg=time(lh)) 

summary(lh2.arima)    # ar(1)term is significant, trend is not 

trippleWN(lh2.arima$res) # residuals make WN 

 

1950 1955 1960

1
0
0

3
0
0

5
0
0

7
0

0

time.f

a
ir

4
.f



© R. Lapinskas, PE.II–Computer Labs - 2013 

3. Time Series: Decomposition 

 

 3 - 6  

 

The results of our analysis are ambiguous, 

the last two lines of our code say that the 

trend is insignificant (if it were, then lh 

would be called a TS series). Just for 

illustration, taking into account that the 

trend in lh1.arima is significant, we 

can forecast the series 24 months ahead: 

 
plot(forecast(lh1.arima, 

xreg=48+(1:24))) 

abline(lh1.arima$coef[4:5]) 

 

�� 

 

   

 

• The Global Method of Nonlinear Least Squares 
 

If economics increases every year the same percent, then it grows exponentially. This argument 

explains why the exponential model is so popular. However, modeling is rather complicated 

because to extract trend here we need nonlinear regression. 

 
library(fma) 

data(shampoo) # ?shampoo – sales of shampoo over a three year period; do 

              # the sales are seasonal? 

TIME=as.numeric(time(shampoo)) 

par(mfrow=c(1,2)) 

plot(shampoo) # Sales grow roughly exponential (see Fig. 3.3) 

shampoo.nls=nls(shampoo~a+b*exp(c*TIME),start=list(a=100,b=10,c=1)) 

# I had to experiment when choosing the starting values 

lines(TIME,predict(shampoo.nls)) 

plot(summary(shampoo.nls)$res) # The spread of residuals is more or less  

                               # constant, however they are probably  

                               # non-normal (their histogram is not symmetric   

                               # - test) 

abline(0,0) 

summary(shampoo.nls) 
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Fig. 3.4. shampoo time series and exponential trend (left); residuals (right) 

 

One of the drawbacks of the OLS is its globality – if the time series departs for some reason from 

its trend at the final moment T, this will change all the coefficients of the model and therefore the 

predicted value at moment 1t = . The local methods are free of this defect – their forecast at 

moment t are (mostly) influenced only by the values at close time moments.   

 

 

• The Local Method of Exponential Smoothing 
 

We know three variants of exponential smoothing, they are for series without trend, with linear 

trend and with seasonality. In the first case (simple exponential smoothing), the procedure to 

produce smoothed series is described as follows: 

 

1. Initialize at  t= 1: 1 1Ŷ Y=  

2. Update: 1
ˆ ˆ(1 ) , 2,..., .t t tY Y Y t Tα α −= + − =  

3. Forecast: ,
ˆ ˆ , 1, 2,...T h T TY Y h+ = = . 

We call  ˆ
tY  the estimate of the level at time t. The smoothing parameter α  is in the unit interval, 

[0,1]α ∈ . The smaller α  is, the smoother the estimated level. As α  approaches 0, the smoothed 

series approaches constancy, and as α  approaches 1, the smoothed series approaches point-by-

point interpolation. 
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Fig. 3.5. Three variants of smoothing the original series (black)  

 

R allows to use the automated procedure to choose the smoothing parameters: the function ets 

selects the best variant automatically (by the minimum of AIC) and estimates its parameters. 

 
library(forecast) 

library(datasets) 

data(AirPassengers) 

l.ap.ets <- ets(log(AirPassengers))  

summary(l.ap.ets) 

plot(forecast(l.ap.ets),include=36)   

 

3.4 exercise.   

 
library(fma) 

data(housing) 

?housing      # A three-dimensional time series 

tsp(housing) 

plot(housing) # Examine the 2nd component 

hc=housing[,"construction"] 

 

Use exponential smoothing to estimate trend and seasonal part; predict hc 12 months ahead.  

 
plot(forecast(hc,h=12),include=36) # here, to write hc is the same as to    

                                   # write ets(hc)                                   

3.5 exercise. Predict shampoo 1 year ahead with the nls function. 

 
plot(shampoo,xlim=c(1,5),ylim=c(100,1400)) 

newTIME=seq(1,5-1/12,by=1/12) 

new.pred=predict(shampoo.nls,newdata=data.frame(TIME=newTIME)) 

lines(newTIME,new.pred,col=2) # not very convincing 
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• Local Linear Forecast Using Cubic Splines 

 

 

The cubic smoothing spline model is equivalent to an ARIMA(0,2,2) model (we shall present 

this model later) but with a restricted parameter space. The advantage of the spline model over 

the full ARIMA model is that it provides a smooth historical trend as well as a linear forecast 

function. 

 

 

We shall use the function splinef from the 

forecast package to extract linear forecast from 

the shipm time series and forecast it for 24 

months:  

 
library(forecast) 

?splinef 

fcast <- splinef(shipm,h=24)  

plot(fcast) 

summary(fcast) 

 

  

 

 

 

3.6 exercise. Find the uspop data set and their description in R. Estimate the trend and 

forecast this time series for 10 years ahead. Use the method of nonlinear least squares, 

exponential smoothing and smoothing splines. Which of the forecasts fits best todays data (find 

them from the internet).     

 

3.3 example. Lithuanian quarterly GDP, 1993:01-2012:04, can be downloaded from 

http://db1.stat.gov.lt/statbank/default.asp?w=1280; it is also given in L.gdp.txt. We want to 

decom-pose the DGP into trend and seasonal components and also random (hopefully, 

stationary) component. Many R functions can do the job, but only some allow to forecast the 

series.  

 
l.gdp=ts(scan(),start=1993,freq=4) # copy and paste data from L.gdp.txt 

l.gdp 

opar=par(mfrow=c(1,2)) 

plot(l.gdp, main="Lithuanian GDP") 

ll.gdp=log(l.gdp) 

ll=window(ll.gdp,start=2000)  # extract a subset of ll.gdp  

plot(ll, main="logs of Lithuanian GDP") 

par(opar) 
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Fig. 3.6. Quarterly data of Lithuanian GDP, 1993:01-2012:04 (left) and logs of 

Lithuanian GDP, 2000:01-2012:04 (right)  

 

The Lithuanian GDP is rather unregular till appr. 1996 due to the transition to the free market 

economy. The development of Lithuanian economy was also heavily disturbed by the 1998 

Russian financial crisis, therefore we restrict ourselves to 2000:01-2012:04. We choose to 

analyze logarithms because its seasonal part appears to be of constant amplitude; thus, we want 

to find the additive decomposition log( )
t t t

Tr S ε= + +l.gdp . It is clear from the graph in Fig. 

3.4, right, that it would be difficult to describe the trend of ll in analytic terms, therefore we 

shall apply the decompose function and use nonparametric decomposition.   

 
dec.ll=decompose(ll) 

dec.ll                 # the result of decomposition        

plot(dec.ll) 

library(forecast) 

tsdisplay(dec.ll$rand) # draw a residuals correlogram  

 

 

The seasonal effects can be extracted from dec.ll (the additive quarterly extras of 

log( )l.gdp  are -0.099, 0.018,  0.041, and  0.040). The random component of dec.ll seems to 

be stationary (see Fig. 3.5), but not a white noise (see Fig. 3.5, right). However, the main 

problem with our procedure is that it does not allow to forecast ll.  
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Fig. 3.7. Decomposition of ll (left) and the correlogram of dec.ll$rand (right) 

 

One of the procedures  which allows forecasting is exponential smoothing:   
 

ets.ll=ets(ll)  # automatic exponential smoothing 

ets.ll   # AIC -116.35 

plot(forecast(ets.ll),include=16) 

# plot(forecast(ll),include=16) will produce the same result 

tsdisplay(ets.ll$resid)  # residuals form a WN 
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Fig. 3.8. Exponential forecasting (left) and the correlogram of residuals (right)  

 

Later, in 4.10 exercise, we shall present more methods to analyze and forecast ll.      �� 
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4. Difference Stationary Time Series 
 

 

4.1. Unit Roots. 
 

In econometrics, nonstationary processes are more important than stationary. In this chapter, we 

shall discuss one class of such processe, the so-called processes with unit root. 

 

Let the AR(1) time series tY  is described by 1t t tY aY w−= + , where tw  is a WN; if the root of an 

inverse characteristic equation 1 0az− = , namely, 1/z a=  equals 1 (to put it simply, 1a = ), then 

we say that tY  has a unit root. If tY  is an AR(p) process, i.e., 1 1 2 2t t tY a Y a Y− −= + +… 
p t p t

a Y w−+ + , 

it is called a process with unit root if at least one root of the inverse characteristic equation  

11 ... 0p

p
a z a z− − − =  equals +1. Warning – this is not the same as 1 1a = !   

 

Remark. If the time series tZ  is of the form t t tZ T Y= + , where tT  is a deterministic trend (for 

example, tT a bt= + ), and (the deviation) process tY  is AR(1) or AR(p) process with unit root, then 

sometimes tZ  is also called a process with unit root.  

 

The series 11t t tY Y w−= ⋅ +  is not a stationary process because 2 1 0( ) ...t t t tY Y w w Y− −= + + = = +  

1 2 ...w w+ + +  tw , thus 2
0t wDY DY t constσ= + ≠ . In other words, the graphs of sample ACF and 

PACF are senseless, however they give some information about potential unit root (see Fig. 4.1). 

 

The trajectories of the process with unit root make long “excursions” up and down. The (sample) 

ACF of the process decays very slowly and the first bar of the (sample) PACF is almost equal to 1 

(other bars are almost zeros). 

    

If tY  is an AR(1) process with a unit root, then the process of differences 1t t t tY Y Y w−∆ = − =  is a 

WN. If tY  is an AR(p) process with one
1
 unit root, then the process of differences is a stationary 

AR(p-1) process. Indeed, 1(1 ... )p

t p t
w a L a L Y= − − − = 1

1 1(1 ... )p

p
b L b L

−
−− − − ⋅ (1 ) tL Y− =  

1
1 1(1 ... )p

p t
b L b L Y

−
−− − − ∆ .  

 

In Fig. 4.1 below, we depict three AR(1) processes 1t t tY aY w−= +  (with, respectively, a =0.9, 1 and 

1.1). Note that despite the fact that the a  coefficients are almost equal, trajectories of the processes 

are notably different – in the first case the series is stationary, in the second case the series is a ran-

dom walk, and in the third is a rarely met „explosion“ (sometimes the process of hyperinflation can 

be described as explosion). In this chapter, we shall mostly deal with unit roots, namely: i) how to 

detect such series? and ii) how to extend such series into the future, i.e., to forecast them. 

 

 

 

                                                 
1
 Economical time series sometimes have two unit roots, but (almost) never more. 
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Fig. 4.1. The first row: a=0.9 (stationary process), second row: a=1 (this is a random walk; it is not a 

stationary process but its differences are), third row: a=1.1 (explosion – neither the process nor its dif-

ferences are stationary) 

 

Here are some definitions. If the sequence of the first differences 1t t t
Y Y Y −∆ = −  is stationary, the 

sequence 
t

Y  is called a (one time) integrated series and is denoted by I(1) ; if only the series of the 

dth differences
2
 is stationary, the series 

t
Y  is the dth order integrated series and denoted by I(d) (the 

stationary 
t

Y  is denoted by I(0)). We say that the ARMA(p+1,q) process 
t

y : 1( ) ( )
p t q t

L y L w+Φ = Θ  

has a unit (autoregressive) root if at least one of p+1 autoregressive roots equals 1, that is, if  

1( ) ( )(1 )
p p

L L L+ ′Φ = Φ − . It is equivallent to that the differenced process 
t

Y∆  is ARMA(p,q): 

( )(1 )
p t

L L y′Φ − = ( )
p t

L y′Φ ∆ = ( )
q t

L wΘ  (the original ARMA(p+1,q) process 
t

Y  is now called ARI-

MA(p,1,q) process). That is to say that ARIMA(1,1,1) is a process whose first differences make an 

ARMA(1,1) process etc.  

 

4.1 example.  Assume that our process is described by a simple ARIMA(1,1,1) process 

(1 0.4 )(1 ) (1 0.3 )
t t

L L Y L w− − = +  which can be rewritten as 
1 0.4

(1 ) (1 0.4 )
1 0.3

t

L
L Y L

L

−
⋅ − = − ⋅

+
(1−  

20.3 (0.3 ) ...)(1 )
t t

L L L Y w+ − − = . The infinite order polynomial on the lhs can be approximated by a 

(sometimes quite of a large order) finite polynomial, i.e., AR(p) process. The popular Dickey-Fuller 

unit root test always interpret the process under consideration as an AR process.    

                                                 
2
 The operator of the dth differences is defined as  

1( )d d−∆ = ∆ ∆ . For example, 
2

1( ) ( )
t t t t

Y Y Y Y −∆ = ∆ ∆ = ∆ − =  

1t t
Y Y −− − 1 2 1 2( ) 2

t t t t t
Y Y Y Y Y− − − −− = − + . 
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4.2 example. The data set …\PE.II.data.2010\nyse.txt contains monthly index of the NewYork 

Stock Exchange from 1952:1 to 1996:1.  

 
nyse=ts(read.table(file.choose(),header=TRUE),start=1952,freq=12) 

par(mfrow=c(1,3)) 

plot(nyse);plot(log(nyse));plot(diff(log(nyse))) 
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Fig. 4.2. nyse (left), log(nyse) (center), and diff(log(nyse)) (right)  

 

We shall model the variable log(nyse) (see Fig. 4.2, center) in two different but equivalent 

ways: 

 

1) as a process with a linear trend whose deviations from the trend are described as the AR(1) 

process (possessing, probably, a unit root): 

 

1

t t

t t t

Y t u

u u w

α δ

ϕ −

= + +


= +
 

 

mod.a=arima(lnyse,c(1,0,0),xreg=time(lnyse)) 

summary(mod.a) 

 

Coefficients: 

         ar1  intercept  time(lnyse) 

      0.9832  -144.2528       0.0763 

s.e.  0.0076    12.4969       0.0063 

 

2) as an autoregressive process with a linear trend: 

 

1

1( (1 ) ) (1 )

t t t

t t

Y Y t w

Y t w

α ϕ δ

α ϕ ϕδ ϕ δ ϕ
−

−

= + + + =

= − + + + − +

�

 

 

library(dynlm) 

lnyse=log(nyse) 

mod.1=dynlm(lnyse~time(lnyse)+L(lnyse)) 

If the dth differences d

t
Y∆  make a stationary ARMA(p,q) process, then the process 

t
Y  is called an ARIMA(p,d,q) process. 
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summary(mod.1) 

 

Coefficients: 

             Estimate Std. Error t value Pr(>|t|)     

(Intercept) -2.169524   1.124569  -1.929   0.0542 .   

time(lnyse)  0.001152   0.000595   1.936   0.0534 .   

L(lnyse)     0.984518   0.008150 120.792   <2e-16 *** 

 

The coefficients of the two models differ because of different parameterization, however both mo-

dels practically coincide (their residuals in fact are zeros): 

 
> summary(mod.1$res-mod.a$res) 

      Min.    1st Qu.     Median       Mean    3rd Qu.       Max.  

-1.021e-03 -6.636e-04  3.215e-05 -1.198e-04  3.638e-04  8.119e-04 

 

The most important coefficient is that of the lagged term – in the first case it equals 0.984518, and 

in the second 0.9832 (do not forget that these are only the estimates of 1a  from 1 1t t tY a Y w−= + ). 

The estimate is very close to 1, however we cannot test the unit root hypothesis 0 1: 1H a =  by using 

the presented p − value <2e-16 (it is to test the hypothesis 0 1: 0H a = ). We also cannot test the 

hypothesis 0 1: 1H a =  in a standard way, i.e., through constructing the confidence interval 0.984518 

± 2 ⋅0.008150, due to the fact that 1̂( 1) / . .a s e− , provided 0H  is true, has not the Student but anoth-

er, namely, Dickey-Fuller distribution.    

 

A. We shall apply the OLS method and proceed as follows.  

 

1. Since the order of AR is unknown, we begin with a “sufficiently high” order maxp . It is easy to 

verify that the process 1 1 2 2t t tY a Y a Yα − −= + + +…
p t p

a Y −+ + tt wδ +  can be rewritten as: 

1 1 1 1 1...
t t t p t p t

Y Y Y Y t wα ρ γ γ δ− − − − +∆ = + + ∆ + + ∆ + +  (for example, the process tY α= + 1 1ta Y − +  

2 2t ta Y t wδ− + +  can be expressed as 1 2 1 2 1( 1)t t tY a a Y a Yα − −∆ = + + − + ∆ + tt wδ + ). Now the 

original hypothesis 0 :H the process has a unit root  will transform to 0 : 0H ρ = . 

 

2. Let us find the “right” order of the model. To do this, use the model’s output table to test the 

hypothesis 
max 1 0

p
γ − =  (if the p − value is >0.05, reduce the order and repeat the calculations etc). 

When the “right” order is found, we shall test the significance of δ . 

 

3.  The significance of ρ  is tested in a different way:  

 

i. If the final version contains the linear term tδ , the 5% Dickey–Fuller critical value is appr. -3.45. 

Thus, if the t − ratio of the term 1tY −  is less than -3.45, the null 0 :H the process has a unit root  is 

rejected and we decide that the AR process is stationary.  

 

ii. If the final version of the model does not contain tδ , the 5% Dickey–Fuller critical value is appr. 

-2.89.Thus, if the t − ratio of the term 1tY −  is less than -2.89, the null 0 :H the process has a unit 

root  is rejected and we decide that the AR process is stationary. 

 

****************************************************************** 

 



© R. Lapinskas, PE.II–Computer Labs - 2013 

    4. Difference Stationary Time Series. 

 4 - 5  

We shall apply the procedure to lnyse. Let us begin with max 1p − = 4. 

 

mod.4=dynlm(d(lnyse)~L(lnyse)+L(d(lnyse),1:4)+time(lnyse)) 

summary(mod.4) 

 

Coefficients: 

                    Estimate Std. Error t value Pr(>|t|)   

(Intercept)       -2.3687713  1.1485801  -2.062   0.0397 * 

L(lnyse)          -0.0172567  0.0083590  -2.064   0.0395 * 

L(d(lnyse), 1:4)1  0.0544182  0.0439376   1.239   0.2161   

L(d(lnyse), 1:4)2 -0.0282789  0.0439795  -0.643   0.5205   

L(d(lnyse), 1:4)3  0.0150925  0.0439341   0.344   0.7313   

L(d(lnyse), 1:4)4  0.0364520  0.0439285   0.830   0.4070   nereikšmingas 

time(lnyse)        0.0012584  0.0006077   2.071   0.0389 * 

 

Now, instead of L(d(lnyse),1:4) we write L(d(lnyse),1:3) etc until we get such a mo-

del: 
 

mod.0=dynlm(d(lnyse)~L(lnyse)) 

summary(mod.0) 

Coefficients: 

              Estimate Std. Error t value Pr(>|t|) 

(Intercept)  0.0077315  0.0121721   0.635    0.526 

L(lnyse)    -0.0001374  0.0019082  -0.072    0.943 

 

 

We have no ground to reject 0ρ =  (since the t − value  -0.072 is greater than -2.89). Thus lnyse 

has a unit root and it can be modelled as  

 
mod.f=dynlm(d(lnyse)~1) 

summary(mod.f) 

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept) 0.006865   0.001768   3.884 0.000116 *** 

 

In other words, 10.0069t t tlnyse lnyse w−= + + , i.e., this is a random walk with drift. 

 

B. The 5% Dickey-Fuller approximate critical values were presented above. In our case, -0.072 was 

definitely greater than -2.89 but, generally, once the order and the necessity of tδ  are established, 

use the augmented Dickey–Fuller test implemented in ur.df()). Recall that this test is applied in 

the cases  

 

1 1t t t
Y a Y w−= +  („none“ option) 

1 1t t t
Y a a Y w−= + +  („drift“ option) 

1 1t t t
Y a a Y t wδ−= + + +  („trend“ option) 

 

In all three cases we test the null 0 1: 1H a =  (it is equivalent to 0 : 0H ρ = ), its critical values de-

pend on option and are equal to, respectively, tau1, tau2 and tau3. Note that the critical values 

remain the same even if the process is not AR(1) but AR(p). 

 
library(urca);?ur.df 

lnyse.df=ur.df(lnyse,0,type = "drift") 
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summary(lnyse.df) 

 

Call: 

lm(formula = z.diff ~ z.lag.1 + 1) 

 

Coefficients: 

              Estimate Std. Error t value Pr(>|t|) 

(Intercept)  0.0077315  0.0121721   0.635    0.526 

z.lag.1     -0.0001374  0.0019082  -0.072    0.943 

 

Value of test-statistic is: -0.072 7.5294  

 

Critical values for test statistics:  

      1pct  5pct 10pct 

tau2 -3.43 -2.86 -2.57 

phi1  6.43  4.59  3.78 

 

Since the t − value  -0.072  is closer to zero than the 5% critical value: -2.86<-0.072<0, there is no 

ground to reject the null 0 :H the process has a unit root.  

 

C. Testing for the unit root with the A and B procedures last long. The same ur.df function 

allows us to automate the procedure: once you choose the maximum number of lags (e.g., 4) and 

note to include linear trend, the ur.df function creates all possible models with lags=4, =3, =2, 

=1, =0  and chooses the one with least BIC. Note that this model will differ from the previous, 

however it is hard to say which one is more accurate.    

 
lnyse.df=ur.df(lnyse,type="trend",lags=4,selectlags="BIC") 

summary(lnyse.df) 

 
Call: 

lm(formula = z.diff ~ z.lag.1 + 1 + tt + z.diff.lag) 

 

Coefficients: 

              Estimate Std. Error t value Pr(>|t|)   

(Intercept)  8.559e-02  3.915e-02   2.186   0.0292 * 

z.lag.1     -1.680e-02  8.209e-03  -2.046   0.0412 * 

tt           1.023e-04  4.983e-05   2.053   0.0406 * 

z.diff.lag   5.261e-02  4.380e-02   1.201   0.2302   

 

Value of test-statistic is: -2.0463 6.0166 2.1302  

 

Critical values for test statistics:  

      1pct  5pct 10pct 

tau3 -3.96 -3.41 -3.12 

phi2  6.09  4.68  4.03 

phi3  8.27  6.25  5.34 

 

Thus, the bottom line is: since the test statistics is greater than the critical value, lnyse is a process 

with (a linear trend and a) unit root. 

 

If instead of type=“trend“ we choose type=“drift“, once again we get that the process has 

a unit root. Thus, we have three models and, to forecasting, choose (without any deeper argumenta-

tion) the A model.  
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D. lnyse is forecasted with the formula 10.0069t t tlnyse lnyse w−= + + ; to do this in R, use the 

Arima function:  

 
library(forecast) 

lnyse.ur=Arima(lnyse,c(0,1,0), 

include.drift=TRUE) 

lnyse.ur 

 

ARIMA(0,1,0) with drift          

Coefficients: 

       drift 

      0.0069 

s.e.  0.0018 

 

plot(forecast(lnyse.ur),include=72) 

 

 

 

************************ 

************************ 

 

4.1 exercise. Repeat the forecast by using other two models. Compare the forecasts. 

4.2 exercise. Use different methods and investigate whether the variable lc from the Raotbl13 

file in the urca package has a unit root.       �� 

 

When testing for unit root, it is important to understand the meaning of the hypotheses – the func-

tion ur.df has three options: type="none", "drift" and "trend".   

 

1. “none” – our time series resembles a stationary AR(1) process with zero mean (however, 

we suspect that it could be a random walk):  

 

1 1 1 1: ~ ( 1) , | | 1t t t t t t tH Y Y w Y Y Y wϕ ϕ ϕ− − −= + − = − + <  

0 1 1 1: ~t t t t t t tH Y Y w Y Y Y w− − −= + − = ⋅ +0  

 

In this case, the null 1ϕ =  means that our process is a random walk without drift. If the hypothesis 

is rejected, we conclude that the process is stationary AR(1) with zero mean. 

 

2. “drift” – our time series resembles a stationary AR(1) process with nonzero mean (how-

ever, we suspect that it couls be a random walk with drift): 

 

1 1 1 1: ~ ( 1) , | | 1t t t t t t tH Y Y w Y Y Y wα ϕ α ϕ ϕ− − −= + + − = + − + <  

0 1 1 1: ~t t t t t t tH Y Y w Y Y Y wα α− − −= + + − = + ⋅ +0  

 

In this case, the null 1ϕ =  means that our process is a random walk with drift. If the hypothesis is 

rejected, we conclude that the process is stationary AR(1) with nonzero mean. 

 

Forecasts from ARIMA(0,1,0) with drift        

1990 1992 1994 1996 1998

7
.6

8
.0

8
.4

8
.8
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3. “trend” -  our time series resembles a stationary AR(1) process around a linear trend (how-

ever, we suspect that it couls be a random walk with drift): 

 

1 1 1: ( ) ~ [ (1 ) ] (1 ) , | | 1t t t t t tH Y a bt Y a bt w Y a b b t Y wϕ ϕ ϕ ϕ ϕ ϕ− −− − = − − + = − + + − ⋅ + + <  

0 1 1 1: ~t t t t t t tH Y b Y w Y Y b Y w− − −= + + − = + ⋅ +0  

 

In this case, the null 1ϕ =  means that our process is a random walk with drift. If the hypothesis is 

rejected, we conclude that the process is stationary AR(1) around a line a bt+ .     �� 

 

We shall repeat the nyse analysis with gretl. The ADF test is, as implemented in gretl, the t-

statistic on ρ in the following regression: 

 

1 1 1 ...
t t t p t p t

Y Y Y Y t wα ρ γ γ δ− − −∆ = + + ∆ + + ∆ + + . 

 

It is a one-sided test whose null hypothesis is 0ρ =  versus the alternative  0ρ <  (and hence large 

negative values of the test statistic lead to the rejection of the null). Under the null, 
t

Y  must be dif-

ferenced at least once to achieve stationarity; under the alternative, 
t

Y  is already stationary and no 

differencing is required. 

 

 

4.3 example. . Import the data file nyse.txt containing monthly data from 1952:1 through 1996:1 

on a major stock price index provided by the New York 

Stock Exchange. Select l_StockPrice, go to Varia-

ble| Unit root tests| Augmented Dickey-Fuller test and 

fill in the window as shown on the right. If we choose 

the recommended order 18 as a starting point, gretl uses 

“the highest significant term” principle and finally takes 

14 lags in Dickey-Fuller regression.   

 
 
Augmented Dickey-Fuller test for l_StockPrice 

including 14 lags of (1-L)l_StockPrice (max was 18) 

sample size 514 

unit-root null hypothesis: a = 1 

 

   with constant and trend  

   model: (1-L)y = b0 + b1*t + (a-1)*y(-1) + ... + e 

   1st-order autocorrelation coeff. for e: -0.001 

   lagged differences: F(14, 497) = 1.253 [0.2333] 

   estimated value of (a - 1): -0.0151188 

   test statistic: tau_ct(1) = -1.70429 

   asymptotic p-value 0.7497 

 

 

Note that if we replace 18 with 8, we get a recommendation to include only 5 lags, but the 

asymptotic p-value (=0.4378) is again more than 0.05, therefore in any case we do not reject the 

unit root hypothesis. To get the model, go to Model| Time series| ARIMA...  and fill in the window 

as shown in 6.3 pav., left
3
, below. The 12 months forecast of l_StockPrice is shown on the 

right. 

                                                 
3
 See Case 3.“trend” above: to apply ADF test, we selected “with constant  and trend”; now, when we accepted 

0ρ =  hypothesis, the model will contain only the drift (constant) α . 
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Fig. 4.3. ARIMA model (left) and 12 months forecast (right) 

 

4.4 example.  The data set …\dataPE\interestrates.xls contains quarterly long-run Longrate and 

short-run Shortrate interest rates, 1954:1-1994:4.   

 

(a) Estimate descriptive statistics of  both variables and their differences. 

(b) Draw and comment the graphs of four respective variables. 

(c) Draw and comment the Longrate – Longrate(-1) scatter diagram; do the same with 

Shortrate. 

(d) Estimate cor(Yt,Yt-1)for both variables. 

(e) Do (c) and (d) for the differences of our variables. Comment the differences. 

(f) Plot ACF’s of Longrate and diff(Longrate).     

 
rate= ts(read.delim2("clipboard",header=TRUE),start=1954,freq=4) 

(a) 
summary(rate) 

summary(diff(rate)) 

boxplot(data.frame(rate)) 

(b) 
plot(rate) 

plot(diff(rate)) 

(c) 
Longrate=rate[,1] 

Shortrate=rate[,2] 

lag.plot(Longrate) 

lag.plot(diff(Longrate)) 

(d) 
cor(Longrate[2:164],Longrate[1:163])             # [1]  0.9997162 

cor(diff(Longrate[2:164]),diff(Longrate[1:163])) # [1] -0.002354711 

 7.2

 7.4

 7.6
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 8
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 (f) 

acf(Longrate) 

acf(diff(Longrate)) 

 

The results of this analysis allows us to guess that Longrate, most probably, has a unit root. We 

shall repeat the procedure of the previous example with max 1p − = 4  and finally end with the model 

1t t tY Y wα ρ −∆ = + + : 

 
mod.0=dynlm(d(Longrate)~L(Longrate)) 

summary(mod.0) 

Call: 

dynlm(formula = d(Longrate) ~ L(Longrate)) 

 

Coefficients: 

             Estimate Std. Error t value Pr(>|t|)    

(Intercept)  0.038606   0.014392   2.682  0.00807 ** 

L(Longrate) -0.003983   0.001871  -2.130  0.03473 *  

 

It would be wrong to say: since the t − value |-2.13|>2, we reject the null 0ρ = . The right an-

swer can be obtained with the Dickey-Fuller test: 

 
Longrate.df=ur.df(Longrate,0,type="drift") 

summary(Longrate.df) 

 

 

Coefficients: 

             Estimate Std. Error t value Pr(>|t|)    

(Intercept)  0.038606   0.014392   2.682  0.00807 ** 

z.lag.1     -0.003983   0.001871  -2.130  0.03473 *  

 

Value of test-statistic is: -2.1295 63.8967  

 

Critical values for test statistics:  

      1pct  5pct 10pct 

tau2 -3.46 -2.88 -2.57 

phi1  6.52  4.63  3.81 

 

Since the t − value statistics -2.13>-2.88, we 

have no ground to reject the null, therefore 

Longrate is a random walk with drift, 

1 0.008t t tY Y w−− = + : 

 
Long.auto=auto.arima(Longrate,d=1) 

plot(forecast(Long.auto,12),include=30)    
 

Repeat the analysis with Shortrate.  �� 

4.1 exercise. The time series 

 
lGNP = structure(c(14.1923, 14.2862, 14.328, 14.3646, 14.3577, 14.4125, 14.4322, 14.4513, 

14.4464, 14.4995, 14.5197, 14.5445, 14.6042, 14.6470, 14.7053, 14.7661, 14.8290, 14.8546, 

14.8987, 14.9293, 14.9293, 14.9622, 15.0173, 15.0738, 15.0680, 15.0592, 15.1122, 15.1624, 

15.2127, 15.2413, 15.2413, 15.2679, 15.2486, 15.2868, 15.3513, 15.3836, 15.4119, 15.4435, 

15.4807, 15.5055, 15.5138, 15.5017, 15.5221, 15.5517), .Tsp = c(1950, 1993, 1), class = 

"ts")  

Forecasts from ARIMA(0,1,0) with drift        

1988 1992 1996

8
.1

0
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contains  the logarithms of the U.S. gross national product, 1950-1993, in total 44 years).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.4. The graph of lGNP (left) and the residuals of a linear model (right) 

 

The time series has an evident, almost linear, trend, therefore we shall examine two variants: this is 

a process with i) a deterministic trend and ii) a stochastic trend (and, probably, a drift).   

 

i)  

 

(a) Use the lm function, remove linear trend, and analyse residuals. 

(b) The residuals, it seems, are described by an AR(1) process, therefore once again remove the 

trend with  
 

(GNPar100=arima(lGNP,c(1,0,0),xreg=time(lGNP))) 

 

(the coefficient at time(lGNP)*100 is an average percentage growth rate of GNP). 

 

(c) Is it a proper model? (write the model). If your answer is positive, forecast lGNP seven years 

ahead: 

 
plot(forecast(GNPar100,h=7,xreg=1994:2000),include=20) 

 

(d) Since the residuals of the linear model have a unit root (can you substantiate your answer?), it 

seems reasonable to examine 

 

ii)  

 

(e) Is it true that lGNP itself has a unit root (and, probably, a positive drift)? Test the hypothesis 

with the ur.df function. 

 

(f) Create a respective model (how does it differs from the previous one?) 

 
(GNPar010=arima(lGNP,c(0,1,0),xreg=time(lGNP))) 

 

The rate of growth, i.e., the drift, i.e., the coefficient at time(lGNP) equals ..., it is practically the 

same as earlier.  
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(g) Draw the forecast of lGNP seven years ahead. Both models give similar forecasts, the only dif-

ference is in the forecasting errors.    
 

The width of the confidence interval of the forecast of the stationary AR process (the 

GNPar100 model) tends to a constant. 

The width of the confidence interval of the forecast of the process with unit root (the 

GNPar010 model) widens as a square root. 

 

(h) Which model is selected by the sequential procedure A?  And by C?    �� 

 

We conclude that all three models are of more or less the same accuracy. Below we shall present 

one more method to value the model: we remove the last few observations, create a new „shorte-

ned“ model, and compare its forecast with the eliminated data. Then we choose the one with the 

smallest forecast error.  

4.2 exercise. Generate a process with linear trend and correlated errors, i.e., 7 0.3 5
t t

Y t e= − + +  

where 1 20.8842 0.5316 , 1,...,150
t t t t

e e e w t− −= − + = . Use the sequential procedure to establish the 

type of the process. Do not forget to apply the Dicky-Fuller test. Find the 20-step-ahead forecast.  

 
set.seed(1) 

ee=arima.sim(n = 150, list(ar = c(0.8842, -0.5316))) 

tt=time(ee) 

yy=-7+0.3*tt+5*ee 

 

mod.1=dynlm(d(yy)~L(yy)+L(d(yy),1)+tt) 

summary(mod.1) 

summary(ur.df(yy,lags=1,type="trend")) # vienet. šaknį atmetame 

(yy2=arima(yy,c(2,0,0),xreg=tt)) 

plot(forecast(yy2,h=20,xreg=151:170),include=70) 

 

4.3 exercise.  Generate the random walk tY  with 0.1 drift: 10.1
t t t

Y Y w−= + + . Use sequential pro-

cedure to classify the process. Forecast the process for 20 time moments ahead. 

 

4.4 exercise. Create two lGNP models using the data from 1950 till 1990 and compare the accura-

cy of forecasts of both models for 1991 till 1993. 

 
lGNP.sh=window(lGNP, 1950, 1990) # shorten lGNP 

 

(a) Create the models GNPar100.sh and GNPar010.sh and draw the graphs as in Fig. 4.5. 
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Forecasts from ARIMA(1,0,0) with non-zero mean
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Fig. 4.5. The two models give different forecasts  

 

The mean error of the forecast may be estimated in various ways: 

 

Root-Mean-Square Error:       RMSE = 2

1
ˆ(1/ )

n

ii
n u

=∑   

Mean Absolute Error:             MAE   = 
1

ˆ(1/ ) | |
n

ii
n u

=∑  

Mean Squared Error      MSE 2

1
ˆ(1/ )

n

ii
n u

=
= ∑  

Mean Absolute Percentage Error MAPE = 
1

ˆ(1/ ) / 100
n

i ii
n u y

=
×∑  

Mean Error         ME = 
1

ˆ(1/ )
n

ii
n u

=∑    

 

Compare the two models by RMSE: 

 
sqrt(sum((lGNP[42:44]-forecast(GNPar010.sh,h=3,xreg=1991:1993)$mean)^2)/3) 

sqrt(sum((lGNP[42:44]-forecast(GNPar100.sh,h=3,xreg=1991:1993)$mean)^2)/3) 

 

According to this criterion, the unit root model is more accurate. 

 

(b) Compare the models by MAPE.                   �� 

 

4.5 exercise. The data set .../PE.II.2010data/nporg.txt contains the fourteen U.S. economic time 

series (annual, 1860-1970) used by Nelson & Plosser in their seminal paper.   

 

year    Time index from 1860 until 1970.  

gnp.r    Real GNP, Billions of 1958 Dollars], [1909 – 1970]  

gnp.n    Nominal GNP, [Millions of Current Dollars], [1909 – 1970]  

gnp.pc  Real Per Capita GNP, [1958 Dollars], [1909 – 1970]  

ip    Industrial Production Index, [1967 = 100], [1860 – 1970]  

emp    Total Employment, [Thousands], [1890 – 1970]  

ur    Total Unemployment Rate, [Percent], [1890 – 1970]  

gnp.p    GNP Deflator, [1958 = 100], [1889 – 1970]  

cpi    Consumer Price Index, [1967 = 100], [1860 – 1970]  
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wg.n    Nominal Wages (Average annual earnings per full-time employee in manufacturing),  

   [current Dollars], [1900 – 1970]  

wg.r    Real Wages, [Nominal wages/CPI], [1900 – 1970]  

M    Money Stock (M2), [Billions of Dollars, annual averages], [1889 – 1970]  

vel    Velocity of Money, [1869 – 1970]  

bnd   Bond Yield (Basic Yields of 30-year corporate bonds), [Percent per annum], [1900 – 

1970]  

sp    Stock Prices, [Index; 1941 – 43 = 100], [1871 – 1970]  

 

Until 1982, when these data and their analysis were published, most of the economists believed that 

all time series were TS (i.e., after removing the trend they become stationary). Nelson & Plosser 

proved that most of economic series are DS (i.e., their differences are stationary). Take gnp.r and 

cpi (or, probably, their logarithms) from the above file and examine whether they are TS or DS. 

 

4.6 exercise. The urca package contains many macroeconomical time series. The data set Ra-

otbl1 has 5 columns which can be (though it is not necessary) converted to time series. What is 

the meaning of the variables in the 1st,  3rd, and 5th columns? Examine whether these series have a 

unit root. 

 

4.2. SARIMA (=Seasonal ARIMA) Models 

 

Many economic processes have a seasonal component. Usual procedure at first removes (the trend 

and then) the seasonal part and then analyzes the remainder, for example, identifies it as a stationary 

ARMA process. On the other side, better results are obtained if both procedures take place at the 

same time.  

 

Here are two seasonal quarterly models: 4 4 4, | | 1
t t t

y a y w a−= + <  and 4 4t t t
y w b w −= + . It is easy to 

verify that in the first case / 4

4

i

i
aρ = , if i/4 is an integer and  =0 otherwise. In the second case, ACF 

has the only nonzero bar at 4. However, usually the processes have not only the seasonal component 

but also a trend, therefore the behavior of ACF is more complicated (also, do not forget that sample 

ACF may differ from the theoretical).  

 

One more example: 1 1 1 1 4 4t t t t t
y a y w b w b w− − −= + + + . In principle, the seasonal effect may also be 

described as 1 1 4 4 1 1t t t t t
y a y a y w b w− − −= + + + . Both these models add a seasonal term ( 4t

w −  or 4t
y − , 

respectively), therefore they are termed additive. Here are two variants of multiplicative models
4
: 

 
4

1 1 4(1 ) (1 ) (1 )
t t

a L y b L b L w− = + +×  (denote by SARIMA(1,0,1)(0,0,1)4) 

(i.e.,, 1 1 1 1 4 4 1 4 5t t t t t t
y a y w b w b w b b w− − − −= + + + + ) and 

 
4

1 4 1(1 ) (1 ) (1 )
t t

a L a L y b L w− − = +×  (denoted by SARIMA(1,0,1)(1,0,0)4). 

(i.e., ... – write it yourselves).  

                                                 
4
 The process (1 ) (1 ) ( ) ( ) ( ) ( )

d s D s s

t t
L L L L Y L L wφ θ− − Φ = Θ  is denoted by ( , , )( , , )

s
ARIMA p d q P D Q  or 

( , , )( , , )
s

SARIMA p d q P D Q . 
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Now we shall examine some models with seasonal component. We begin with GRETL. 

 

4.5 example.  The data set .../Thomas – ME1997/data4.txt contains quarterly, 1974:1-1984:4, data 

about consumption  C  and disposable income Y  in UK. Test whether  log(C) has a unit root, create 

a model of log(C), and forecast it 12 quarters ahead. 

 

These series are not seasonally smoothed, therefore we say that log(C) has a unit root if the coeffi-

cient ρ  in the equation   

 

   1 1 1 1 ( 1) 2 2, 3 3, 4 4,log log ...
t t t p t p t t t t

C C Y Y t D D Dα ρ γ γ δ β β β ε− − − − −∆ = + + ∆ + + ∆ + + + + +
 
   (6.1) 

 

equals 0 (here 
i

D  are quarterly dummy variables and the order p  is chosen according to the mini-

mum of AIC or by the significance of the highest term). Select l_C (=log(C)), go to Variable|Unit 

root tests| Augmented Dickey-Fuller test and fill in the test window as shown in 6.5 pav., right. The 

answer is a bit strange: it is well known that log( )C  is (1)I , however the output suggests stationari-

ty:       

 
Augmented Dickey-Fuller test for l_C 

including 10 lags of (1-L)l_C (max was 13) 

sample size 33 

unit-root null hypothesis: a = 1 

 

   with constant and trend plus seasonal dummies 

   model: (1-L)y = b0 + b1*t + (a-1)*y(-1) + ... + e 

   1st-order autocorrelation coeff. for e: -0.138 

   lagged differences: F(10, 17) = 2.020 [0.0970] 

   estimated value of (a - 1): -1.72407 

   test statistic: tau_ct(1) = -4.02327 

   asymptotic p-value 0.008069 

 

However, if one repeats the analysis with Lag order ... = 5, the ADF test will now claim that 1p =  

in (6.1) and that unit root is present in the model: 

 
Dickey-Fuller test for l_C 

sample size 43 

unit-root null hypothesis: a = 1 

 

   with constant and trend plus seasonal dummies 

   model: (1-L)y = b0 + b1*t + (a-1)*y(-1) + e 

   1st-order autocorrelation coeff. for e: -0.178 

   estimated value of (a - 1): -0.35111 

   test statistic: tau_ct(1) = -2.78711 

   p-value 0.2096 

 

These different answers can be explained by the fact that a random walk could be quite close to sta-

tionary AR(p) with large p and the roots of the inverse characteristic equation close to 1. This asser-

tion can be also supported by the forecasts of the two models. We start with the TS model and desc-

ribe respective ARIMA
5
 model as shown on the right (this model is similar to the model without 

dq2, dq3, and dq4 as independent variables, but with Seasonal AR order equal to 1; try to create the 

model yourself). 

 

                                                 
5
 Sometimes it is termed ARIMAX to indicate the presence of independent variable X.  
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Fig. 4.6.  

 

 

 

 

 

 

 

 

 

To create respective DS model, fill in the ARIMA 

window with AR order: 0, Difference:1 and remove the 

variable time from the list.      

The forecasts are presented in 6.6 pav. where one can 

see that both models are similar. In fact, the only diffe-

rence is in the width of the confidence intervals (in DS 

case they are broader but it is not quite clear which mo-

del is „more correct“).   
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Fig. 4.7. The forecasts of the TS model (left) and DS model (right) 

 

4.7 exercise. Parallel this analysis with log(Y).  �� 

 

*************************************************************************** 

*************************************************************************** 

 

Now we shall continue the analysis with R. Upon typing 

 
spain=ts(scan(file.choose()),start=1970,freq=12) # Navigate to  

                                                 # Data\Enders\Spain.txt  

tsdisplay(spain) 

 

you shall see the monthly numbers of tourists visiting Spain. The mean of spain is slowly increa-

sing, but the data has evident seasonality.   
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Fig. 4.8. The number of tourists visiting Spain and respective ACF and PACF graphs 
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Since the spread of data is increasing in time, we take logarithms first and then differentiate to make 

them stationary.  

 

tsdisplay((y1 <- diff(log(spain))))     # = -1(1- ) -
t t t

L y y y=  

tsdisplay((y12 <- diff(log(spain),12))) # = 
12

-12(1- ) -
t t t

L y y y=  

                                                                                                                       

             

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.9. The plots of simple and seasonal differences of spain  

 

The seasonal differences are similar to stationary, therefore in the future we shall analyze y12. The 

remaining variations we eliminate with simple differentiating. 

 
tsdisplay(diff(y12))                                    

                                                                                                                                                                                  

                                                                                               

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.10. The graphs of diff(y12) (left) and the diagnostics of the MAR (see below) model 

(right) 

 

The only clear peak of the ACF of diff(y12) is at 1; coupling the fact with the vanishing PACF, 

we choose the MA(1) model (significant peaks around 12 may be explained by additive or multipli-

cative seasonal factors – we propose three variants to explain them (notation: y=log(spain)):  

 

(y1 <- diff(log(spain)))
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12 12

12 1(1 )(1 )(1 ) (1 )
t t

L L a L y b L w− − − = +  (multiplicative autoregressive model  MAR) 
12 12

1 12(1 )(1 ) (1 )(1 )
t t

L L y b L b L w− − = + +  (multiplicative moving average model MMA) 
12 12

1 12(1 )(1 ) (1 )
t t

L L y b L b L w− − = + +      (additive moving average model AMA) 

 
y=log(spain) 

 

MAR=arima(y, order = c(0,1,1), seasonal = list(order=c(1,1,0))) 

MAR 

Series: y  

ARIMA(0,1,1)(1,1,0)[12] model 

 

Coefficients: 

          ma1     sar1 

      -0.7452  -0.4085 

s.e.   0.0425   0.0627 

 

sigma^2 estimated as 0.01378:  log likelihood = 156.16,  aic = -306.32 

tsdiag(MAR) # See Fig. 4.9, right 

 
 

MMA= arima(y, order = c(0,1,1), seasonal = list(order=c(0,1,1))) 

MMA 

Series: y  

ARIMA(0,1,1)(0,1,1)[12] model 

 

Coefficients: 

          ma1     sma1 

      -0.7354  -0.7267 

s.e.   0.0455   0.0515 

 

sigma^2 estimated as 0.01118:  log likelihood = 175.52,  aic = -345.04 

tsdiag(MMA) 

AMA=arima(y, order=c(0,1,12), fixed=c(NA,0,0,0,0,0,0,0,0,0,0,NA), seasonal= 

list(order=c(0,1,0))) 

AMA 

Series: y  

ARIMA(0,1,12)(0,1,0)[12] model 

 

Coefficients: 

          ma1  ma2  ma3  ma4  ma5  ma6  ma7  ma8  ma9  ma10  ma11     ma12 

      -0.6930    0    0    0    0    0    0    0    0     0     0  -0.2777 

s.e.   0.1068    0    0    0    0    0    0    0    0     0     0   0.1047 

 

sigma^2 estimated as 0.01522:  log likelihood = 145.08,  aic = -284.17 

tsdiag(AMA) 
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Fig. 4.11. The diagnostic graphs of MMA (left) and AMA (right; the model MMA is better) 

According to AIC, the best among these models (and, possibly, among all the SARIMA models) is 

the MMA model which can be denoted as SARIMA(0,1,1)(0,1,1)12 . We can use this model (write it 

down explicitely) to forecast the logs of the Spain‘s tourists.  

 
plot(forecast(MMA,12),include=36) # See Fig.4.12 below 

 

It is interesting to note that a fully automated procedure of exponential smoothing gives almost the 

same result: 

 
y.ets=ets(y) 

plot(forecast(y.ets,h=12),include=36) # See Fig.4.12 below 

 

4.8 exercise. 1. The spain.p model can also be characterized by its accuracy (i.e., calculate ME, 

MSE, MAE, MPE, and MAPE by its historical data, see summary(spain.p)). Estimate some of 

these characteristics for the MMA model. 2. Type the numeric values of the both forecasts.  
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Fig. 4.12. Two forecasts using the MMA and exponential smoothing models 

 

4.9 exercise. In the fma package, one can find the airpass data set; their logarithms (why loga-

rithms but not airpass itself?) are usually described by the classical „airline“ model SARI-

MA(0,1,1)(0,1,1)12. Create the model. Compare it with the exponential smoothing. 

 

4.10 exercise. In 3.1 example, we have used exponential smoothing and created a model allowing 

to forecast the Lithuanian GDP.  

 
l.gdp=ts(scan(),start=1993,freq=4) # copy and paste data from L.gdp.txt 

l.gdp 

ll.gdp=log(l.gdp) 

ll=window(ll.gdp,start=2000) 

plot(ll, main="logs of Lithuanian GDP") 

 

Model ll (it is clearly not stationary and has a seasonal component) as i) S.ll = SARIMA(0,1,1) 

4(0,1,1)  (analyze the model, estimate its AIC, and use it to forecast ll 8 months ahead), and as ii) 

the model with dummy seasonal variables:  

 
library(forecast) 

quarter=seasonaldummy(ll) 

quarter 

q.ll=Arima(ll,order=c(0,1,0),include.drift=TRUE,xreg=quarter) 

q.ll 

tsdiag(q.ll) 

plot(forecast(q.ll,,h=8,xreg=seasonaldummyf(ll,8))) # AIC=?  = -175,7 

 

Compare these two models with the model presented in 3.1 example. Which one do you prefer? The 

last one? Create all three models with GRETL.      ��  

 
S.ll=Arima(ll,order=c(0,1,1),seasonal=list(order=c(0,1,1))) 

S.ll 

plot(forecast(S.ll,,h=8)) # -157.05 

Eksponentinis buvo AIC = -116.35 
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5. Regression with Time Lags: Autoregressive Distributed Lag Models 
 

 

We shall redo 5.1 example from Lecture Notes with R. 

 

5.1 example. The effect of bad news on market capitalization. 

Select 2-62 rows in badnews.xls and copy them (to clipboard):  

 
badnew=read.delim2("clipboard",header=TRUE) 

badnews=ts(badnew,freq=12) 

capit=badnews[,1] 

price=badnews[,2] 

library(dynlm) 

mod4=dynlm(capit~L(price,0:4)) 

summary(mod4) 

 

Coefficients: 

                      Estimate Std. Error t value Pr(>|t|)     

(Intercept)           91173.32    1949.85  46.759  < 2e-16 *** 

L(price, 0:4)Series 1  -131.99      47.44  -2.783 0.007589 **  

L(price, 0:4)Series 2  -449.86      47.56  -9.459 1.01e-12 *** 

L(price, 0:4)Series 3  -422.52      46.78  -9.032 4.40e-12 *** 

L(price, 0:4)Series 4  -187.10      47.64  -3.927 0.000264 *** 

L(price, 0:4)Series 5   -27.77      47.66  -0.583 0.562736   

 

What can we conclude about the effect of news about the oil price on market capitalization? In-

creasing the oil price by one dollar per barrel in a given month is associated with: 

 

1. An immediate reduction in market capitalization of $131,994, ceteris paribus. 

2. A reduction in market capitalization of $449,860 one month later, ceteris paribus 

 

and so on. To provide some intuition about what the ceteris paribus condition implies in this con-

text note that, for example, we can also express the second of these statements as: “Increasing the 

oil price by one dollar in a given month will tend to reduce market capitalization in the following 

month by $449,860, assuming that no other change in the oil price occurs”. 

 

Since the p-value corresponding to the explanatory variable pricet-4  is greater than 0.05 we can-

not reject the hypothesis that 4 0β = at 5% significance. Accordingly, we drop this variable from the 

model and re-estimate with lag length set equal to 3, yielding the results in the following table: 

 
mod3=dynlm(capit~L(price,0:3)) 

summary(mod3) 

 

Coefficients: 

                      Estimate Std. Error t value Pr(>|t|)     

(Intercept)           90402.22    1643.18  55.017  < 2e-16 *** 

L(price, 0:3)Series 1  -125.90      46.24  -2.723 0.008792 **  

L(price, 0:3)Series 2  -443.49      45.88  -9.666 3.32e-13 *** 

L(price, 0:3)Series 3  -417.61      45.73  -9.131 2.18e-12 *** 

L(price, 0:3)Series 4  -179.90      46.25  -3.890 0.000287 *** 

 

The p-value for testing  3 0β =  is 0.0003, which is much less than 0.05. We therefore conclude that 

the variable pricet-3 does indeed belong in the distributed lag model. Hence q = 3 is the lag 
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length we select for this model. In a formal report, we would present this table of results or the 

equation 

 

1 2 390402.22 125.90 443.49 417.61 179.90
t t t t t

capit price price price price− − −= − − − − . 

 

The results are similar to those discussed above, therefore we will not comment their interpretation. 

 

5.1 exercise. Kleiber Zeileis 88+ Consider different forms for a consumption function based on 

quarterly US macroeconomic data from 1950:1 through 2000:4 as provided in the data set USMac-

roG in the AER package. Consider two models,  

 

1 0 1 1

1 1 1 0

...t t t q t q t

t t t t

consumption dpi dpi dpi

consumption consumption dpi

α β β β ε

α ϕ β ε

− −

−

= + + + + +

= + + +
 

 

(here consumption is real consumption expenditures and dpi real disposable personal income). 

In the former model, a distributed lag model, consumption responds to changes in income only over 

q (where q is still to be found) periods, while in the latter specification, an autoregressive distributed 

lag model, the effects of income changes persist due to the autoregressive specification.  

 
library(AER) 

data(USMacroG) 

USMacroG[1:6,] 

        gdp consumption invest government    dpi  cpi     m1 tbill unemp 

[1,] 1610.5      1058.9  198.1      361.0 1186.1 70.6 110.20  1.12   6.4 

[2,] 1658.8      1075.9  220.4      366.4 1178.1 71.4 111.75  1.17   5.6 

[3,] 1723.0      1131.0  239.7      359.6 1196.5 73.2 112.95  1.23   4.6 

[4,] 1753.9      1097.6  271.8      382.5 1210.0 74.9 113.93  1.35   4.2 

[5,] 1773.5      1122.8  242.9      421.9 1207.9 77.3 115.08  1.40   3.5 

[6,] 1803.7      1091.4  249.2      480.1 1225.8 77.6 116.19  1.53   3.1 

     population inflation interest 

[1,]    149.461        NA       NA 

[2,]    150.260    4.5071  -3.3404 

[3,]    151.064    9.9590  -8.7290 

[4,]    151.871    9.1834  -7.8301 

[5,]    152.393   12.6160 -11.2160 

[6,]    152.917    1.5494  -0.0161 

 

plot(USMacroG[, c("dpi", "consumption")], lty = c(3, 1),plot.type = "single", 

ylab = "") 

legend("topleft", legend = c("income", "consumption"),lty = c(3, 1), bty = "n") 

 

What about the models in logs and with a trend t ? Fit all the models, visualize and compare them 

with AIC. Estimate the short- and long-run multipliers of the best model.             �� 
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6.  Regression with Time Series Variables 

 

Recall that regression models are aimed to explain the response variable Y  in terms of the predic-

tive variables X ’s.    

 

6.1. Time Series Regression when Both Y  and X are Stationary   

 

Let us repeat our argument which was used in our discussion on the ADL( ,p q ) processes: the dy-

namic model 

 

1 1 0... ...
t t p t p t q t q t

Y t Y Y X Xα δ ϕ ϕ β β ε− − −= + + + + + + + +  

 

is equivalent to the model  

 

1 1 1 1 1 1 1... ...
t t t p t p t t q t q t

Y t Y Y Y X X Xα δ ρ γ γ θ ω ω ε− − − − + − +∆ = + + + ∆ + + ∆ + + ∆ + + ∆ + . 

 

The second form is often more convenient than the first because 1) it allows us to easier test the unit 

root hypothesis (now it is just 0 : 0H ρ = ) and 2) in the first model one is often challenged by the 

multicollinearity problem. The coefficients of both models have their usual interpretation, however 

in economics more popular is the concept of a multiplier.  Assume that X  and Y  are in a long-

running equilibrium, i.e., , 2 1... t t tX X X X− −= = = ≡ , and 2... tY −= = 1t tY Y Y− = ≡ ; thus the 

equilibrium model is given by 
0 1

1 1 1

...

1 ... 1 ... 1 ...

q

p p p

Y t X
β β βα δ

ϕ ϕ ϕ ϕ ϕ ϕ

+ + +
= + +

− − − − − − − − −
. Now, if 

the process transfers to the new constant level, i.e., 1 2 ... 1t tX X X+ += = ≡ + , this will change the 

equilibrium value of Y . This change of Y is called the long run or total multiplier and it equals 

0 1 1( ... ) / (1 ... )
q p

β β β ϕ ϕ+ + + − − −  or /θ ρ− .  

 

 

6.1 example.  The effect of financial liberalization on economic growth. 

 

Researchers in the field of international finance and development are interested in whether financial 

factors can play an important role in encouraging growth in a developing country. The purpose of 

this example is to investigate this issue empirically using time series data from a single country. 

Data set LIBERAL.XLS contains data from Country A for 98 quarters starting at 1980:1 on GDP 

growth and a variable reflecting financial liberalization: 

the expansion of the stock market. In particular, the 

dependent and explanatory variables are: 

 

Y = pchGDP the percentage change in GDP.  

X = pchSMC the percentage change in total   

                            stock market capitalization. 
 

liber = ts(read.delim2("clipboard"),  

start=1980,freq=4) 
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mean(data.frame(liber)) 

    pchGDP     pchSMC  

0.29677662 0.01256935 

plot(liber) 

 

The mean of these two variables is 0.30% and 0.01% per quarter, indicating that stock markets in 

Country A have not expanded by much on average. Note, however, that this average hides wide 

variation. In some quarters market capitalization increased considerably, while in other quarters it 

decreased. Assuming that both variables are stationary, we can estimate an ADL(2, 2) model using 

OLS. Remember that, if the variables in a model are stationary, then the standard regression 

quantities (e.g., OLS estimates, p-values, confidence intervals) can be calculated in an ordinary 

way. 

 

We shall use the above applied sequential procedure and begin with the model 

 
library(dynlm) 

summary(dynlm(d(pchGDP)~time(liber)+L(pchGDP,1)+L(d(pchGDP),1)+pchSMC+ 

L(d(pchSMC),0:1),data=liber)) 

 

which, after removing insignificant terms, ends in 

 
mod.f = dynlm(d(pchGDP)~L(pchGDP,1)+L(d(pchGDP),1)+pchSMC+d(pchSMC),data=liber) 

summary(mod.f) 

 

Coefficients: 

                 Estimate Std. Error t value Pr(>|t|)     

(Intercept)      0.007127   0.020386    0.35  0.72747     

L(pchGDP, 1)    -0.120092   0.011414  -10.52  < 2e-16 *** 

L(d(pchGDP), 1)  0.799661   0.029680   26.94  < 2e-16 *** 

pchSMC           0.124421   0.041605    2.99  0.00358 **  

d(pchSMC)        0.839340   0.036458   23.02  < 2e-16 *** 

Adjusted R-squared: 0.9736 

 

How to interpret the long run multiplier /θ ρ− = – 

0.124421/(–0.120092) = 1.036? We know that 

until now the market capitalization grew on ave-

rage 0.01% per quarter and GDP 0.30% per 

quarter.  If the stock capitalization began to grow 

1.01%  each quarter, then after some time the 

GDP will begin to grow 0.30+1.036=1.336% each 

quarter. 
 

The inclusion of pchSMC into our model not only 

improved it (when compared with the autoregres-

sive model of d(pchGDP); compare their Ad-

justed R-squared), but also allowed to ana-

lyze the influence of pchSMC (it is described by 

the lung run multiplier).   

 

Note that to forecast pchGDP we use the formula pchGDPt = pchGDPt-1 + fitted 

(mod.f): 
 

ttt=time(liber)                        

length(ttt) 
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[1] 98 

plot(ttt[3:98],pchGDP[3:98],type="l", 

ylab="pchGDP",xlab="Laikas",lwd=2) 

lines(ttt[3:98],pchGDP[2:97]+ 

fitted(mod.f),col=2) 

 

 

6.2 example.  xxxxxxxxxxxxxxxxxxxxxx 

 

6.2. Time Series Regression when Both Y  and X are Trend Stationary:  

Spurious Regression   
 

Consider the regression 

  

                                                0 1 1 2 2t t t tY X Xβ β β ε= + + +                                                    (*) 

  

and assume that some (or, maybe, even all) of the variables have a linear trend, e.g., 

1 10 11 1t tX tα α ϖ= + + . In this case, the seemingly (or spuriously) significant coefficients of regres-

sion (the spurious regression) can be obtained not because the response „truly“ depends on predicti-

ve variables, but because of the trends „hidden“ in these variables (both Y and X increase because of 

“progress”, but Y  increases not because of X increases). To clear the „true“ dependence of Y on X, 

we can act twofoldly: 1) to augment the (*) equation with a linear or, when necessary, polynomial 

trend: 

 

                                                     0 1 1 2 2t t t tY X X tγ γ γ δ ε= + + + +                                       (**) 

 

 or 2) to rewrite the (*) equation in the form of deviations from the trend: 

 

                                                      0 1 1 2 2t t t tY X Xβ γ γ ε= + + +� � � ;                                          (***) 

 

here, for example,  1 1 10 11ˆ ˆ
t tX X tα α= − +� . Interestingly, the γ  coefficients in (**) and (***) (note 

that namely these coefficients describe the “true” dependence of Y on X’s) are the same.  

 

6.3 example.  The files ...\PE.II.data.2010\PRMINWGE.RAW and ...PRMINWGE.DES contain 

the yearly data on Puerto Rican employment rate, minimum wage and other variables (this data was 

used to study the effects of the U.S.A. minimum wage on employment in Puerto Rico).     

 

PUERTO <- scan(file.choose(),what=list(rep(0,25)),multi.line=T) 

puerto = matrix(unlist(PUERTO),byrow=T,ncol=25) 

head(puerto) 

colnames(puerto)=c("year","avgmin","avgwage","kaitz","avgcov","covt","mfgwage", 

"prdef","prepop","prepopf","prgnp","prunemp","usgnp","tt","post74", 

"lprunemp","lprgnp","lusgnp","lkaitz","lprun_1","lprepop","lprep_1", 

"mincov","lmincov","lavgmin") 

head(puerto) 

uerto=ts(puerto,start=1950,freq=1) 

 

Two simple models are 

 

0 1 2log( ) log( ) log( )t t t tprepop mincov usgnpβ β β ε= + + +  
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0 1 2t t t tlprepop lmincov lusgnpβ β β ε= + + +  

where  

 

lprepop  log(PR employ/popul ratio) 

lmincov  log((avgmin/avgwage)*avgcov) 

lusgnp  log(US GNP) 

 

avgmin is the average minimum wage, avgwage is the 

average overall wage, and avgcov is the average coverage 

rate (the proportion of workers actually covered by the 

minimum wage law). 

 
plot(uerto[,c(21,24,18)]) 

 

 

All the variables have a trend close to linear (accurate 

analysis would require to test for unit root first!).  

 

 

 
summary(lm(lprepop~lmincov+lusgnp,data=uerto)) 

Coefficients: 

            Estimate    Std.Error t-value Pr(>|t|)   

(Intercept) -1.05441    0.76541  -1.378   0.1771   

lmincov     -0.15444    0.06490  -2.380   0.0229 * 

lusgnp      -0.01219    0.08851  -0.138   0.8913   

 

Thus, if the minimum wage increases then employment declines which matches classical econo-

mics. On the other hand, the GNP is not significant but we shall scrutinize the claim right now: 

 
> summary(lm(lprepop~lmincov+lusgnp+tt,data=uerto)) 

Coefficients: 

             Estimate Std. Error t value Pr(>|t|)     

(Intercept) -8.696292   1.295770  -6.711 1.04e-07 *** 

lmincov     -0.168695   0.044246  -3.813 0.000552 *** 

lusgnp       1.057350   0.176638   5.986 8.98e-07 *** 

tt          -0.032354   0.005023  -6.442 2.31e-07 *** 

 

Here, we interpret the coefficient of lusgnp as follows: if usgnp raises 1% more then it should 

accordind to its long run trend, prepop will raise extra 1.057%.    

 

The above regression is equivallent to this: 
 

summary(lm(lm(lprepop~tt)$res~lm(lmincov~tt)$res+lm(lusgnp~tt)$res,data=uerto)) 

Coefficients: 

                       Estimate Std. Error  t value Pr(>|t|)     

(Intercept)           2.351e-18  6.064e-03 3.88e-16 1.000000     

lm(lmincov ~ tt)$res -1.687e-01  4.361e-02   -3.868 0.000456 *** 

lm(lusgnp ~ tt)$res   1.057e+00  1.741e-01    6.073 6.18e-07 *** 

 

6.1 exercise.  (A spurious regression example). The file …\Shumway\globtemp2.dat has 142 ob-

servations starting from the year 1856 (yearly average global temperature deviations from the 1961-

1990 average). Properly organize and import the file. Create a two-dimensional (from 1964 till 
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1987) time series containing the Annual_Mean column and also lusgnp column from the uerto 

data set. How do you think, does the GDP of the U.S.A. depends on the global temperature? Plot 

the necessary graphs. Create two regression models: the first, without the year variable on the rhs 

and another containing the variable. If your conclusions differ, explain.      �� 

 

6.2 exercise. Generate two series 0 1 1t tY tβ β ϖ= + +  and 0 1 2t tX tα α ϖ= + +  where both 1t
ϖ and 

2t
ω  are WN. Create two regression models: 0 1 1t t tY Xγ γ ε= + +  and  0 1 2t t tY X tχ χ δ ε= + + + . 

Comment the results. 

 

 

6.3. Time Series Regression when Y  and X  Have Unit Roots:  

Spurious Regression 
 

Let us consider the regression model  

 

                                                      0 1t t t
Y Xβ β ε= + +                                                                (6.1) 

 

and assume that both variables are integrated, i.e., have unit roots. If, in addition, the variables are 

cointegrated (that is, the errors 
t
ε  of the OLS model constitute a stationary process) all the usual 

procedures of estimating the coefficients, making inferences etc are still valid (the case will be ana-

lyzed in the next section). On the other hand, if the errors tε  are not stationary, but still have unit 

root, the relationship between 
t

Y  and 
t

X  will only be seeming or spurious (despite big 2
R and „si-

gnificant“ coefficient), the regression, as a rule, will have no economic meaning. The reason of this 

phenomenon is the fact that the OLS estimators are now inconsistent and the t − statistics has ano-

ther, not Student‘s, distribution.  

 

Let us consider a revealing example: generate two independent random walks 1t Ytt
Y Y w−= +  and 

1t Xtt
X X w−= +  where 

Yt
w  and 

Xt
w  are two independent white noises. It is clear that equation 

(6.1) is senseless (in other words, 1β  must be 0 since 
t

Y  and 
t

X  are not related in any sense), 

however, once 1000 Monte-Carlo experiments are performed, it is easy to verify that the hypothesis 

0 1: 0H β =  will be rejected with, say, 5% significance, much more often than 5 times in 100.  

 
ilgis=50   # The length of random walk  

kartai=1000  # The number of Monte-Carlo experiments 

set.seed(1) 

p.value=numeric(kartai)  # A vector to place the p-values of 0H       

for(i in 1:kartai)    # Loop 

{ 

y=ts(cumsum(rnorm(ilgis)))  # Generate random walk y 

x=ts(cumsum(rnorm(ilgis)))  # Generate random walk x 

p.value[i]=summary(lm(y~x))$coef[2,4]  # The p–value of 0H  

} 

print(sum(ifelse(p.value<0.05,1,0))/kartai) # The frequency of regressions  

                                            # with p<0.05  

[1] 0.67  # 67 kartus iš 100 0H  atmesime 
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One outcome of this experiment is plotted in Fig. 6.1 where one can see two independent paths of 

random walks. Obviously, there should not be any ties between these variables, however, their scat-

ter diagram is visibly organized and the coefficient of regression is „very significant“  (the p-value 

equals 0.000003). This quasi-significant regression is called spurious regression. Also draw your 

attention to the graph of residuals, it is more similar to the random walk rather than to stationary 

process. 
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Fig. 6.1. Two graphs of random walks  y and x (top row), the scatter diagram of x and y 

together with the regression line (bottom, left) and the graph of residuals (bottom, 

right) 

 

6.4 example.  Let us analyze daily IBM stock prices spanning May 17, 1961 to November 2, 1962 

(369 days in all) and daily closing prices of German DAX index starting at the 130th day of 1991. 

 
library(waveslim); ?ibm 

library(datasets); ?EuStockMarkets 

DAX=EuStockMarkets[1:369,1] 

par(mfrow=c(1,3)) 

plot(ibm); plot(DAX,type="l") 

iD=lm(ibm~DAX) 

plot(DAX,ibm); abline(iD) 

summary(iD) 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept) 31.99302   74.03495   0.432    0.666     

DAX          0.27347    0.04527   6.040 3.78e-09 *** 

 

Though, because of their nature, ibm and DAX should not have any relationship, the coefficient of 

regression is very significant. This is an example of spurious regression which can be explained 

through the fact that the errors of the model have a unit root. 

 

1) Establish that ibm has a unit root. 

2) Establish that DAX has a unit root. 

3) Now we shall verify that the errors of the iD model have a unit root: 
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iD.res=ts(iD$res) 

summary(dynlm(d(iD.res)~L(iD.res)+time(iD.res))) 

Coefficients: 

              Estimate Std. Error t value Pr(>|t|)   

(Intercept)   1.898716   1.088535   1.744   0.0820 . 

L(iD.res)    -0.013392   0.007109  -1.884   0.0604 . 

time(iD.res) -0.011303   0.005366  -2.107   0.0358 * 

 

Recall that the unit root hypothesis 0H  claims that the coefficient at L(iD.res) equals zero. In 

this cointegration case, we have a further complication: here the t − statistics has not the Dickey – 

Fuller, but the Engle-Granger distribution whose critical values are given in this table:    

 

 

Table 6.1  The asymptotical critical values of the Engle-Granger distribution  (when testing the unit 

root hypothesis in the error process in the model with constant) 

 
 

 

In order to test the cointegration of these two variables note that the t − statistics equals -1.884 

which is closer to 0 than -4.10, therefore there is no ground to reject 0H ; thus the errors have a unit 

root or, in other words, ibm and DAX are not cointegrated and the strong regression bonds are only 

spurious.   �� 

 

 

6.4. Time Series Regression when Y  and X  Have Unit Roots:  

Cointegration 
 

It is well known that many economic time series are DS and therefore the regression for levels is 

often misleading (the standard Student or Wald tests provide wrong p −  values). On the other hand, 

if these DS series are cointegrated, the OLS method is OK. Recall that if  Y  and X  have unit roots 

(i.e., are nonstationary), but some linear combination t tY Xα β− −  is stationary, then we say that Y  

and  X  are cointegrated. In order to establish cointegration, we estimate unknown coefficients α  

and β  by means of OLS and then test whether the errors of the model t t tY Xα β ε= + +  have a unit 

root (respective test is applied to the residuals ˆ
t te ε= =  ˆˆ

t tY Xα β− − ). 

 

6.5 example.  The file ...\PE.II.data.2010\hamilton.txt contains quarterly data, 1947:01 – 1989:3, 

where:  

 

lc  logarithms of the real quarterly personal expenditure 

ly  logarithms of the real quarterly aggregated disposable income    
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ham = read.table(file.choose(),header=T) 

ha = ts(ham,start=1947,freq=4)  # attach time series structure to ham 

ha[1:6,] 

lc=ha[,2] 

ly=ha[,3] 

par(mfrow=c(1,3)) 

plot(lc,ylab="lc&ly") 

lines(ly,col=2) 

plot(ly,lc) 

plot(lm(lc~ly)$res,type=“l“) 

library(dynlm) 

mod2c = dynlm(d(lc)~L(lc)+L(d(lc),1:2)+time(lc)) 

mod0y = dynlm(..)  

Time
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Fig. 6.2. The graphs of lc and ly (left), scatter diagram lc vs ly (center), and the resi-

duals of the cointegration equation (right) 

 

It is easy to verify that both series have unit roots and their final models are 
 
summary(mod2c) 

Call: 

dynlm(formula = d(lc) ~ L(lc) + L(d(lc), 1:2) + time(lc)) 

 

Coefficients: 

                 Estimate Std. Error t value Pr(>|t|)    

(Intercept)    -307.49203  129.86620  -2.368   0.0191 *  

L(lc)            -0.05204    0.02176  -2.392   0.0179 *   > -3.45 

L(d(lc), 1:2)1    0.06550    0.07592   0.863   0.3895    

L(d(lc), 1:2)2    0.23949    0.07586   3.157   0.0019 ** 

time(lc)          0.17553    0.07390   2.375   0.0187 *  

summary(mod0y) 

Call: 

dynlm(formula = d(ly) ~ L(ly)) 

 

Coefficients: 

             Estimate Std. Error t value Pr(>|t|) 

(Intercept)  2.064366   1.478031   1.397    0.164 

L(ly)       -0.001679   0.002024  -0.829    0.408         > -2.89 

 

Now we shall test whether the errors of the model t t tlc lyα β ε= + ⋅ +  make a stationary process, 

i.e., do not have unit root. The arguments of the function dynlm must be time series, therefore we 

shall endow this structure to the residuals of the cointegration model:  
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cy.res=ts(lm(lc~ly)$res,start=1947,freq=4) 

 

We want to test whether | | 1ϕ <  in 1. .t t tcy res cy resϕ ε−= + . However, if the errors of this model do 

not constitute WN, the standard OLS procedure gives the erroneous estimate of ϕ . One approach is 

to replace the AR(1) model by an AR(p) model. Another approach is to use the AR(1) modeliu, but 

to take into account the fact that the errors are not a WN (this is done by the Phillips – Ouliaris test). 

 

1st method 

 

This method is also called the Engle – Granger method, it tests the unit root in errors hypothesis. 

However, the OLS procedure proposes the coefficients to the cointegration equation such that the 

variance of the residuals were minimal, thus residuals are „too stationary“.  In other words, the null 

hypothesis will be rejected too often. This is why we use other critical values to test the null hypo-

thesis 0 : 0H ρ =  in
1
 1 1 1 ...t t te e eρ γ− −∆ = + ∆ + + 1 1p t p

eγ − − +∆ + tw .  

 

Table 6.1  The asymptotic critical values to test the unit root hypothesis in the errors of the cointeg-

ration equation containing an intercept 

 

 

Intercept  

 + trend 

5% 

-3.78 

-4.12 

-4.43 

-4.72 
 

 

It seems that R does not have such a function therefore we shall perform the test ”manually“. Here 

is the final model of residuals:  

 
summary(dynlm(d(cy.res)~-1+L(cy.res)+L(d(cy.res),1:4))) 

 

Coefficients: 

                   Estimate Std. Error t value Pr(>|t|)     

L(cy.res)          -0.14504    0.05271  -2.752 0.006603 **  

L(d(cy.res), 1:4)1 -0.27251    0.07981  -3.414 0.000809 *** 

L(d(cy.res), 1:4)2 -0.08063    0.08171  -0.987 0.325222     

L(d(cy.res), 1:4)3 -0.03778    0.08076  -0.468 0.640568     

L(d(cy.res), 1:4)4 -0.22957    0.07317  -3.138 0.002025 **  

 

Since  -2.752 is closer to zero than -3.34, we do not reject the unit root in errors hypothesis, thus the 

processes lc and ly are not cointegrated. Too, the test statistics is close to critical value and the 

residual graph is similar to that of RW (see Fig. 6.2, right). 

 

2nd method 

 

The Phillips – Ouliaris cointegration test can be performed with the ca.po funkction from the urca 

package: 

                                                 
1
 The average value of residuals is 0, therefore the intercept is not included. 
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library(urca) 

cy.data=cbind(lc,ly) 

cy.po <- ca.po(cy.data, type="Pz") 

summary(cy.po) 

 
Test of type Pz  

detrending of series none  

 

Call: 

lm(formula = lc ~ zr - 1) 

 

Coefficients: 

     Estimate Std. Error t value Pr(>|t|)     

zrlc  0.96528    0.03449   27.98   <2e-16 *** 

zrly  0.03541    0.03406    1.04      0.3     

 

Call: 

lm(formula = ly ~ zr - 1) 

 

 

Coefficients: 

     Estimate Std. Error t value Pr(>|t|)     

zrlc  0.18636    0.04627   4.028 8.52e-05 *** 

zrly  0.81713    0.04569  17.886  < 2e-16 *** 

 

Value of test-statistic is: 51.4647  

Critical values of Pz are: 

                  10pct    5pct    1pct 

critical values 33.9267 40.8217 55.1911 

 

The test statistics 51.4647  is further from 0 than 40.8217, therefore we again reject the null hypo-

thesis: lc and ly are cointegrated.    �� 

6.3 exercise.  Use the data on  Y = Longrate = long-term interest rates and X = Shortrate = 

short-term interest rates in  ...\PE.II.data.2010\interestrates.xls. 

 

(a) Use a sequential procedure and/or the Dickey–Fuller tests to verify that Y and X  have unit roots. 

(b) Run a regression of Y on X and save the errors. 

(c) Carry out a unit root test on the residuals using an AR(1) model. 

(d) Carry out a unit root test on the residuals using an AR(2) model. 

(e) Carry out a unit root test on the residuals using an AR(3) model. 

(f ) What can you conclude about the presence of cointegration between Y and X? 

 

(If you have done this question correctly, you will find that cointegration does seem to be present 

for some lag lengths, but not for others. This is a common occurrence in practical applications, so 

do not be dismayed by it. Financial theory and time series plots of the data definitely indicate that 

cointegration should occur between Y and X. But the Engle–Granger test does not consistently indi-

cate cointegration. One possible explanation is that the Engle–Granger and Dickey–Fuller tests are 

known to have low power.) 

 

(g) Use Phillips-Ouliaris test to verify that Y  and X  are cointegrated. 
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6.4 exercise.  The data set .../DUOMENYS/Thomas – ME1997/data1.txt has yearly, 1963-1992, 

data on the food demand in the U.S.A.  

 

NF  expenditure on food in current prices 

RF  expenditure on food in constant prices   = Q  demand for food 

NTE  total expenditure in curent prices    = X  total expenditure 

RTE  total expenditure in constant prices     

 

The variable P (price of food) is defined as the ratio NF/RF and G (general price index) is 

NTE/RTE. Test whether ln(Q) (=expenditure on food in constant prices) and ln(X/G) (=total 

expenditure in constant prices) are cointegrated. 

 

6.5 exercise. The data set .../DUOMENYS/Thomas – ME1997/data4.txt contains quarterly, 1974:1 

– 1984:4, data on consumption C and disposable income Y in the United Kingdom. Test these va-

riables on cointegration. These series are not seasonally smoothed, therefore try such a cointegra-

tion equation: 

2 2 3 3 4 4ln lnt t tC D D D Yα β β β β ε= + + + + + . 

 

The not very favorable outcome can be explained by fact that some important variables (property, 

interest rate etc) are missing in the model.  �� 

   

6.5.  Time Series Regression when Y and X are Cointegrated:  

     the Error Correction Model 

 

If X  and Y  are integrated but not cointegrated, their ties
2
 can only be spurious. In order to get sen-

sible results, the model may be augmented with new variables or another ADL model for (stationary 

differences) created: 

 

1 1 0... ...
t t p t p t q t q t

Y Y Y X Xϕ γ γ ω ω ε− − −∆ = + ∆ + + ∆ + ∆ + + ∆ + . 

 

Similar model can also be analyzed in the case of cointegration, but then one more term, the so-

called error correction term 1te −  (here ˆ
tY α= + ˆ

t tX eβ +  is a long-run equilibrium or cointegration 

equation) should be included:  

 

                    1 1 1 0... ...
t t t p t p t q t q t

Y t e Y Y X Xϕ δ λ γ γ ω ω ε− − − −∆ = + + + ∆ + + ∆ + ∆ + + ∆ + .      (�) 

 

This is the error correction model (ECM) where the coefficient λ  is usually negative
3
 (e.g., if 

0.25λ = − , then unit deviation from equilibrium will be compensated in 1/0.25=4 time units).    

 

The ECM is usually created in two steps. 

                                                 
2
 We mean regression ties for levels. 

3
 If 1t

e −  is positive, that is, 1t
Y −  is above the equilibrium 1

ˆˆ
t

Xα β −+ , then negative value of 1t
eλ −  will shift 

t
Y  

towards equilibrium.  
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1. Estimate the long-run equilibrium model ˆ
tY α= + ˆ

t tX eβ +  and save its residuals. 

2. Estimate the regression model (�). 

 

 

6.6 example.  181 monthly data on the spot and forward rate of a certain currency are located in 

...\PE.II.data.2010\forexN.xls. Both rates are similar to a random walk with drift (see figure on the 

right, fr is red), however, it seems that they 

are wandering in a similar manner (in other 

words, they are cointegrated). 

 

 

forex = ts(read.delim2("clipboard", 

header=TRUE),start=1,freq=1) 

colnames(forex)=c("sr","fr") 

forex[1:6,] 

 

 

Let us test their cointegration (...)  

 

(...) – then the ECM 

 

 

 

 

 

6.7 example.  We have already analyzed (in 6.4 exercise) the data set .../DUOMENYS/Thomas – 

ME1997/data1.txt and found that the variables ln Q  and ln( / )X G  are cointegrated, that is, ... (end 

the definition).  

 
d1=ts(read.table(file.choose(),header=TRUE),start=1963) 

d1[1:6,] 

X=d1[,"NTE"] 

Q=d1[,"RF"] 

P=d1[,"NF"]/d1[,"RF"] 

G=d1[,"NTE"]/d1[,"RTE"] 

c1=lm(log(Q)~log(X/G)) 

summary(c1)          # cointegration (equilibrium) equation 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)  7.11378    0.25406   28.00   <2e-16 *** 

log(X/G)     0.35537    0.01778   19.99   <2e-16 *** 

 

Residual standard error: 0.02478 on 28 degrees of freedom 

Multiple R-squared: 0.9345,     Adjusted R-squared: 0.9322  

F-statistic: 399.5 on 1 and 28 DF,  p-value: < 2.2e-16 

c1res=ts(c1$res,start=1963) 

 

We use the residuals of the cointegration equation c1 and create a regression model 

 

1 1 1 0 1 1ln c1res ln ln( / ) ln( / )t t t t t tQ Q X G X Gλ γ ω ω ε− − −∆ = ⋅ + ∆ + ∆ + ∆ + . 

 
library(dynlm) 

Time

fo
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x
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1
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0
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mod1 = dynlm(d(log(Q))~ -1 + L(c1res) + L(d(log(Q))) + L(d(log(X/G)),0:1)) 

summary(mod1) 

Time series regression with "ts" data: 

Start = 1965, End = 1992 

 

Coefficients: 

                     Estimate Std. Error t value Pr(>|t|)     

L(c1res)              -0.4233     0.1208  -3.504 0.001823 **  

L(d(log(Q)))           0.4051     0.1592   2.545 0.017794 *   

L(d(log(X/G)), 0:1)0   0.5368     0.1347   3.984 0.000548 *** 

L(d(log(X/G)), 0:1)1  -0.2532     0.1387  -1.825 0.080523 .   

 

Residual standard error: 0.01307 on 24 degrees of freedom 

Multiple R-squared: 0.7338,     Adjusted R-squared: 0.6894  

F-statistic: 16.54 on 4 and 24 DF,  p-value: 1.242e-06 

 

The error correction term has the right sign and is significant, the model itself is quite acceptable. 

We can still improve the model by including other differences of (1)I  variables, e.g., log-

differences of relative food prices /P G : 

 

1 1 1 0 1 1

0 1 1

ln c1res ln ln( / ) ln( / )

ln( / ) ln( / )

t t t t t

t t t

Q Q X G X G

P G P G

λ γ ω ω

ϖ ϖ ε

− − −

−

∆ = ⋅ + ∆ + ∆ + ∆ +

∆ + ∆ +
 

 

After deleting insignificant terms, we get such an ECM: 

 
mod2 = dynlm(d(log(Q))~-1+L(c1res)+L(d(log(Q)))+d(log(X/G))+d(log(P/G))) 

summary(mod2) 

 

Time series regression with "ts" data: 

Start = 1965, End = 1992 

 

Coefficients: 

             Estimate Std. Error t value Pr(>|t|)     

L(c1res)     -0.40437    0.10795  -3.746 0.000999 *** 

L(d(log(Q)))  0.24010    0.13413   1.790 0.086080 .   

d(log(X/G))   0.36579    0.08985   4.071 0.000440 *** 

d(log(P/G))  -0.32361    0.10135  -3.193 0.003906 **  

 

Residual standard error: 0.01169 on 24 degrees of freedom 

Multiple R-squared: 0.7872,     Adjusted R-squared: 0.7518  

F-statistic:  22.2 on 4 and 24 DF,  p-value: 8.984e-08 

 

Here the short-run demand elasticities with respect to total real expenditure and relative price are 

0.36579 and 0.32361, respectively. In the long-run, however, demand is independent of relative 

price, while the expenditure elasticity falls sligthly to the 0.35537 in the equilibrium relationship.  

 

 

Here the long-run relationship measures any relation between the level of the variables under consi-

deration while the short-run dynamics measure any dynamic adjustments between the first-

differences of the variables. 
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7. Multivariate Models 
 

 

7.1. Granger Causality 
 

Assume that X  and Y are stationary processes generated by the ADL(1,1) equation
1
 

 

1 1 1 1t t t tY Y Xα ϕ β ε− −= + + +  

 

where, if the coefficient 1β  is significant, we say that X  Granger causes
2
 Y . Recall that we 

usually use the Student test to verify the (in)significance hypothesis 0 1: 0H β = . On the other 

hand, we can use the Fisher test to this end: the previous model is called unrestricted and the 

model without 1tX −  restricted; if
3
  

( ) /

/ ( )

R UR

UR

SSR SSR q
F

SSR T q p

−
=

− −
  is “small”

4
, that is, if  URSSR ≈  

RSSR , that is, if the model augmented with 1tX − has only marginally better SSR , then 0H  is 

accepted, i.e., X  does not Granger cause Y .   

   

In general case, we consider the ADL( p, q) model 

 

                              1 1 1 1... ...
t t p t p t q t q t

Y t Y Y X Xα δ ϕ ϕ β β ε− − − −= + + + + + + + + ;             (7.1) 

 

if the hypothesis 0 1: 0,..., 0
q

H β β= =  is rejected (use Fisher‘s test), we say that X  Granger 

causes Y . 

 

7.1 example. The file .../dataPE/stockpab.xls contains 133 monthly data of the most impor-

tant stock price indices in Countries A and B (the data are logged) and respective stock market 

returns: 

 

............. 

pchA stock returns in Country A 

pchB stock returns in Country B 

 

It is easy to verify that both indices have unit roots but are not cointegrated. On the other 

hand, the logarithmic differences, i.e., returns, are stationary. We are interested in whether the 

stock returns of country A Granger causes the returns in B.     

 
stock = read.delim2("clipboard",header=TRUE)[-1,] 

stoc = ts(stock[,4:5],freq=12,start=2) 

plot(stoc) 

 

                                                 
1
 Note that only lagged variables are on the rhs. 

2
 This does not mean that X causes Y , it only means that information on X helps to reduce the forecast error of 

Y .   
3
 Here q  is the number of restrictions (in our case 1q = ), and p is the number of coefficients in the restricted 

model (in our case 2p = ) . 
4
 That is, less than the 95% quantile of the Fisher distribution with  ( ,q T q p− − ) degrees of freedom.  
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We have already learned of the sequential procedure to choose p  and q  in the (7.1) model. 

On the other hand, in the Granger causality case, this is not the question of the first importance 

(and, also, we usually assume p q= ).  
 

library(dynlm) 

mod1NR=dynlm(pchA~time(stoc)+L(pchA,1:2)+L(pchB,1:2),data=stoc) # NR mode-

lis 

summary(mod1NR) 

Coefficients: 

                Estimate Std. Error t value Pr(>|t|)     

(Intercept)   -1.0850199  1.0204824  -1.063  0.28974     

time(stoc)     0.4478695  0.1432894   3.126  0.00221 **  

L(pchA, 1:2)1  0.0489767  0.1659134   0.295  0.76834     

L(pchA, 1:2)2 -0.0007376  0.1656757  -0.004  0.99646     

L(pchB, 1:2)1  0.8607950  0.1977275   4.353 2.77e-05 *** 

L(pchB, 1:2)2 -0.2339125  0.2026224  -1.154  0.25055     

mod1R=dynlm(pchA~time(stoc)+L(pchA,1:2),data=stoc) # R modelis 

summary(mod1R) 

Coefficients: 

              Estimate Std. Error t value Pr(>|t|)     

(Intercept)   -1.33585    1.08277  -1.234  0.21960     

time(stoc)     0.42007    0.15196   2.764  0.00656 **  

L(pchA, 1:2)1  0.65583    0.08872   7.392 1.76e-11 *** 

L(pchA, 1:2)2 -0.07830    0.08876  -0.882  0.37936     

 

To compare these two models by their SSR, we can use the F  statistics and anova function:  
 

anova(mod1NR,mod1R) 

Model 1: pchA ~ time(stoc) + L(pchA, 1:2) + L(pchB, 1:2) 

Model 2: pchA ~ time(stoc) + L(pchA, 1:2) 

  Res.Df    RSS Df Sum of Sq      F    Pr(>F)     

1    124 2258.8                                   

2    126 2604.9 -2   -346.13 9.5005 0.0001449 *** 

 

The models definitely differ, thus the information on pchB notably improves the forecast of 

pchA. On the other hand, on reversing the procedure, we can see that pchA is not the Gran-

ger cause of pchB: 

 
mod2NR=dynlm(pchB~time(stoc)+L(pchB,1:2)+L(pchA,1:2),data=stoc) 

summary(mod2NR) 

mod2R=dynlm(pchB~time(stoc)+L(pchB,1:2),data=stoc) 

summary(mod2R) 

anova(mod2NR,mod2R) 

Model 1: pchB ~ time(stoc) + L(pchB, 1:2) + L(pchA, 1:2) 

Model 2: pchB ~ time(stoc) + L(pchB, 1:2) 

  Res.Df    RSS Df Sum of Sq      F Pr(>F) 

1    124 1604.3                            

2    126 1610.5 -2   -6.2165 0.2402 0.7868 

 

Note that we can shorten the whole procedure with 

 
library(vars) 

var.2c <- VAR(stoc,p=2,type="both") # "both" means that (7.1) contains 

                                    # constant and trend 
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causality(var.2c)  

$Granger 

        Granger causality H0: pchA do not Granger-cause pchB 

 

 

data:  VAR object var.2c  

F-Test = 0.2402, df1 = 2, df2 = 248, p-value = 0.7866 

 

7.1 exercise. Import the file ...\Data\GHJ_learning(1993)\TABLE21.6.txt. The quarterly U.S. 

data  on consumption and disposable income, 1951:2 - 1969:4, were first seasonally adjusted 

and then, to make them stationary, differenced (the file contains these differences). Clearly, 

consumption 1t
z  in the given quarter depends on this quarter income 2t

z  but also, because of 

constancy of habits, on the previous quarter consumption 1, 1t
z − . On the other hand, this quarter 

income is similar to that in the previous quarter as well as the previuos quarter consumption 

(since the increase of consumption stimulates the growth and, therefore, income). Thus, the 

consumption-income system can be described by 

1 10 11 1, 1 12 2, 1 1

2 20 21 1, 1 22 2, 1 2

t t t t

t t t t

z a a z a z e

z a a z a z e

− −

− −

= + + +


= + + +
 

 

Investigate the Granger causality in both equations.     � 

 

7.2 exercise. Employ quarterly series for 1974:1 through 1984:4 in …/dataPE /DataCY.txt to 

examine the direction of causality between UK disposable income Y and UK consumer ex-

penditure C. Test whether Y Granger-causes C. 

 

The question of whether income “causes” consumption is not as straightforward as it sounds. 

Both the major theories of the consumption function – the life-cycle hypothesis and the per-

manent income hypothesis – suggest that current consumption depends not so much on current 

disposable income as on some measure of total lifetime resourses. Some researches suggest 

that changes in consumption are entirely random and not related to income changes at all.  

 

Using a maximum lag of three quarters, apply the Granger test and estimate a version of (7.1) 

with seasonal dummies. Can you prove that Y Granger-cause C?  � 

 

7.2. Cointegration 

 

Let all of the 1 2, ,...,
t t Mt

Y Y Y  have unit roots, i.e., are nonstationary . If there exists a linear 

combination 1 1 ...
t t M Mt

Y Y Yα α= + +  such that 
t

Y  is stationary, the collection 1 2, ,...,
t t Mt

Y Y Y is 

called cointegrated. If such a combination exists, the coefficients can be found with the help of 

the least squares procedure. 

 

7.2 example.  data4.txt ... 
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7.3. VAR: Estimation and Forecasting 

 

7.3 example.  Economists often use such important macroeconomic variables as: R = the 

interest rate, M = the money supply, P = the price level and Y = real GDP. Due to the symbols 

used, models using these variables are sometimes informally referred to as RMPY models 

(pronounced “rumpy”). The file ...\PE.II.data.2010\rmpy.xls contains quarterly data on the 

variables for the US from 1947:1 through 1992:4. To be precise: 

 

  •  R three-month Treasury bill rate 

  •  M  money supply (M2) measured in billions of dollars 

  •  P  price level measured by the GDP deflator (a price index with 1987 = 1.00) 

  •  Y GDP measured in billions of 1987 dollars 

 

Before carrying out an analysis using time series data, you must conduct unit root tests. Re-

member that, if unit roots are present but cointegration does not occur, then the spurious reg-

ression problem exists. In this case, you should work with differenced data. Alternatively, if 

unit roots exist and cointegration does occur, then you will have important economic informa-

tion that the series are trending together and use ECM. 

 

In the present case, tests indicate (verify) that we cannot reject the hypothesis that unit roots 

exist in all variables and that cointegration does not occur. In order to avoid the spurious reg-

ression problem, we work with differenced data. In particular, we take logs of each series, 

then take differences of these logged series, then multiply them by 100. This implies that we 

are working with percentage changes in each variable (e.g., a value of 1 implies a 1% change). 

Thus, 

 

  •  dR  percentage change in the interest rate. 

  •  dM  percentage change in the money supply. 

  •  dP  percentage change in the price level (i.e., inflation). 

  •  dY  percentage change in GDP (i.e., GDP growth). 
 

We choose somewhat arbitrarily a VAR(1) model with a linear trend.   

 
RMPY=read.delim2("clipboard",header=TRUE) 

RMPY[1:6,] 

  Year.Qtr      Y      P      R      M  X        dY       dP        dR         dM 

1    47.00 1239.5 0.1829 0.3800 197.05 NA        NA       NA        NA         NA 

2    47.25 1247.2 0.1849 0.3800 199.98 NA 0.6192966 1.087558  0.000000  1.4759858 

3    47.50 1255.0 0.1872 0.7367 202.09 NA 0.6234534 1.236243 66.200950  1.0495781 

4    47.75 1269.5 0.1930 0.9067 203.92 NA 1.1487550 3.051262 20.763088  0.9014617 

5    48.00 1284.0 0.1956 0.9900 204.47 NA 1.1357083 1.338157  8.789331  0.2693505 

6    48.25 1295.7 0.1994 1.0000 203.33 NA 0.9070884 1.924110  1.005034 -0.5590991 

...................................................................... 

 

rmpy=RMPY[-1,7:10] 

attach(rmpy) 

library(vars) 

var.1t <- VAR(rmpy, p = 1, type = "both") 

summary(var.1t) 

 

 VAR Estimation Results: 

=========================  

Endogenous variables: dY, dP, dR, dM  
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Deterministic variables: both  

Sample size: 182  

 

Estimation results for equation dY:  

===================================  

dY = dY.l1 + dP.l1 + dR.l1 + dM.l1 + const + trend  

 

        Estimate Std. Error t value Pr(>|t|)     

dY.l1  0.3085537  0.0757405   4.074 6.99e-05 *** 

dP.l1 -0.1168849  0.0995695  -1.174  0.24202     

dR.l1  0.0003808  0.0050367   0.076  0.93982     

dM.l1  0.2830971  0.0840506   3.368  0.00093 *** 

const  0.4986157  0.1758513   2.835  0.00511 **  

trend -0.0031337  0.0014759  -2.123  0.03513 *   

 

Estimation results for equation dP:  

===================================  

dP = dY.l1 + dP.l1 + dR.l1 + dM.l1 + const + trend  

 

        Estimate Std. Error t value Pr(>|t|)     

dY.l1 -0.0387799  0.0466774  -0.831  0.40721     

dP.l1  0.5190143  0.0613627   8.458 1.02e-14 *** 

dR.l1  0.0099351  0.0031040   3.201  0.00163 **  

dM.l1  0.1206121  0.0517987   2.328  0.02102 *   

const  0.1588937  0.1083737   1.466  0.14439     

trend  0.0018117  0.0009096   1.992  0.04793 *   

 

 

Estimation results for equation dR:  

===================================  

dR = dY.l1 + dP.l1 + dR.l1 + dM.l1 + const + trend  

 

      Estimate Std. Error t value Pr(>|t|)    

dY.l1  3.22423    1.11748   2.885  0.00440 ** 

dP.l1  1.77875    1.46905   1.211  0.22759    

dR.l1  0.22188    0.07431   2.986  0.00323 ** 

dM.l1  3.39062    1.24008   2.734  0.00689 ** 

const -3.57467    2.59451  -1.378  0.17002    

trend -0.05618    0.02178  -2.580  0.01070 *  

 

 

Estimation results for equation dM:  

===================================  

dM = dY.l1 + dP.l1 + dR.l1 + dM.l1 + const + trend  

 

        Estimate Std. Error t value Pr(>|t|)     

dY.l1 -0.0315759  0.0446037  -0.708  0.47993     

dP.l1  0.0606118  0.0586367   1.034  0.30270     

dR.l1 -0.0129930  0.0029661  -4.380 2.03e-05 *** 

dM.l1  0.7494549  0.0494975  15.141  < 2e-16 *** 

const  0.3351330  0.1035592   3.236  0.00145 **  

trend  0.0003412  0.0008692   0.393  0.69515      

 

To compare the original series with the fitted data, one can use  plot(var.1t) (see Fig. 

7.1); the 12 months forecast can be produced with (see Fig. 7.2) 
 

var.1t.prd <- predict(var.1t, n.ahead = 12, ci = 0.95) 

plot(var.1t.prd)  
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Fig. 7.1. Two (out of four) graphs of VAR  

 

 

We have chosen a VAR(1) model with a constant and trend without any deeper consideration. 

On the other hand, one can automate the selection (use the VARselect function which 

allows to use different information criteria to choose the order): 

 
> VARselect(rmpy, lag.max = 5, type="both") 

$selection 

AIC(n)  HQ(n)  SC(n) FPE(n)  

     3      2      1      3  

 

$criteria 

               1         2         3         4         5 

AIC(n)  2.507590  2.335251  2.333008  2.382359  2.346143 

HQ(n)   2.681563  2.625206  2.738945  2.904277  2.984044 

SC(n)   2.936595  3.050259  3.334019  3.669372  3.919160 

FPE(n) 12.276570 10.336949 10.322340 10.860509 10.498417 

 

 

(thus the most conservative SC criterion suggests the 1st order). 
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Fig. 7.2. The forecast of all four rmpy components. 

 

To plot the impulse-response graphs we use the plot(irf(...)) function. Recall that the 

response, generally, depends on the order of variables. 

 
rmpy 

         dY       dP        dR         dM 

2 0.6192966 1.087558  0.000000  1.4759858 

3 0.6234534 1.236243 66.200950  1.0495781 

4 1.1487550 3.051262 20.763088  0.9014617 

5 1.1357083 1.338157  8.789331  0.2693505 

6 0.9070884 1.924110  1.005034 -0.5590991 

7 0.6231988 2.035315  4.879016  0.1572559   

 

plot(irf(VAR(rmpy, p = 1, type = "both"),impulse="dY",boot=FALSE)) 

 

In this case, we created the VAR(1) model using the original order of variables in the rmpy 

matrix and analyzed how all the variables reacted to the unit dY impulse (see Fig. 7.3, left). 

Now we will change the order of columns in the rmpy matrix:   
 

plot(irf(VAR(rmpy[,4:1], p = 1, type = "both"),impulse="dY",boot=FALSE)) 

 

the VAR model is the same but reaction to the unit dY impulse is different (see Fig. 7.3, right; 

basically, the differences are not big).   
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Another variant  

 
plot(irf(var.1t)) 

 

will plot all the responses to all the impulses together with the confidence intervals obtained 

via the bootstrapping  procedure. 
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Fig. 7.3. Two variants of the reaction to the unit dY impulse 

 

7.3 exercise. The package vars contains the data set Canada. Draw relevant graphs. Choose 

the right order of VAR (consider all four types: type=c(“const“,“trend“,“both“, 

“none“)). Choose a model with minimum value of SC. Estimate the model. Forecast all the 

variables 12 quarters ahead. Draw the impulse-response plots.  

 

7.4. Vector Error Correction Model (VECM) 

 

We shall model three VAR processes following the 7.8 example in the Lecture Notes. Recall 

that its equation 
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This two-variable VAR(1) process can be modelled in several ways. In the first case, we shall 

use the Dyn package. 
 

library(tsDyn) 

par(mfrow=c(1,3)) 

varcov <- matrix(c(36, 0, 0, 25),2) 

 

B.ur <-  matrix(c(15.5, 0.5, 0, 0, 1, 1), 2) # unrestricted constant 

B.ur 

var.ur <- VAR.sim(B=B.ur,n=100,include="const") 

ts.plot(var.ur, type="l", col=c(1,2), main="unrestricted") 

# Both components are with a drift, (average) distance between them is  

# constant and not equal to zero 

 

B.rc <-  matrix(c(15.5, 0, 0, 0, 1, 1), 2) # restricted constant 

B.rc 

var.rc <- VAR.sim(B=B.rc,n=100,include="const") 

ts.plot(var.rc, type="l", col=c(1,2), main="restricted") 

# Both components are without drift, distance between them is constant and 

# does not equal zero  

 

B.nc <- matrix(c(0, 0, 1, 1), 2) # no constant 

B.nc 

var.nc <- VAR.sim(B=B.nc,n=100,include="none") 

ts.plot(var.nc, type="l", col=c(1,2), main="no constant") 

# Both components are without drift, distance between them is constant and 

# equals zero  

 

Explain the differences among the graphs. 

 

7.4 exercise.  The above process can be generated differently: 

 
par(mfrow=c(1,3)) 

 

NN=100 

y1=numeric(NN+3) 

y2=numeric(NN+3) 

mu1=15.5 # unrestriced 

mu2=0.5  # this component does not equal zero 

y1[1]=0 

y2[1]=0 

for(i in 2:(NN+3)) 

{ 

y1[i]=mu1+y2[i-1]+rnorm(1,sd=6) 

y2[i]=mu2+y2[i-1]+rnorm(1,sd=5) 

} 

Y1=ts(y1[4:(NN+3)])   # Remove the „warming“ starter  

Y2=ts(y2[4:(NN+3)]) 

plot(Y1, main = "unrestricted") 

lines(Y2,col=2) 

 

Generate three trajectories of this two-dimensional process. Do they vary? Why? Experiment 

with the drift mu2. Generate restricted and no constant processes. Test the components for the 

unit root.      �� 
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7.4 example.  We shall create a VEC model of the vector (Y_1M, Y_5Y): the data file us-

tbill.txt contains monthly, 1964:01 through 1993:12, interest rates of US treasure bills for ma-

turities of one month Y_1M and five years Y_5Y. Both series are integrated and even cointeg-

rated (check), We have earlier created (not a very succesful) VAR(2) model for levels and 

differences. Since the sequences are cointegrated, the difference model lacks the error correc-

tion term; we include it using the Johansen method.  

 
rate=ts(read.table(file.choose(),header=TRUE),start=1964,freq=12) 

rate 

     date  Y_1M  Y_1Y  Y_5Y 

[1,]    1 3.419 3.789 3.984 

[2,]    2 3.500 3.947 4.023 

........................... 

 

matplot(rate[,c(2,4)],type="l") 

# it seems that both series do not have 

# drift and the difference  in cointegra 

# tion is constant 

rrate=rate[,c(2,4)] 

 

library(urca) 

library(vars) 

H1 <− ca.jo(rrate, ecdet="const", 

K = 2) # Johansen‘s procedure 

summary(H1)  

# Summary of the cointegratiom matrix 
TαβΠ = : 

 
######################  

# Johansen-Procedure #  

######################  

 

Test type: maximal eigenvalue statistic (lambda max) ,  

without linear trend and constant in cointegration  

 

Eigenvalues (lambda): 

[1] 7.619916e-02 1.306153e-02 6.612704e-20 

 

Values of teststatistic and critical values of test: 

 

          test 10pct  5pct  1pct Reject 0 :H r=0 because 28.37>15.67 

r <= 1 |  4.71  7.52  9.24 12.97 Do not reject 0 :H r=1 because 4.71<9.24 

r = 0  | 28.37 13.75 15.67 20.20  

 

Eigenvectors, normalised to first column: 

(These are the cointegration relations) 

 

            Y_1M.l2   Y_5Y.l2   constant    Here is the matrix Tβ , equation  

Y_1M.l2   1.0000000    1.0000   1.000000    ˆ 0.9098 0.9236
t t t

z = + −Y_1M Y_5Y  

Y_5Y.l2  -0.9236070  113.3143  -1.183872  is the cointegration or long-run   

                                                                                    equilibrium equation 
constant  0.9097674 -888.7860 -27.049571   

 

 

Weights W: 

(This is the loading matrix) 
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           Y_1M.l2       Y_5Y.l2      constant 

Y_1M.d -0.10977230 -0.0002484112  2.799703e-19  Here is the matrix α  

Y_5Y.d  0.04014519 -0.0001576087 -1.461470e-18 

 

The matrices Tβ  and α  can be also expressed this way:  

 
cajorls(H1) 

$rlm 

 

Call: 

lm(formula = substitute(form1), data = data.mat) 

 

Coefficients: 

          Y_1M.d    Y_5Y.d   

ect1      -0.10977   0.04015 

Y_1M.dl1  -0.28757   0.01169 

Y_5Y.dl1   0.71654   0.04408 

 

 

$beta 

               ect1 

Y_1M.l2   1.0000000 

Y_5Y.l2  -0.9236070 

constant  0.9097674 

 

Recall that the VECM equation is 1t t t
Y Yµ −∆ = +Π +
� �

�

1 1t t
Y ε−Γ ∆ +
�

�

. The function cajools 

parameterizes this equation differently (now the cointegration equation contains the second 

order lags):  

 
summary(cajools(H1)) # VECM system 

 

Response Y_1M.d : 

 

Coefficients: 

         Estimate Std. Error t value Pr(>|t|)     

Y_1M.dl1 -0.28970    0.05664  -5.114 5.18e-07 *** 

Y_5Y.dl1  0.70251    0.10873   6.461 3.46e-10 *** 

Y_1M.l2  -0.11002    0.03245  -3.390 0.000778 *** 

Y_5Y.l2   0.07324    0.03434   2.133 0.033635 *   

constant  0.12092    0.13944   0.867 0.386438     

 

Response Y_5Y.d : 

 

Coefficients: 

         Estimate Std. Error t value Pr(>|t|)    

Y_1M.dl1  0.01034    0.03086   0.335  0.73786    

Y_5Y.dl1  0.03517    0.05923   0.594  0.55301    

Y_1M.l2   0.03999    0.01768   2.262  0.02432 *  

Y_5Y.l2  -0.05494    0.01871  -2.937  0.00353 ** 

constant  0.17660    0.07596   2.325  0.02064 *  

 

Recall that we can express VECM in the VAR form (and then to forecast the components of 

the model): 

 
H1var=vec2var(H1, r=1) # transform VECM to VAR model 

H1var                  # r is the rank of the matrix Π     
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Thus, the VEC form of our model is  

 

1 1 2 2

1 1 2 2

0.121 0.290 0.703 0.110 0.073

0.177 0.010 0.035 0.040 0.055

t t t t t

t t t t t

− − − −

− − − −

∆ = − ∆ + − +

∆ = − ∆ + + −

Y_1M Y_1M ∆Y_5Y Y_1M Y_5Y

Y_5Y Y_1M ∆Y_5Y Y_1M Y_5Y
 

 

and the VAR form 

 

1 1 2 2

1 1 2 2

0.100 0.712 0.717 0.178 0.615

0.037 0.012 1.044 0.028 0.081

t t t t t

t t t t t

− − − −

− − − −

= − + + + −


= + + + −

Y_1M Y_1M Y_5Y Y_1M Y_5Y

Y_5Y Y_1M Y_5Y Y_1M Y_5Y
 

 

We use this model and forecast the components 60 months ahead: 

 
H1pred=predict(H1var, n.ahead = 60)  

plot(H1pred) 

 

 

# We draw a more coherent graph (see Fig. 7.4) 

Y_1M=rrate[,1] 

Y_5Y=rrate[,2] 

plot(seq(1964,1998+11/12,by=1/12),c(Y_1M,H1pred$fcst$Y_1M[,1]),type="l", 

xlab="Time",ylab="Y") 

lines(seq(1964,1998+11/12,by=1/12),c(Y_5Y,H1pred$fcst$Y_5Y[,1]),type="l", 

xlab="Time",ylab="Y",col=2) 
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Fig. 7.4. 60 months (5 years) forecasts for Y_1M and Y_5Y 

 

The forecast is quite reasonable and in line with the economic theory (the differences between 

cointegrated series must tend toward a constant).                �� 

 

7.5 exercise.  Repeat the previous exercise with the data set RRate=rate[,2:4]. 
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7.6 exercise. The package vars has a data set Canada. Describe the data. 1) Plot all the four 

series. 2) Use ur.df from the urca package and test whatever series on the unit root.  Your 

results should be close to given in this table: 

 

 
 

(thus, what about the unit root?) 3) Use VARselect to determine the VAR order (lag.max 

must be „sufficiently large“, the deterministic part of the trend of VAR, that is, choose ty-

pe=“both“ (it follows from the graphs – why?). The conclusion – one can choose the 1st, 

2nd or 3rd order (why?) 4) Use the VAR function to create the model c.var1 for Canada 

(choose p = 1 and type=“both“).  5) Use the command plot(c.var1, names = 

"e") to establish that the residuals do not make WN. Repeat modeling with p=2 and p=3. 6)  

Forecast c.var3 12 quarters ahead. 7) Use ca.jo to estimate the number of cointegration 

equations in the models c.var2 (..., ecdet=trend, K=2,...) and c.var3 (K=3)  

(one equation?). 8) Transform the VEC model obtained into the VAR model (function 

vec2var) and forecast it 12 months ahead; plot relevant graphs. 9) Plot in one graph the his-

torical values of prod and rw togerher with the VAR forecast. Do the same with the VEC 

forecast.       �� 

 
# vecm in R - Pfaff.pdf 

library(vars) 

library(urca) 

plot(Canada, nc = 2, xlab = "") 

VARselect(Canada, lag.max = 8, type = "both") 

c.var1 <- VAR(Canada, p = 1, type = "both") 

summary(c.var1, equation = "e") 

plot(c.var1, names = "e") 

c.var2 <- VAR(Canada, p = 2, type = "both") 

summary(c.var2, equation = "e") 

plot(c.var2, names = "e") 

c.var3 <- VAR(Canada, p = 3, type = "both") 

summary(c.var3, equation = "e") 

plot(c.var3, names = "e") 

c.var3.prd <- predict(c.var3, n.ahead = 12) 

plot(c.var3.prd)  

################################### 

summary(ca.jo(Canada, type = "trace", ecdet = "trend", K = 3, 

spec = "transitory")) 

summary(ca.jo(Canada, ecdet = "trend", K = 2, 

spec = "transitory")) 

c.vec.3 <- ca.jo(Canada, type = "trace", ecdet = "trend", K = 3,  

spec = "transitory") 

c.vec.r1 <- cajools(c.vec.3, r = 1) 

H1var=vec2var(c.vec.3) # transform VECM to VAR model 

H1var 

H1pred=predict(H1var, n.ahead = 12)  

plot(H1pred) 

################################# 

vecm <- ca.jo(Canada[, c("rw", "prod", "e", "U")], type = "trace", 
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ecdet = "trend", K = 3, spec = "transitory") 

summary(vecm) 

vecm.r1 <- cajorls(vecm, r = 2) 

vecm.r1 

 

7.7 exercise.  We shall investigate the presence of cointegration using US cay quarterly data 

from 1951Q4 through 2003Q1 on c which is consumption (formally it is the log of real per 

capita expenditures on nondurables and services excluding shoes and clothing), a which is our 

measure of assets (formally it is the log of a measure of real per capita household net worth 

including all financial and household wealth as well as consumer durables), and y which is the 

log of after-tax labor income. This data is available in cay.txt. 

 

⇒ In EViews 
 

Import ccay.txt and plot the three series. They 

seem to be cointegrated but we have to estab-

lish the number of cointegration relations. 

 

To test for unit root in a, click on a and choo-

se View| Unit root test...| Include Trend and 

intercept| OK: we see (see below) that trend 

must be present in the model and respective p-

value is greater than 0.05, thus we do not re-

ject the unit root hypothesis. The same conc-

lusion holds for cc and y.   

 

   

Null Hypothesis: A has a unit root 

Exogenous: Constant, Linear Trend 

Lag Length: 0 (Automatic based on SIC, MAXLAG=14) 

   t-Statistic   Prob.* 

Augmented Dickey-Fuller test statistic -2.525775  0.3154 

Test critical values: 1% level  -4.003449  

 5% level  -3.431896  

 10% level  -3.139664  

*MacKinnon (1996) one-sided p-values. 

     

     

Augmented Dickey-Fuller Test Equation 

Dependent Variable: D(A) 

Method: Least Squares 

Date: 05/13/11   Time: 10:39 

Sample(adjusted): 1952:1 2003:1 

Included observations: 205 after adjusting endpoints 

Variable Coefficient Std. Error t-Statistic Prob.  

A(-1) -0.064201 0.025418 -2.525775 0.0123 

C 0.682687 0.267849 2.548772 0.0116 

@TREND(1951:4) 0.000376 0.000153 2.454859 0.0149 
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To choose the lag length in the VAR model, in the Workfile window, choose Objects| New 

Object...| VAR| in Endogenous Variables window type a  cc  y| OK| the last lines in Var 

window show (that for a 2nd order model without trend)  

 
Akaike Information Criteria -19.88742 

Schwarz Criteria -19.54585 

 

Note that this is the minimum value of AIC and SC among similar models. Recall that this 

implies that the VECM order will be 1 which is partially confirmed by the following table: 

 
coint(s,4) a cc y 

 

Date: 05/13/11   Time: 11:52 

Sample: 1951:4 2003:1 

Included observations: 201 

Series: A CC Y  

Lags interval: 1 to 4 

Data Trend: None None Linear Linear Quadratic 

Rank or No Intercept Intercept Intercept Intercept Intercept 

No. of CEs No Trend No Trend No Trend Trend Trend 

 Selected (5% level) Number of 

Cointegrating Relations by Model 

(columns) 

     

Trace 1 1 0 0 0 

Max-Eig 1 1 0 0 0 

 Akaike Information Criteria by 

Rank (rows) and Model (columns) 

     

0 -19.80021 -19.80021 -19.89568 -19.89568 -19.87264 

1 -19.86739 -19.86944  -19.91056* -19.90438 -19.89101 

2 -19.83528 -19.86886 -19.86172 -19.89247 -19.88726 

3 -19.78439 -19.81006 -19.81006 -19.83303 -19.83303 

 Schwarz Criteria by Rank (rows) 

and Model (columns) 

     

0 -19.20857 -19.20857 -19.25474* -19.25474* -19.18240 

1 -19.17714 -19.16276 -19.17101 -19.14840 -19.10216 

2 -19.04643 -19.04715 -19.02357 -19.02145 -18.99980 

3 -18.89693 -18.87331 -18.87331 -18.84697 -18.84697 

 

The results are ambiguous – Akaike suggests that only one cointegrating relation exists while  

Schwarz claims that there is no such relations. We choose one.   

 

⇒  In R 

 

Create the VEC model.           �� 
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10. Panel Data Analysis 
 

 

Panel data (also known as longitudi-

nal or cross-sectional time-series da-

ta) is a dataset in which the behavior 

of entities are observed across time. 

These entities could be states, com-

panies, individuals, countries, etc. 

 

Panel data allows you to control for 

variables you cannot observe or 

measure like cultural factors or dif-

ference in business practices across 

companies; or variables that change 

over time but not across entities (i.e. 

national policies, federal regulations, 

international agreements, etc.). This 

is, it accounts for individual hetero-

geneity
1
. 

 

In this chapter we focus on three techniques to analyze panel data: 

 

• Pooled model 

• Fixed effects 

• Random effects 

 

In the sequel, we shall use R and its plm package whose manual can be downloaded from 

http://cran.r-project.org/web/packages/plm/vignettes/plm.pdf . 

  

****************************************** 

 

The fundamental advantage of a panel data set over a cross section is that it will allow the re-

searcher great flexibility in modeling differences in behavior across individuals. The basic 

framework for this discussion is a regression model of the form 

 
(1) ( ) (1) ( )

1 1

(1) ( )
1

... ...

... , 1,..., , 1,...,

K H

it K H itit it i i

K

K i itit it

Y X X Z Z

X X c i I t T

β β α α α ε

β β ε

= + + + + + + + =

+ + + + = =
 

 

There are K regressors, not including a constant term. The heterogeneity, or individual effect, 

is  
(0) (1) ( )

1( 1) ...
H

i Hi i i
c Z Z Zα α α= = + + +  where 

i
Z

�

 contains a constant term and a set of indi-

vidual or group specific variables, which may be observed, such as race, sex, location, and so 

on, or unobserved, such as family specific characteristics, individual heterogeneity in skill or 

preferences, and so on, all of which are taken to be constant over time t. As it stands, this 

model is a classical regression model. If 
i

Z

�

 is observed for all individuals, then the entire 

model can be treated as an ordinary linear model and fit by least squares. The complications 

                                                 
1
 The quality of being diverse and not comparable in kind. 
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arise when 
i

c  is unobserved, which will be the case in most applications (for example, anal-

yses of the effect of education and experience on earnings from which “ability” will always be 

a missing and unobservable variable).  

 

The main objective of the analysis will be consistent and efficient estimation of the partial 

effects 1,...,
K

β β . Whether this is possible depends on the assumptions about the unobserved 

effects. 

 

1. Pooled Regression. If 
i

Z

�

 contains only a constant term: 
(1) ( )

1 ...
K

it Kit it
Y X Xβ β α= + + + +  

it
ε , then OLS provides consistent and efficient estimates of the common α and the slope vec-

tor β
�

. 

2. Fixed Effects. If 
i

Z

�

 is unobserved, but correlated with 
it

X

�

, then the least squares estimator 

of β
�

 is biased and inconsistent as a consequence of an omitted variable. This fixed effects 

approach takes 
i

c  to be a group-specific constant term in the regression model 
it

Y =  

(1) ( )
1 ...

K

K i itit it
X X cβ β ε+ + + + . It should be noted that contrary to the frequent claim the term 

“fixed” as used here signifies the correlation of 
i

c  and 
it

X

�

, not that 
i

c  is nonstochastic. 

3. Random Effects: If the unobserved individual heterogeneity, however formulated, can be 

assumed to be uncorrelated with the included variables, then the model may be formulated as 

 
(1) ( )

1 ...
K

it K i itit it
Y X Xβ β α ν ε= + + + + +  

 

that is, as a linear regression model with a compound disturbance that may be consistently, 

albeit inefficiently, estimated by least squares. This random effects approach specifies that 
i

ν  

is a group-specific random element, similar to 
it
ε  except that for each group, there is but a 

single draw that enters the regression identically in each period. Again, the crucial distinction 

between fixed and random effects is whether the unobserved individual effect embodies ele-

ments that are correlated with the regressors in the model, not whether these effects are sto-

chastic or not. We will examine this basic formulation, then consider an extension to a dynam-

ic model. 

 

If each individual in the data set is observed the same number of times, usually denoted T, the 

data set is a balanced panel. An unbalanced panel data set is one in which individuals may be 

observed different numbers of times. Some functions are operational only for balanced data.  

 

10.1.   Static Panel Data Models 

 

The file pp.txt contains panel data in a stacked cross-section form (7 countries: A, B etc, 10 

years: 1990-1999, y is the output  and x1 predictive variable; this is a balanced panel): 

 
pp=read.table(file.choose(),header=T) 

pp 

   country year           y          x1 

1        F 1990  1342787840 -0.56757486 

2        B 1990 -5934699520 -0.08184998 
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3        E 1990  1342787840  0.45286715 

4        D 1990  1883025152 -0.31391269 

5        G 1990  1342787840  0.94488174 

6        C 1990 -1292379264  1.31256068 

7        A 1990  1342787840  0.27790365 

8        C 1991 -3415966464  1.17748356 

9        G 1991 -1518985728  1.09872830 

……………………………………………… 

66       E 1999   243920688  0.60662067 

67       D 1999 -2025476864 -0.07998896 

68       B 1999 -1174480128  0.23696731 

69       G 1999  3296283392  1.23420024 

70       A 1999    39770336  0.39584252 

 

 

To explore our data, type   

 
attach(pp) 

coplot(y~year|country,type="b") 

 

Here y is plotted vs year (go left to 

right: the left-most graph in the bottom 

line is for country A, next to the right is 

for  B etc) 

 

Now, to explore the country and 

year effects on (the mean of) y, type  

 

 

 
library(gplots) 

plotmeans(y ~ country, main="Heterogeineity across countries") 

plotmeans(y ~ year, main="Heterogeineity across years") 
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Fig. 10.1.   The country effect on the mean of y (left) and the year (progress) effect on y (right) (95% confi-

dence interval around the means is included) 
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The main purpose of the panel data analysis is to quantify the x1 effect on y. We start either 

with the pooled model  

 

it it it
, i = 1,...,I, t = 1,...,Tα β εy = + x1 + : 

 

pooled = lm(y~x1) 

summary(pooled) 

             Estimate Std. Error t value Pr(>|t|)   

(Intercept) 1.524e+09  6.211e+08   2.454   0.0167 * 

x1          4.950e+08  7.789e+08   0.636   0.5272   

 

or with OLS models restricted to individual countries, for example,  

 
countryB=lm(y~x1,data=pp[country=="B",])  

summary(countryB) 

              Estimate Std. Error t value Pr(>|t|)    

(Intercept) -3.454e+09  1.059e+09  -3.261   0.0115 *  

x1           7.139e+09  1.756e+09   4.067   0.0036 ** 

 

(note the difference in the green coefficients, see Fig. 10.2, center). 

 

To compare the models, we use (see Fig. 10.2, left and center) 
 

plot(x1,y,col=country,pch=15) 

abline(pooled,lwd=5,lty=2) 

 

library(car) 

scatterplot(y ~ x1|country,legend.coords="topleft",smoother=FALSE,lwd=3) 
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Fig. 10.2.   pooled model (left), individual countries models (center), and fixed effects 

model together with the pooled model (right) 

 

Both approaches have some drawbacks – the pooled model does not take into account het-

erogeineity across countries while individual model are based on small number of observa-

tions and do not consider common features of the countries (all they interact and experience 

the same influence of the progress). One possibility to take this common environment into 

account is to use the fixed effects (FE) model. To allow for the country effect, we introduce 

dummy variables ( )
i
=D factor(country): 
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1 1 1

2 2 21

, 1

, 2

...

t t

I

it it i i it t ti=

i

i

α β ν ε

α β ν ε α β ν ε

=


= =



∑
+ x1 + +

y = + x1 + D + + x1 + +  

  
fixed = lm(y~x1+factor(country)-1) 

summary(fixed) 

Coefficients: 

                   Estimate Std. Error t value Pr(>|t|)     

x1                2.476e+09  1.107e+09   2.237  0.02889 *   

factor(country)A  8.805e+08  9.618e+08   0.916  0.36347     

factor(country)B -1.058e+09  1.051e+09  -1.006  0.31811     

factor(country)C -1.723e+09  1.632e+09  -1.056  0.29508     

factor(country)D  3.163e+09  9.095e+08   3.478  0.00093 *** 

factor(country)E -6.026e+08  1.064e+09  -0.566  0.57329     

factor(country)F  2.011e+09  1.123e+09   1.791  0.07821 .   

factor(country)G -9.847e+08  1.493e+09  -0.660  0.51190 

plot(x1,y,col=country,pch=15) # we plot regression lines for each country  

abline(pooled,lwd=5,lty=2) 

lines(x1[country=="A"],predict(fixed,newdata=pp[country=="A",]),col=1,lwd=3) 

lines(x1[country=="B"],predict(fixed,newdata=pp[country=="B",]),col=2,lwd=3) 

lines(x1[country=="C"],predict(fixed,newdata=pp[country=="C",]),col=3,lwd=3) 

lines(x1[country=="D"],predict(fixed,newdata=pp[country=="D",]),col=4,lwd=3) 

lines(x1[country=="E"],predict(fixed,newdata=pp[country=="E",]),col=5,lwd=3) 

lines(x1[country=="F"],predict(fixed,newdata=pp[country=="F",]),col=6,lwd=3) 

lines(x1[country=="G"],predict(fixed,newdata=pp[country=="G",]),col=7,lwd=3) 

 

Note that now, when we take into account country, the coefficient at  x1 is significant and 

quite different from that of the pooled model (see Fig. 10.2, right).  
 

To use a more systematic approach, we shall apply the plm (linear model for panel data) 

package.  

  
library(plm) 

pooled = plm(y ~ x1, data=pp, index=c("country", "year"), model="pooling") 

summary(pooled) 

Balanced Panel: n=7, T=10, N=70 # Balanced means every country was observed 

Coefficients :                  # the same number of years (=10)     

              Estimate Std. Error t-value Pr(>|t|)   

(Intercept) 1524319070  621072624  2.4543  0.01668 * 

x1           494988914  778861261  0.6355  0.52722   

 

  

fixed = plm(y ~ x1, data=pp, index=c("country", "year"), model="within") 

summary(fixed) 

Coefficients : 

     Estimate Std. Error t-value Pr(>|t|)   

x1 2475617827 1106675594   2.237  0.02889 * 

 

fixef(fixed) # display the fixed effects (constants for each country) 

          A           B           C           D           E           F           G  

  880542404 -1057858363 -1722810755  3162826897  -602622000  2010731793  -984717493 

 

pFtest(fixed, pooled) # The F − test is used to test 0 :H all the constants 

                      # equal 0      

F test for individual effects 

data:  y ~ x1  

F = 2.9655, df1 = 6, df2 = 62, p-value = 0.01307 # if p-value is less than   

alternative hypothesis: significant effects      # 0.05, then the fixed ef- 

                                                 # fects model is better  
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Usually, there are too many parameters in the FE model and the loss of degrees of freedom 

can be avoided if 
i

ν  in 
it it i it

α β ν ε+ + +y = x1  are assumed random (more specifically, 

2~ . . .(0, )
i

i i d νν σ , 2~ . . .(0, )
it

i i d εε σ , 2 2( | ) ,
i it

E ν εν ε σ σ+ = +X  2(( ) ( ) | ) .
i it j jt

E νν ε ν ε σ+ ⋅ + =X     

The just presented conditions mean that the random effects (RE) model fits into the frame-

work of a generalized LS model with autocorrelated within a group disturbances (see PE.I, 

Lecture Notes, 4.9.2). In particular, the parameters of the RE model can be estimated consist-

ently, though not efficiently, by OLS. The RE model is an appropriate specification if we are 

drawing  I  individuals randomly from a large population (this is usually the case for house-

hold panel studies; in this case, I  is usually large and a fixed effects model would lead to an 

enormous loss of degrees of freedom).  

 
random = plm(y ~ x1, data=pp, index=c("country", "year"), model="random") 

summary(random) 

Effects: 

                    var   std.dev share 

idiosyncratic 7.815e+18 2.796e+09 0.873 = 
2ˆεσ  

individual    1.133e+18 1.065e+09 0.127 = 
2ˆνσ  

theta:  0.3611                          -> see below                 

 

Coefficients : 

              Estimate Std. Error t-value Pr(>|t|) 

(Intercept) 1037014284  790626206  1.3116   0.1941 

x1          1247001782  902145601  1.3823   0.1714 

Total Sum of Squares:    5.6595e+20 

Residual Sum of Squares: 5.5048e+20 

R-Squared      :  0.02733  

      Adj. R-Squared :  0.026549  

F-statistic: 1.91065 on 1 and 68 DF, p-value: 0.17141 

 

Interpretation of the coefficient is tricky since it includes both the effects inside a country and 

between countries. In the case of time series-cross sectional data, it represents the average 

effect of X over Y when X changes across time and between countries by one unit. 

 

Which of the three models to use? One hint is given by the quantity theta = θ =  

2 2
1

T

ε

ε ν

σ

σ σ
−

+
. We always have 0 1;θ≤ ≤  if 0θ = , the model becomes a pooled model, and 

if 1θ =  a FE model. As a rule, 2
νσ  is much bigger than 2

εσ , thus θ  or, more exactly, its esti-

mate 2 2 2ˆ ˆ ˆ ˆ1 / ( )Tε ε νθ σ σ σ= − +  must be close enough to 1. The same applies when T  is big 

(in both these cases FE and RE models are close). 

 

To formally decide between fixed or random effects, you can run a Hausman test where the 

null hypothesis is that the preferred model is RE vs. the FE alternative. It basically tests 

whether the unique errors 
i

ν  are correlated with the regressors (the null hypothesis is they are 

not) thus if the p − value is significant (for example <0.05) then use fixed effects, if not use 

random effects.  

 
phtest(fixed,random)  #Hausman Test 

chisq = 3.674, df = 1, p-value = 0.05527 # both models are close 

alternative hypothesis: one model is inconsistent 
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To estimate a panel data model 
(1) ( )

1 ...
K

it K i itit it
Y X Xβ β α ν ε= + + + + + , we use the LS meth-

ods. In the pooled regression case, we assume 0
i

ν ≡ ; in the fixed effect case, we treat 
i

ν  as 

individual dummy variables; in random effect case, the errors 
i it

ν ε+  are autocorrelated, thus 

we apply a generalized LS method. 
 

 

10.1 example.  The NLS.txt data set contains data on 716N =  employed women interviewed 

in 1982, 1983, 1985, 1987, and 1988:  

 

  id year    lwage age educ south black union    exper   exper2   tenure  tenure2 

1  1   82 1.808289  30   12     0     1     1 7.666667 58.77777 7.666667 58.77777 

2  1   83 1.863417  31   12     0     1     1 8.583333 73.67361 8.583333 73.67361 

................................................................................. 

 

id   identifier for panel individual; 716 total 

year  year interviewed (1982, 1983, 1985, 1987, 1988) 

lwage  log(wage/GNP deflator) 

age   age in current year 

educ  current grade completed 

south  1 if south 

black  1 if black; 0 if white 

union  1 if union member 

exper  total work experience 

exper2 exper^2 

tenure job tenure, in years 

tenure2 tenure^2 

 

We shall create three panel models, pooled, FE, and RE, for lwage: 

 

0 1 2 3 4 5

6 7 8

educ exper exper2 tenure tenure2

black south union+

lwage β β β β β β

β β β ε

= + + + + + +

+ +
 

 
nls=read.table(file.choose(),header=T) 

library(plm) 

pooled = plm(lwage ~ educ+exper+exper2+tenure+tenure2+black+south+union, 

data=nls, index=c("id", "year"), model="pooling") 

summary(pooled) 

 

Balanced Panel: n=716, T=5, N=3580 

Coefficients : 

               Estimate  Std. Error t-value  Pr(>|t|)     

(Intercept)  0.47660003  0.05615585  8.4871 < 2.2e-16 *** 

educ         0.07144879  0.00268939 26.5669 < 2.2e-16 *** 

exper        0.05568506  0.00860716  6.4696 1.116e-10 *** 

exper2      -0.00114754  0.00036129 -3.1763 0.0015046 **  

tenure       0.01496001  0.00440728  3.3944 0.0006953 *** 

tenure2     -0.00048604  0.00025770 -1.8860 0.0593699 .   

black       -0.11671387  0.01571590 -7.4265 1.387e-13 *** 

south       -0.10600257  0.01420083 -7.4645 1.045e-13 *** 

union        0.13224320  0.01496161  8.8388 < 2.2e-16 *** 
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Total Sum of Squares:    772.56 

Residual Sum of Squares: 521.03 

R-Squared      :  0.32559  

      Adj. R-Squared :  0.32477  

F-statistic: 215.496 on 8 and 3571 DF, p-value: < 2.22e-16 

 

fixed = plm(lwage ~ educ+exper+exper2+tenure+tenure2+black+south+union, 

data=nls, index=c("id", "year"), model="within") 

summary(fixed) 

Coefficients : 

           Estimate  Std. Error t-value  Pr(>|t|)     

exper    0.04108317  0.00662001  6.2059 6.226e-10 *** 

exper2  -0.00040905  0.00027333 -1.4965    0.1346     

tenure   0.01390894  0.00327784  4.2433 2.272e-05 *** 

tenure2 -0.00089623  0.00020586 -4.3536 1.386e-05 *** 

south   -0.01632240  0.03614900 -0.4515    0.6516     

union    0.06369723  0.01425380  4.4688 8.172e-06 *** 

 

Total Sum of Squares:    126.95 

Residual Sum of Squares: 108.8 

R-Squared      :  0.14297  

      Adj. R-Squared :  0.11414  

F-statistic: 79.4647 on 6 and 2858 DF, p-value: < 2.22e-16 

 

Note that the fixed model  

 

1 1 716 716 2 3 4 5

7 8

...

+

lwage D D exper exper2 tenure tenure2

south union

δ δ β β β β

β β ε

= + + + + + + +

+ +
 

 

contains all individual dummies 
i

D  but does not contain educ and  black variables (they do 

not change in time and their presence would imply multicollinearity; indeed, if, for example, 

every odd individual is black, then the black variable (column) (1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 

1,… )′  may be expressed as  1 31 1 ...D D⋅ + ⋅ +  which means exact collinearity) (complete the 

example and choose the best model yourselves).     �� 

10.1 exercise. The data set fuel.xls contains the 1993-2000 information on some parameters of 

the 2382 enterprises in Russian fuel and energy industry. Is it possible to model their output 

with the  Cobb-Douglas production function Q AK L
α β= ? 

 

To import the data to R, select necessary data in fuel.xls and type 

 
fuell=read.delim2("clipboard",header=TRUE) # to import 

fuell[1:10,] # the panel is unbalanced (why? ) 

fuel = fuell[apply(fuell,1,function(x) all(x>0 & is.na(x)==FALSE, 

na.rm=TRUE)),] # to leave only all-positive rows 

fuel[1:10,] 

     okpo year okonh  emp  wor      rout         rk 

5   29570 1996 11170  201  138  147.0641   398.2113 

6   29570 1993 11170  158  125  226.5521   290.7230 

7   29570 1995 11170  196  133  142.0815   370.2107 

8   29570 1994 11170  169  132  204.5996   364.4585 

23 100013 1994 11120 3769 2544 3603.0230 17221.2800 

24 100013 1993 11120 3676 2493 6474.3810 16572.7000 

46 100138 1993 11120 2655 1744 9686.3380 20248.3100 

47 100138 1994 11120 2711 1779 4143.9430 20317.9500 



© R. Lapinskas, PE.II–Computer Labs - 2013 

10. PanelData Analysis 

 

 

 10 - 9 

48 100138 1995 11120 2757 1800 3350.6670 21066.1300 

55 100167 1994 11120 1900 1087 2077.2120 11980.7400 

………………………………………………… 

 

Here 
 

okpo   enterprise number according to OKPO classification (2382 enterprises) 

year   year (not in order, some are missing) 

okonh   code of the branch of industry (23 different codes) 

emp    the number of workers 

wor   the number of involved workers 

rout   production output 

rk    real capital 

 

Start with the pooled model 
 
fuel.pool=lm(log(rout)~log(rk)+log(emp),data=fuel) 

(what is the meaning of the coefficients?) Then estimate all other relevent models and choose 

the best. Add some graphs to your analysis.      ��  

 

10.2 exercise. The Gasoline file in plm is a panel of 18 observations (country) from 

1960 to 1978 on the gasoline consumption. Analyze the data, create all the models you know 

and choose the right one. 

 
data(Gasoline,package="plm") 

?Gasoline 

Gas <- pdata.frame(Gasoline,c("country","year"),drop=TRUE) 

Gas 

              lgaspcar  lincomep       lrpmg   lcarpcap 

AUSTRIA-1960  4.173244 -6.474277 -0.33454761  -9.766840 

...................................................... 

AUSTRIA-1978  3.922750 -5.762023 -0.46960312  -8.211041 

BELGIUM-1960  4.164016 -6.215091 -0.16570961  -9.405527 

...................................................... 

U.S.A.-1977   4.811032 -5.256606 -1.17590974  -7.553458 

U.S.A.-1978   4.818454 -5.221232 -1.21206183  -7.536176 

 

formule <- lgaspcar~lincomep+lrpmg+lcarpcap 

gas.pool <- plm(formule,data=Gas,model="pooling") 

summary(gas.pool)            �� 

 

 

 

10.2.  Dynamic Panel Data Models 

 

xxxxxxxxxxxxxxxxxxxxxx 
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