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1. INTRODUCTION 

 

Econometrics is the application of mathematics and statistical methods to economic data and 

can be described as the branch of economics that aims to give empirical content to economic 

relations. Econometrics allows economists to sift through mountains of data to extract simple 

relationships. 

 

There are two types of economic data: (a) macroeconomic data, representing quantities and 

variables related to a national economy as a whole, usually based on national census; and (b) 

microeconomic data, representing information about the economic behavior of individual per-

sons, households, and firms. Macroeconomic data are usually given as a set of time series (we 

shall model these data in the PE.II course), while microeconomic data are obtained mainly 

through statistical surveys and are given as cross-sectional data. These two types of data, re-

lated to macroeconomic theory and microeconomic theory, respectively, require different ap-

proaches; and sometimes information obtained from both types of data has to be combined; 

obtaining macroeconomic information from microeconomic data is called aggregation. 

 

1.1. Regression models 

 

Economics is a system of interconnected components, that is, 1 2( , ,...)Y f X X=  where the list 

of 'X s may contain many variables.  For example, let Y  be a total production (the monetary 

value of all goods produced in a given country during one year); then Y  depends on 

1 (X L= = labor input (the total number of person-hours worked in a year)), 2 (X K= = capital 

input (the monetary worth of all machinery, equipment, and buildings)), and 3 4 5, , ,...X X X   – 

other quantities such as productivity, land or raw materials, inventory, economic and political 

situation in the country or internationally (described by many variables) etc. Some of the va-

riables are observed or measured, others (such as political system in the country or unpredic-

table personal solutions or person‘s ability etc) are difficult or impossible to quantify. Thus 

1 2( , ,Y f X X=  3 4 5, , ,...)U U U where 'U s stand for unobservable variables. To filter out the 

effects of unobservables 'U s, we assume that, once 'X s are known, the effect of 'U s is not 

very big, it is in some sense the same for any collection of 'X s. More specifically, we assume 

that 1 2( , , )Y f X X ε=  where ε  is a random variable such that its average does not depend on 

'X s: 1 2( | , )E X X constε = . In the production function case, the Cobb-Douglas law says that 

1 2
0Y L K

β ββ ε= . The purpose of econometrics is to use the data  

 

Y  1X  2X  

1Y  

2Y  

.... 

NY  

11X  

12X  

.... 

1NX  

21X  

22X  

.... 

2NX  

   

obtained through observing N countries or companies in order to approximately restore or 

estimate the unknown parameters 0 1,β β  and 2β .   



©   R. Lapinskas, PE.I - 2013 

      1. Introduction 

 
1-2 

 

 
 

The best developed is the additive case where 1( ,..., )kY f X X ε= +  (our production function 

example may easily be transformed to this shape after taking logarithms: 

0 1log log logY Lβ β= + + 2 log logKβ ε+ ); more generally, in what follows, we shall usually 

analyze the linear
1
 case 0 1 1 ... k kY X Xβ β β ε= + + + +  where we want to find „good“ formulas 

to estimate 'β s, choose the right functional form (maybe not mX  but log( )mX ?), to test 

whether our model matches the economic theory and so on.     

 

The function 1 0 1( ,..., ; , ,..., )k kf X X β β β  is called the regression function, the ’independent’ 

variable X  is usually called the regressor or predictor or explanatory variable (there may be 

one or more of these), the ’dependent’ variable Y  is the response variable. The random com-

ponent ε  (called error or disturbance or (economic) shock) is usually assumed (to simplify 

the analysis) normally distributed. Our aim is to reveal the regression function by removing 

the error – or as much of it as we can. 

 

The class from which the regression functions are selected (or the model) is usually one of the 

following types: 

 

1. a linear function of 0β  and 1β  (for example, 0 1Y Xβ β ε= + + ; it is a simple (univa-

riate linear) regression or 0 1logY Xβ β= + , this is called a log-linear regression), 

2. a polynomial function of X  (that is 0 1 ... p
pY X Xβ β β ε= + + + + ) (called a polyno-

mial (linear) regression), 

3. a linear function of β ′ s (for example, 0 1 1 ... k kY X Xβ β β ε= + + + + , this is a multiva-

riate linear regression, an example of multiple regression), 

4. any other type of function, with one or more parameters (for example, 

0 1exp( )Y Xβ β ε= + , a nonlinear regression
2
, or 0 1 1 2 2( 1) ( )P Y X Xβ β β= = Φ + +  

where Y  takes only two values, 0 or 1, and Φ  is the standard normal distribution 

function (the model is called the probit regression) etc.  

 

 

1.2. Statistical Data and their Models 

 

This section introduces common types of economic data and describes some basic models as-

sociated with their use. 

 

 

• Cross-sectional data 

 

Some researchers often work with data that is characterized by individual units. These units 

might refer to companies, people or countries. For instance, a researcher investigating theories 

relating to portfolio allocation might collect data on the return earned on the stocks of many 

different companies at more or less the same time. With such cross-sectional data, the method 

of ordering the data (for example, by alphabet or size) usually does not matter. 

                                                 
1
 “Linear” means that 'β s enter the equation as multipliers of X . 

2
 It is nonlinear because it is not of the form …+ 1 Xβ ⋅ . 
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Typically, for the cross-sectional data the notations iX , iY , and like are used to indicate an 

observation on variables ,X  Y  etc for the i th individual. Observations in a cross-sectional 

data set run from unit i = 1 to N. By convention, N  indicates the number of cross-sectional 

units (e.g., the number of companies surveyed). For instance, a researcher might collect data 

on the share price of N = 100 companies at a certain point in time. In this case, 1Y  will be 

equal to the share price of the first company, 2Y  the share price of the second company, and so 

on. 

 

 

• Time series data 

 

Financial researchers are often interested in phenomena such as stock prices, interest rates,  

exchange rates, etc. This data is collected at specific points in time. In all of these examples,  

the data are ordered by time and are referred to as time series data. The underlying phenome-

non which we are measuring (e.g., stock prices, interest rates, etc.) is referred to as a variable. 

Time series data can be observed at many frequencies. Commonly used frequencies are: an-

nual (i.e. a variable is observed every year), quarterly (i.e. four times a year), monthly, weekly 

or daily.  

 

In this course, we will use the notation tY  to indicate an observation on variable Y (e.g., an 

exchange rate) at time t. A series of data runs from period t = 1 to t = T. ' 'T  is used to indicate 

the total number of time periods covered in a data set. To give an example, if we were to use 

monthly time series data from January 1947 through October 1996 on the UK pound/US dol-

lar exchange – a period of 598 months – then t = 1 would indicate January 1947, t = 598 

would indicate October 1996 and T = 598 the total number of months. Hence, 1Y  would be the 

pound/dollar exchange rate in January 1947, 2Y  this exchange rate in February 1947, etc. Ti-

me series data are typically presented in chronological order. 

 

One objective of analysing economic data is to predict or forecast the future values of econo-

mic variables. One approach to do this is to build a more or less structural (for example, reg-

ression) econometric model, describing the relationship between the variable of interest with 

other economic quantities, to estimate this model using a sample of data, and to use it as the 

basis for forecasting and inference. Although this approach has the advantage of giving eco-

nomic content to one’s predictions, it is not always very useful. For example, it may be po-

ssible to adequately model the contemporaneous relationship between unemployment and the 

inflation rate, but as long as we cannot predict future inflation rates we are also unable to fore-

cast future unemployment.  �� 

 

The most interesting results in econometrics during the last 20-30 years were obtained in the 

intersection of cross-sectional and time series methods. These lecture notes are basically devo-

ted to cross-sectional data, however some sections will examine   

 

• regression models for time series 
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Another possibility to combine the two above-mentioned methods is to deal with the so-called  

 

• panel data  

 

A data set containing observations on multiple phenomena observed over multiple time peri-

ods is called panel data. Panel data aggregates all the individuals, and analyzes them in a peri-

od of time. Whereas time series and cross-sectional data are both one-dimensional, panel data 

sets are two-dimensional. 

 
person year income age sex 

1 2003 1500 27 1 

1 2004 1700 28 1 

1 2005 2000 29 1 

2 2003 2100 41 2 

2 2004 2100 42 2 

2 2005 2200 43 2 

In the above example, a data set with panel structure is shown. Individual characteristics (in-

come, age, sex) are collected for different persons and different years. Two persons (1 and 2) 

are observed over three years (2003, 2004, and 2005). Because each person is observed every 

year, the data set is called a panel. 

 

1.3. Software 

 

There are many statistical software programs. Broadly speaking, they can be divided into 

commercial (SAS, SPSS, EViews,...) and free (R, GRETL,...) software; on the other hand, 

according to the way the procedures are performed, they can be divided into menu-driven 

(GRETL, EViews,...) and programmable (R). The latter two groups nowadays have shown a 

tendency to unite – for example, EViews, GRETL and the commercial S-Plus, all allow to 

program your steps or perform them from the toolbar. This course is accompanied by compu-

ter labs where statistical procedures will be parallelly performed with GRETL (it is very good 

for teaching purposes) and R (the most powerfull and cutting-edge statistical program).  

 

******************* 

 

All the data necessary for these computer labs are placed in the ...\dataPE folder. 
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2. INTRODUCTORY EXAMPLES 

 

When we consider the nature and form of a relationship between any two or more variables, 

the analysis is referred to as regression analysis.  

 

2.1. Some Examples of Regression Models 

2.1 example. Imagine that you are a university 

student, completing your sixteenth (=12+4) year of 

education and considering whether to go on to 

graduate studies for two-year master’s program or 

to proceed directly to the job market. Many factors 

will weigh in your decision, one of which may be 

the financial payoff. You may well be interested in 

how earnings of persons with master’s degrees 

compare with those of persons with bachelor’s de-

grees. 

In the figure on the right you can see cross-section 

wage data from CPS5_n.txt
1
 consisting of a random 

sample taken from the national survey of persons in 

the labor force who have already completed their 

education. From the underlying data, it turns out that for the 70 persons with educ=16 

(years), the mean wage was 10.84 ($/hour), while for the 24 persons with educ=17, the 

mean wage was 13.61 (this is a substantial difference).  

At this point, your interest in the relation between wages and education may have been piqued 

enough to move from a personal decision-making context to a general scientific one
2
. It seems 

natural to focus on the means of those Y ′ s (wages) for each of the thirteen distinct values of 

X  (educ), much as we did previously for the two values 16X =  and 17X = . In our figure, 

those thirteen sample conditional means have been superimposed as black squares on the scat-

ter diagram of 528 persons. Many people would take this display as a natural summary of the 

relation between Y  and X  in this data set, or sample, with 528N = paired observations 

( , )i iX Y . At each distinct value of X , jx , we can calculate the mean value of Y . At education 

level , 6,7,...18jx j = , this subsample mean of Y  may be labeled as | jY X x=  to be read as 

the sample mean of Y  conditional on (or given that) jX x= . Making this calculation for all 

j  we can assemble the results into the conditional sample mean function ( ) |h X Y X= . Here 

( )h X  denotes the function whose value at jx , namely ( )jh x , is equal to | jY X x= .  

The variable educ has 13 distinct values and this discrete, sliced sample approximation to the 

true, however unknown, conditional expectation ( | )E Y X  could be a reasonable approach in 

this example.  The most interesting hypothesis in this context is 0 : ( | )H E Y X const≡  which 

                                                 
1
 All the data sets of this course are placed in the .../PEdata folder. 

2
 Recall – modeling is the daily bread of econometricians! 

6 8 10 12 14 16 18
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is equivalent to 0 6 18: ( | ) ... ( | )H E Y X x E Y X x= = = =  which is equivalent to 0 :H Y does
 

not depend on X . We can use the ANOVA procedure to compare these (conditional) means 

or some direct regressional methods to be discussed later – both reject our hypotheses at 5% 

significance level, consequently, wage indeed depends on educ.  

We had to estimate eighteen parameters when using the above approach. However, if it hap-

pens that 1) the discrete variable X can be treated as a numeric (but not as a nominal or group 

variable educ
3
) and  2) 0 1( | )E Y X Xβ β= + , this new parametrization

4
 of ( | )E Y X  would 

be preferable because it is easier to estimate two coefficients, 0β  and 1β , rather than eighteen 

(the estimation will be more precise and, also, we can interpret 1β in a reasonable way as a 

measure of influence of X  on Y ). To find the estimates 0β̂  and 1β̂  of the unknown coeffi-

cients,
 
one can draw a straight line through the “middle of the cloud” (or, in other words, a 

straight line which is the most close to all the points in the scatter diagram). The “closest” line 

(or, in other words, the coefficients 0β  and 1β ) can be estimated differently, for example, as 

such that 0 11
ˆ ˆ| ( ) |

N

i ii
Y Xβ β

=
− +∑  is minimum or 

2

0 11
ˆ ˆ( ( ))

N

i ii
Y Xβ β

=
− +∑  is minimum or in a 

similar manner (the second method, called the method of ordinary least squares or OLS, is the 

most popular). In the next chapter, we shall explain how to achieve this goal (note that in or-

der to test 0 :H Y does not depend on X  now we have to test a simple hypothesis 0 1: 0H β = ).  

2.2 example. Open R and run the following script where the below used data set oats con-

tains four variables, among them: 

 

N  nitrogen fertilizer, levels 0.0, 0.2, 0.4, and 0.6 cwt/acre  (N is a factor, i.e., nominal or 

group variable!) 

NN it is discussible whether the nominal variable N can be converted to a numeric variable NN 

taking values 1, 2, 3, 4!  

Y  yields in 1/4lbs per sub-plot, each of area 1/80 acre.  
 

library(MASS) 

data(oats) 

attach(oats) 

par(mfrow=c(1,2)) 

plot(N,Y) 

NN=as.numeric(N) # convert N to a numeric variable NN 

cor(Y,NN) # =0.6130266 - relationship is strong 

plot(jitter(NN),Y) 

 

To analize the impact of fertilizer on the yield, 72 adjacent lots were used by a researcher and 

dressed with four different levels of fertilizer. The fertilizer N takes four different values but 

these are not numbers: 

 
> N 

[1] 0.0cwt 0.2cwt 0.4cwt 0.6cwt 0.0cwt 0.2cwt 0.4cwt ................ 

Levels: 0.0cwt 0.2cwt 0.4cwt 0.6cwt 

 

                                                 
3
 We can aggregate our data and introduce a new nominal variable educ.n  taking four values: primary, secon-

dary, bachelor, and master; now the assumption  0 1( | . ) .E wage educ n educ nβ β= +  makes no sense.  
4
 It means that all conditional expectations are exactly on a straight line. 
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N is a nominal variable called a factor in R and a discrete variable in GRETL and this means 

that we cannot claim that the increment of N between the levels 0.2cwt and  0.0cwt is the same 

as between 0.6cwt and 0.4cwt (the arithmetical operations are not defined between factors). 

Thus, we should estimate the conditional expectation ( | )E Y N  separately for each level of N 

(for each slice of our scatter diagram) and this is done by 

 
mod1=lm(Y~N) 

summary(mod1) 

points(NN,predict(mod1),pch=15,col=2,cex=2) # red squares in Fig.2.1 

  

On the other hand, if we dare treat N as a numeric variable and call it NN, we can add a regres-

sion line with  

 
mod2=lm(Y~NN) 

abline(mod2) 

summary(mod2) 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)   67.139      6.215  10.802  < 2e-16 *** 

NN            14.733      2.270   6.492 1.04e-08 *** 

 

(thus the estimate of the regression line is 67.1 14.7Y NN= + ). The scatter diagram shows 

that the yield increases together with the fertilizer and it seems that the linear model 

0 1Y β β= + NN +ε  satisfactorily describe the relationship.  

 

 

Figure 2.1. Two graphs obtained with plot(N,Y)where N is treated as a factor (left) 

or as a numeric variable (right; the red squares are conditional means of Y in groups) 

 

The principal difference between 2.1 and 2.2 examples is that in the latter case the explanatory 

variables N and NN are not random, they are fixed in advance by the researcher. Note that in 

economics, as a rule, X  or 'X s are random which brings some additional complications.  

2.1 exercise. Analyze the impact of the variety V on Y.      �� 

2.3 example. Open GRETL and go to File| Open data| Sample file...| POE 4th ed.| andy. The 

data set contains sales, price and advert (expenditure on advertising). We want to find  

the forecast of sales based on price and advert. In this three dimensional case, the ge-

0.0cwt 0.2cwt 0.4cwt 0.6cwt
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ometric interpretation is of little help (how to plot points? how to draw the „best“ plane? how 

to retrieve the coefficients from the graph?) therefore the general, mathematical approach is 

 

Figure 2.2. A 3D scatter diagram (sales vs price and advert)  

 

the only recource. In GRETL, the OLS model is obtained through 

 
ols sales 0 price advert 

 

Dependent variable: sales 

 

             coefficient   std. error   t-ratio    p-value  

  --------------------------------------------------------- 

  const       118.914       6.35164     18.72     2.21e-029 *** 

  price        -7.90785     1.09599     -7.215    4.42e-010 *** 

  advert        1.86258     0.683195     2.726    0.0080    *** 

 

thus, the regression model is 118.91 7.91 1.86sales price advert= − + . Note that in four- and 

higher-dimensional cases the geometric approach is altogether inapplicable.  �  

 

2.2. Concluding Remarks 

 

Any economic variable Y , generally, depends on (random) observable X  (or 'X s) and unob-

servable variables which we treat as random variable ε , ( , )Y f X ε= . Regression modeling 

aims to filter out the effects of ε  and estimate the “mean” dependence of Y  on X  which is 

denoted as ( | )E Y X  (called the average of Y provided we know X or expected value of Y con-

ditional on X). If X  takes only finite number of values ix , it is easy to define and estimate 

( | )iE Y X x=  – just take a sample mean in a given slice containing one element (see 2.1 ex-

ample; note that the dependence of ( | )iE Y X x=  on ix  can be quite irregular).  

 4.8
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On the other hand, if X may take all the values from a certain interval, then the slices in sam-

ple will contain either none of 'X s or one element (sometimes, two or more) of X. To illus-

trate, open GRETL and go to File| Open Data| Sample file…| Ramanathan| data2-2, select 

colgpa (grade point average in college) and hsgpa (high school gpa), right-click on selec-

tion and choose XY scatterplot – you will see the scatterplot and the OLS regression line (see 

Fig. 2.2, left). This regression line is clearly one of the options to model colgpa dependence 

on hsgpa. However, if we want to follow our slicing technique, it is not quite clear how to 

estimate ( | ) ( (E Y X E= colgpa| ))hsgpa  for each slice (it will be either NA for some slices 

or an average colgpa in other slices). An alternative approach to estimate ( | )E Y X , assum-

ing ( )Y g X ε= +  for some smooth g, is to take some wider slice around moving x  and aver-

age 'Y s inside it or, still better, to take a weighted average, i.e., instead of 
:| |

1

#
j

j

j x x h

Y
j − <

∑  to 

calculate
:| |j

j j

j x x h

w Y

− <
∑  where weights jw  are “big” for jx  close to x  and smaller for remote 

'jx s. This idea is implemented in both GRETL and R with the loess (locally weighted re-

gression) function (in GRETL, go to Model| Robust estimation| Loess… – you will see the 

graph depicted in Figure 2.2, right). 

 

 

 
 

Figure 2.3. The OLS regression (left) and the loess regression of colgpa vs hsgpa; the 

dependence is close to linear 

 

As in the case with finite number of values of X , it is difficult to interpret the right graph – 

we see that Y depends on X, but it is not quite clear how to quantify it. Below, we shall explain 

how to estimate 0 1( | )E Y X Xβ β= +  using OLS; the coefficient 1β̂  then gives the change of 

Y when X increases by 1. However, in cases where ( | )E Y X  is far from regular curve (i.e., 

straight line, parabola, logarithm and like), loess  is a valuable alternative to the most popu-

lar model of the least squares studied in following chapters.  
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3. UNIVARIATE REGRESSION 

 

3.1. Introduction 

 

1.  Let us assume that we observe an  r.v. X  with unknown distribution F or, what is the 

same in the continuous r.v. case, unknown density function f  (this is sometimes called a po-

pulation). To get a feeling about its shape, i.e., the „chances“ or probabilities of different val-

ues, we analyse a finite random sample 1 2( , ,..., )NX X X , where , 1,..., ,iX i N=  are i.i.d.r.v.’s, 

all with the same distribution F . In fact, we usually collect only one realisation of this ran-

dom sample, namely, a set of numbers 1 2( , ,..., )Nx x x , called a concrete sample. There are 

many ways to test hypothesis about the shape of F , but often it suffices to estimate its mean 

(plus, maybe, variance) of X . One of the methods to estimate the mean EXµ =  is the meth-

od of least squares (what other methods do you know?): we look for a number µ̂  which in 

some sense (in squared differences sense) is central or closest to all the points 1,..., nx x  –   

 

2 2

1 1

ˆ( ) min ( )
N N

i m R i

i i

x x mµ ∈
= =

− = −∑ ∑ . 

 

To minimize the expression 
2

1

( ( ) ) ( )
N

i

i

f m x m

=

= −∑ , we differentiate it with respect to m  and 

equate the derivative to zero – the solution of the equation is the sample mean 

( )1ˆ ˆ ... /
OLS

Nx x N xµ µ= = + + =  (this number is called the OLS or ordinary least square es-

timate of µ ). If we repeat the same procedure with another concrete sample, we shall get a 

slightly different estimate 
(2)µ̂ , then, if we repeat the same procedure for the third time, we 

shall get 
(3)µ̂ etc; hopefully all these estimates (that is, the realizations of the random estima-

tor
1
 ( )1ˆ ... /NX X N Xµ = + + = ) will fluctuate around µ . Indeed, the estimator ˆ ˆ( )OLSµ µ=  

is an unbiased estimator of µ  because  ( )1ˆ ... /NE E X X Nµ µ= + + = . Based on random µ̂ , 

we can test different hypothesis about µ  (to do this, if the sample is small, we also must 

know the distribution of X , but if N  is “large”, then according to the Central Limit Theorem 

(CLT), 
2ˆ ~ ( , ( / ) )N Nµ µ σ  and, for example, ˆ 2 / Nµ σ− ≤ ˆ 2 / Nµ µ σ≤ +  with approx-

imately 95% confidence which implies that when the sample size increases, we get more and 

more precise estimates of µ ). The estimator µ̂  is also a consistent estimator of µ , that is, µ̂  

tends to (or collapses onto) µ  in probability as N →∞  (this follows from the Chebyshoff 

inequality: ˆ(| | )P µ µ λ− > ≤  
2ˆvar /µ λ = 2 2/ 0Nσ λ → ).   

                                                 
1
 Let the distribution Fθ  of a r.v. X depends on unknown parameter θ . Definition. Any function  f of the random 

sample 1 2( , , ..., )NX X X  is called an estimator of θ and denoted θ̂ , 1
ˆ ( , ..., )

N
f X Xθ = . � Estimator is a ran-

dom variable and we are interested only in “good” estimators, for example, the unbiased ones, i.e., such that 

ˆEθ θ= .   
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2.  Much of applied econometric analysis begins with the following premise: Y  and X  are 

two variables and we are interested in “explaining Y  in terms of X ”. Some examples are: Y  

is oats yield and X  is amount of fertilizer or Y  is wage and X  is years of education etc. 

Thus, we are looking for a function f  which describes the relationship ( )Y f X= . On the 

other hand, any single X  will never explain an economic variable Y , therefore all other non-

observable factors influencing Y  can be included into the random disturbance term ε : 

( , )Y f X ε=  (here X  can be nonrandom (as in 2.2 example) or random (as in 2.1 or 2.4 ex-

amples); in what follows, we shall assume, as is common in economics, that X  is random 

but, in any case, Y  is a r.v. which depends on both X  and ε ). The simplest function f  is 

linear:  0 1Y Xβ β ε= + +  and, when this function is appropriate, our purpose is to restore (es-

timate) its unknown coefficients 0β  and 1β  from all available data, i.e., the  sample
2
 

1 1( , ),...,X Y ( , )N NX Y .    

 

Thus, we expect that “on average“ the relationship 0 1Y Xβ β= +  holds but this “on average” 

concept is rather subtle. The two-dimensional r.v. ( , )X Y  (more precisely, its distribution) is, 

in fact, described by the two-dimensional r.v. ( , )X ε  but, in order to get “good” estimates of 

0β  and 1β , we have to impose certain restrictions on the properties of ε  and, also, on inter-

action (if any) between X  and ε . Let us denote by ( | )E Y X  a conditional expectation of Y  

provided we know the value of r.v. X  or, shorter, conditional expectation of Y  on X  (this 

conditional expectation is closely related to the conditional probability ( | )P B A  or conditional 

density ( | )f y x  or similar concepts). Here are some properties of  ( | )E Y X  (we assume that 

X  is a r.v.): 

 

CE1 ( | )E Y X  depends on (is a function of) the r.v. X , i.e., it is a random variable itself; 

for instance, in 2.1 example, where X  is a discrete r.v., 

 

6 6

18 18

( | ) with probability ( )

( | ) ..........................

( | ) with probability ( )

E Y X x P X x

E Y X

E Y X x P X x

= =


= 
 = =

 

 

      and ( )2
var( | ) ( | ) ( | )j jY X x y E Y X x P Y y X x= = − = = =∑ , 

      or, in 2.2 example, where  X  is a continuous r.v., 

|( | ) ( | )Y XE Y X x y f y x dy

∞

−∞

= = ∫  

      (here the conditional density | ( | )Y Xf y x  is defined as ( , )( , ) / ( )X Y Xf x y f x ).   

 

 

                                                 
2
 According to our convention, we should use lower case letters to denote concrete sample and upper case letters 

to denote random sample, but following tradition we will always use upper case letters (is this a concrete or ran-

dom sample, will be clear from the context). 
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2.1 example. Let ( , )X Y  be a bivariate normal r.v. It can be shown that  

2

| 2 2 2

1 1
( | ) exp ( )

2 (1 ) 2 (1 )

Y
Y X X Y

XY y

f y x y x
σ

ρ µ µ
σπσ ρ σ ρ

   
= − − − −  

− −    
 

 

which is equal to the density function of a one-dimensional normal r.v. with mean Yµ +  

( / )( )Y X Xxσ σ µ−  and variance 2 2(1 ) yρ σ− . Thus we get ( | ) ( )Y
Y X

X

E Y X x x
σ

µ ρ µ
σ

= = + − .  

CE2 ( ( ) | ) ( )E f V V f V=  (once you know ,V ( )f V  is fully explained). 

CE3 If the r.v.‘s V  and U  are independent (i.e., ( | ) ( )P V B U A P V B∈ ∈ = ∈  for any 

events A  and B ), then ( | )E V U EV= . 

CE4 ( ( | ))E E X Eε ε=  (for example, ( | ) ( )XE X x f x dx Eε ε
∞

−∞

= =∫ ).  

CE5 0 1 0 1 0 1( | ) ( | ) ( | ) ( ( | ))E X X E X X E X X E Xβ β ε β β ε β β ε+ + = + + = + + , i.e., con-

ditional expectation is a linear operator. 

 

CE6  The following two identities are called the Laws of iterated expectations: let 1,Y X , 

and 2X  be three (generally, dependent) r.v.‘s; then 

   

1 2 1 1

1 1 2 1

( ( | ( , )) | ) ( | )

( ( | ) | ( , )) ( | )

E E Y X X X E Y X

E E Y X X X E Y X

=

=
 

 

(the smaller information set
3
 always dominates). For example, if 0 1 1 2 2Y X Xβ β β= + + +  

ε , then 0 1 1 2 2 1 2 1 0 1 1 2 2 1 0( ( | ( , )) | ) ( | )E E X X X X X E X X Xβ β β ε β β β ε β+ + + = + + + = +  

1 1 2 2 1 1( | ) ( | )X E X X E Xβ β ε+ + . Another example: let 1 2 2 1, ,..., , ,t t tY Y Y Y Y− −  be a time se-

ries and , 1 ,s s tΩ ≤ ≤  a  set containing all the information about 1 2 1, ,..., ,s sY Y Y Y− ; then 

 

                                               

2 1 2

1 2 2

( ( | ) | ) ( | )

( ( | ) | ) ( | )

t t t t t

t t t t t

E E Y E Y

E E Y E Y

− − −

− − −

Ω Ω = Ω

Ω Ω = Ω       

�� 

 

Note that all these properties can be generalized to the case where X  is a vector-valued r.v. 

X
�

. 

 

The CE5 property implies that, if ( | ) 0E Xε ≡  for every given X , the r.v. Y  is on average 

0 1Xβ β+ (this line is called a regression line), i.e.,  

 

0 1 0 1( | )E X X Xβ β ε β β+ + = +  

To estimate 0β  and 1β , we can use the least squares method again: find 0β̂  and 1β̂  such that 

                                                 
3
 Clearly, two r.v.‘s 1 2andX X  contain more information about (can better explain) Y  than only 1X .  
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0 1

2 2
0 1 , 0 1

1 1

ˆ ˆ( ) min ( )
N N

i i b b R i i

i i

Y X Y b b Xβ β ∈
= =

− − = − −∑ ∑  

 

(here ,i iX Y  are the sample values). To find the formulas for these estimators, one has to dif-

ferentiate the rhs expression with respect to 0b  and 1b , equate the derivatives to zero and 

solve respective system. The procedure is described in Sec. 3.2 where also the conditions (in 

addition to ( | ) 0E Xε = ) for 0β̂  and 1β̂  to be “good” estimators of 0β  and 1β  are presented. 

 

 

Figure 3.1. The graph of the joint density of ( , )X Y  (left); two variants of the same plot 

with sample points and regression line 0 1Xβ β+  (center and right) ; three conditional 

distributions of Y (bottom; note that 2 0 1 2( | )E Y X x xβ β= = + ) 

********************* 

 

In the previous chapter, we presented some examples of ( , )X Y  data and their regression mo-

dels. However, even if our assumption that the data is generated by the linear
4
 model 

                                                 
4
 Recall that the word ‘linear‘ describes the way the coefficients enter the model. Thus the model 0Y β= +

 
2

1Xβ ε+ 0 1( )Zβ β ε= + +  is also linear with respect to 0β  and 1β . More explicitly, it should be called linear 

quadratic model („linear“ applies to coefficients and „quadratic“ to 
2

X ).  
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0 1Y Xβ β ε= + +
 
is correct, we usually do not know the exact values of the coefficients 0β  

and 1β .  

 

In this chapter, we explain how to use the sample data to find the “best” (under certain  

conditions) estimators of the coeficients 0β  and 1β  in 0 1Y Xβ β ε= + +  

 

To present some variants of the estimation 

procedures, we shall analyze the following 

example. Let us assume that our data is a 

sample from the ( , )X Y  population created by 

the data generating process (DGP) which is 

described by the equation 2 3Y X ε= − + + . 

We treat X  as a normal random variable and 

use R to generate a sample of size N=20:   

 
N=20 

set.seed(6) 

X=rnorm(N,sd=7) 

eps=rnorm(N,sd=10)# X and ε  are ind. 
Y=-2+3*X+eps 

plot(X,Y) 

abline(-2,3) 

 

The black regression line 0 1( )Y Xβ β= + =
 

2 3X− +  shows the „true“ relationship between 

variables X  and Y  (we do not control (do not measure) all the other variables potentially inf-

luencing Y , therefore we treat them as a noise or disturbance or model‘s error ε ). We would 

like to estimate (i.e., approximately restore from our data) the coefficients 0( 2)β = −  and 

1( 3)β = and then draw a respective estimate of the regression line 0 1
ˆ ˆY Xβ β= + .  

 

A few words about the terminology. The estimation of 1β  (denoted by 1β̂ ) is obtained with 

the help of certain formulas that use the sample values of Y  and X ; 1β̂  is called an estimate 

of 1β  (it is a number). On the other hand, every time you repeat the above procedure you will 

get another sample and another estimate, thus 1β̂  now can be treated as a random variable and 

in such a status it is called an estimator of 1β . To denote the estimator, we use the same sym-

bol 1β̂  but now we can speak (among other things) about  its mean 1
ˆEβ  (it is desirable to ha-

ve an estimation procedure such that 1 1
ˆEβ β= ; such an estimator is called unbiased) or about 

its variance 1
ˆvar β  (it would be nice to have an estimator with the minimum possible variance;  

such an estimator is called effective).  

 

How can we restore (or estimate) 0β  and 1β ?  We shall discuss a few procedures.
   

 

 

1. One can draw the line by eye and then deduce from the plot 0β̂  and 1β̂ . However, this pro-

cedure is hardly reproducible. On the other hand, it is not quite clear how to explain the pro-

cedure of drawing to a computer. Even more so, sometimes one can quite succesfully draw a 
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straight line, but if we need a more general model 0 1 1Y Xβ β= + + 2 2Xβ ε+ , to plot a plane 

in 3-dimensional space is quite a challenge and altogether impossible in more than four di-

mensional case. 

 

2. To draw a straight line we need two points in plane which can be selected, for example, as 

follows: select 1/3 of the smallest X ′ s and calculate the average value of respective X ′ s and 

Y′ s; repeat the same with 1/3 of greatest X ′ s; draw a „regression“ line through these two 

points; restore the intercept and the slope of the line. 

 

Quite possible that sometimes you will get a line close to the „true“ one. However, in a more 

general model with, for example, two explanatory variables it is not clear how to split the 

1 2( , )X X  plane in three parts (we need three points to draw a plane) and draw a regression 

plane etc 

 

3. In the next section we shall present the most popular and most promissing method of least 

squares. 

 

3.2. The Method of Least Squares 

 

Here we shall present a general method of (ordinary) least squares (OLS) which produces 

“best” estimators provided some conditions are satisfied. Assume that  

 

U1. The DGP is described by the linear (in respect of 0 1andβ β ) model 0 1Y Xβ β ε= + +   - 

thus the output random variable (r.v.) Y  depends on two r.v.‘s, X  and ε  (note that, for 

example, 0 1Y Xβ β ε= + +
 
is also a linear model).  

 

The further conditions U2-U4 describe the properties of unobservable r.v. ε  and its relation-

ship with observable r.v. X . Let 1( ,..., )NX X X=
�

, 1( ,..., )NY Y Y=
�

, and 1( ,..., )Nε ε ε=
�

 be our 

samples of, respectively, explanatory variable, response variable, and errors. In linear model, 

ε  and Y  are always dependent (because cov( , ) 0Y ε ≠ ), but ε  may depend on X  and may 

not. The U2 condition below demands them to be close to independent.    

 

U2. ( | ) 0, , 1,...,i jE X i j Nε ≡ =  – this means that whatever are the observations jX , the er-

rors on average equal 0; this claim also implies that ( | ) 0i iE Xε ≡  and iEε ≡  

( )( | ) 0i iE E Xε = . For example, U2 is satisfied if for any 1,...,i N=  and 1,...,j N= , r.v.‘s iX  

and jε  are independent
5
 and 0Eε =  – then ( | ) 0i iE X Eε ε= =

�
. However, if iε  and iX  are 

correlated, i.e., cov( , ) 0i iXε ≠ , then U2 will not hold. Indeed, we have
 

cov( , )i iX ε =
 

( )i i iE X EX ε− = ( )( ) ( | ) 0i i iE X EX E Xε− ≠
�

 which contradicts U2. Note that U2 implies 

( | )i iE Y X =  0 1 iXβ β+ . 

 

                                                 
5
 Thus, say, 5ε  is influenced by neither 5X  nor 15X . 
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U3. 

1 1 2 1 3
2

2 1 2 2 3

var( ) cov( , ) cov( , )....

var ( | ) cov( , ) var( ) cov( , )....

..........................................................

X Iε

ε ε ε ε ε

ε ε ε ε ε ε σ
 
 = = 
 
 

��
, i.e., the conditional variance-

covariance matrix
6
 of ε

�
 is a unit matrix times a constant 

2
εσ ; to put it simpler, 

2var( | )i X εε σ≡
�

, i.e., (conditional) variance of iε  is the same for all i ‘s
7
 and does not depend 

on the values of X
�

 and, also, cov( , ) | ( | ) 0i j i jX E Xε ε ε ε= =
� �

8

 
for all i j≠ , i.e., disturbances 

do not interact (as a counterexample, if we describe the ( , )weight height  DGP as weight =
 

0β + 1heightβ ε+ , then probably var ε  increases together with height  (see Fig. 3.2)
9
, thus, 

this data does not satisfy U3). 
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Figure 3.2. The spread of the residuals increases together with height 

 

Usually we consider two cases where U3 does not hold: 

 

U3h: if 1var( | ( ,..., ))i NX Xε  depends on iX , the errors are called heteroskedastic; 

U3a: if 1cov( , ) | ( ,..., ) 0,i j NX X i jε ε ≠ ≠ , the errors are called autocorrelated.   

 

These two cases deserve special treatments and will be considered later. 

 

U4. Sometimes a requirement of normality is added: 
2| ~ (0, )X N Iεε σ

���
 (conditional density of 

ε
�

 (and, therefore, of any iε ) is normal or, at least, close to symmetric) - this requirement 

simplifies some statistical properties of estimators (for example, ˆ
iβ  will be normal). Trans-

forming the outcome is often successful for reducing the skewness of residuals. The rationale 

is that the more extreme values of the outcome are usually the ones with large residuals (defi-

ned as ˆ
î i iY Yε = − ); if we can “pull in” the outcome values in the tail of the distribution toward 

                                                 
6
 Attention: if Z

�
 is a random vector, var Z

�
 is a matrix; here, inside the matrix, we have skipped conditioning. 

7
 Such ε ‘s are termed homoskedastic. 

8
 If cov( , ) | 0

i j
Xε ε ≠
�

, such errors are termed serially correlated or autocorrelated. 

9
 weight and height are taken from the (edited) dataset babies  in R’s package UsingR. 
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the center, then the corresponding residuals are likely to be smaller too (one such transforma-

tion is to replace the outcome Y  with logY ). Power transformations are a flexible alternative 

to the log transformation. In this case, Y  is replaced by , 0Y
λ λ >  (smaller values of λ  “pull 

in” the right tail more strongly). As an example, square ( 1/ 2λ = ) and cube ( 1/ 3λ = ) root 

transformations were commonly used in analyzing variables long tailed on the right. However, 

some outcome variables cannot be satisfactorily normalized by transformation, or there may 

be compelling reasons to analyze them on the original scale. In such a case, it is useful to 

construct bootstrap confidence intervals for iβ .     �� 

 

In short – we say that the  

 

Data Generating Process 0 1Y Xβ β ε= + +  satisfies U2-U3 if (conditionally on all X ‘s) 

0iEε ≡ , 
2var i εε σ≡ , and iε  does interact neither with iX  nor with other jε  

 

The „line“ 0 1Y Xβ β= + is called the regression line
10

 (the words „regression line“ is a short-

cut for what is probably a regression curve, for example, 0 1log logV Uβ β= + 11
 or a similar 

curve). Under U2 we can also give another interpretation of regression line: since 0Y β= +
 

1Xβ ε+ , 1 0 1 1 0 1( | ,..., ) ( | ,..., )i N i i N iE Y X X X E X X Xβ β ε β β= + + = +  thus the expected va-

lue of the response variable at iX  coincides with the regression line.  

 

We do not know the coefficients 0β  and 1β  and in order to estimate these coefficients from 

our sample ( , ), 1,...,i iX Y i N= , we would like to use the data in the best possible way to ob-

tain the estimate of a regression line 0 1
ˆ ˆY Xβ β= + . The „best“ way is described by the Gauss-

Markov theorem: 

 

Under assumption that the conditions U1-U3 hold true, the OLS estimators 0β̂  and 1β̂  

are BLUE&C 

 

Here BLUE means Best Linear Unbiased Estimator and  C means Consistent – in other words, 

OLS estimator is indeed very good
12

. However, in order to prove this we have first to define 

what is meant by the words OLS estimator. 

 

                                                 
10

 0β  is called the intercept and 1β  the slope of the regression line. 

11
 It is a curve 1

0exp( )V U
ββ=  in ( , )U V  coordinates, but a straight line in (log , log )U V  coordinates.  

12
 Later we shall discuss these terms in more details. 
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Figure 3.3. ( , )X Y  scatter diagram and the estimated regression line 

 

To explain the notion, have a look at Fig. 3.3 where one can see the scatter diagram of our 

sample data. We want to draw a straight line through the „middle of the cloud“, i.e., choose 

0b  and 1b  such that the residual sum of squares 0 1( , )RSS RSS b b= =
1
(

N

ii
Y

=
−∑ 2

0 1( ))ib b X+  

were as small as possible. Below, we shall present a few techniques to achieve this goal. 

Let X  be a r.v. with distribution Fµ  where µ  is unknown mean. If the sample 1( ,..., )NX X  

is „good“ (for example, our observations iX  are independent identically distributed r.v.‘s or 

iidrv‘s), then the OLS estimate of µ , ˆ Xµ = , is BLUE&C. 

Let 0 1Y Xβ β ε= + +  where 0 1,β β  and 
2
εσ  are unknown. If the sample 

1

1

...

...

N

N

Y Y

X X

′ 
 
 

 is 

“good” (for example, satisfies U2-U4), then the OLS estimators of unknown parameters will 

be BLUE&C. 

 

 

• The system of partial derivatives 

Recall that in order to minimize RSS , we have to differentiate it with respect to 0b  and 1b , 

equate the derivatives to zero and solve the following system of two equations: 

 

0

1

... 0

... 0

RSS

b

RSS

b

∂ = = ∂

∂ = =

 ∂

        .                                                                                                    (3.1) 

 

0 1

0 1

( ( )) 0

( ( )) 0

i i

i i i

Y b b X

X Y b b X

 − + =


− + =

∑
∑

   .                                                                                     (3.2)  
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After some calculation, we obtain that the solutions 0β̂  and 1β̂
 
of the the system  are equal to 

 

 �

�

0 1

1 2 2 2

ˆ ˆ

( )( ) ( ) ( ) cov( , )ˆ

( ) ( ) ( ) var

i i i i i i

i i i

Y X

Y Y X X Y Y X X X Y X Y

X X X X X X X

β β

β

 = −


− − − −
= = = =

− − −

∑ ∑ ∑
∑ ∑ ∑

                 (3.3)    

 

(first estimate 1β̂  
and then 0β̂ ). Note that the estimate of the regression line goes through the 

point ( , )X Y . (Can you estimate 0β  in the simplest regression Y = 0β ε+  and tell what is the 

meaning of 0β̂ ?) 

   

 

0β̂  and 1β̂  
are called the OLS estimates of the linear regression parameters (the procedure of 

calculating these estimates in R is performed with lm(Y~X)and in GRETL with  ols Y c 

X). The  straight line 0 1
ˆ ˆŶ Xβ β= +  is called an estimated regression line (or estimated Y  or 

predicted Y )  and ˆˆi i i ie Y Yε= = −   residuals of the model (they are hopefully close to the er-

rors iε ).  In fact, there is one more parameter in the model we have to estimate, the variance 

of the error: 

 

    2 2 2 2
0 1 0 1

ˆ ˆ ˆ ˆˆ ( , ) / ( 2) ( ( )) / ( 2) / ( 2)i i is RSS N Y X N e Nε εσ β β β β= = − = − + − = −∑ ∑      (3.4) 

 

The second formula in (3.3) can still be simplified by introducing i ix X X= −  and 

i iy Y Y= − : 

                          

2

1
0 1

1 12 2

ˆ
( )

i
i i i

i

i i i i
i i i

i i

x
Y w Y

x

x X x
w

x x

β
β β ε

β ε β ε

 =


= 
+ + = + = +



∑ ∑
∑

∑ ∑ ∑
∑ ∑

           (3.5) 

 

 

This formula implies that the estimators 1β̂  (and 0β̂ ) are r.v.‘s depending on two random vec-

tors X
�

 and ε
�

. 

3.3. Properties of the OLS Estimator 

 

Now we are able to prove that 1β̂  is BLUE&C
13

 (the proof  for 0β̂ is similar).  

 

L  The linearity of the estimator with respect to iY  follows from the first line in (3.5). 

                                                 
13

 The BLUE properties hold for any size samples whereas C (=consistency) is a large sample or asymptotic pro-

perty.  
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U To prove unbiasedness, that is 1 1
ˆ( | )E Xβ β=
�

, we use the second line in (3.5) and U2: 

1
ˆ( | )E Xβ =
�

1β + 1( | )i iw E Xε β=∑
�

. 

B  Best means that, in the class of linear unbiased estimators, var i iz Y∑  attains its minimum 

when i iz w=  (in other words, 1β̂ is an efficient estimator of 1β ). The proof of this fact (as-

suming U3) is beyond the scope of the course but to calculate the 1
ˆvar( | )Xβ
�

 itself under U3 

is easy (in what follows we shall usually skip the conditioning): 

 

          

2
2 2

1 2
1 1

var( ) var cov( , )
N N

i i i i i j i j i

i j i

w w w w w
x

ε
ε

σ
β ε ε ε ε σ

= =

+ = = = =∑ ∑ ∑∑ ∑
∑

.       (3.6) 

 

This formula implies that (according to the Law of Large Numbers), 

( )2 2 / vari ix N x N N X= ⋅ ≈ ⋅∑ ∑ , thus 1
ˆvar 0β →  when N →∞ , i.e., 1β̂  becomes closer 

and closer to the true value of 1β . 

 

Note that we do not know 
2
εσ  therefore we can use the analogue principle to estimate 1

ˆvarβ : 

 

                                                       � 2 2
1
ˆvar / is xεβ = ∑                                                   (3.7) 

 

(notice the difference between var  (the true variance) and �var  (estimated variance)!). 

 

Definition. The square root of the estimated variance of the estimator ˆ
iβ , that is, � ˆvar iβ  is 

called the standard error of respective estimator ˆ
iβ .  � 

The standard error describes the accuracy of the estimator (the smaller the better). 

 

C We have just seen that 1β̂ converges, in some sense
14

, to the true value 1β . However, here 

we were dealing with the simplest Gauss-Markov model; in more general cases, it is not so 

easy to calculate 1
ˆvarβ . A similar but more convenient concept is convergence in probability: 

we say that a sequence of r.v.’s nW  converges in probability to a nonrandom constant w  if 

(| | ) 0nP W w λ− > →  (or, what is the same, (| | ) 1nP W w λ− < → ) as n → ∞  for any positive 

number λ 15
 (this  is usually denoted by 

P
nW w→ ). The following properties are important: 

 

• If 
P

nW w→  and 
P

nZ z→ , then 
P

n nW Z w z+ → +  and 
P

n nW Z wz→  

• If 
P

nW w→ , 
P

nZ z→ , and 0z ≠ , then / /
P

n nW Z w z→  

 

                                                 
14

 In variance sense. 
15

 Even if λ  is small (say, 0.0001), the inequality | 0.0001| nW w− > finally becomes improbable. 
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One more general definition: the statistics
16

 nΘ  is a consistent estimator of unknown popula-

tion’s parameter θ  if 
P

n θΘ →
 
(hence nΘ  eventually collapses on θ ). 

 

To prove that (under U2) 1β̂  is a consistent estimator of 1β  
is easy:  

 

1β̂ = 1 1 1 1
2

1

cov( , ) 0

1 var var

i i
P

i

x
XN

X X
x

N

ε ε
β β β β+ → + = + =

∑

∑
 

 

***** 

 

We have proved that the OLS estimator 1β̂  has all the properties (under U1-U3) a good esti-

mator must have. Note that 

 

• To prove unbiasedness, it suffices to assume U2 

• To prove efficiency, it suffices to assume U3 (homoskedasticity and uncorrelatedness 

of errors) 

 

To illustrate the BLUE&C properties, we return to our DGP 2 3Y X ε= − + + . Clearly, the 

estimate 1β̂  depends on sample. In Fig. 3.4 one can see four (out of 5000 generated) different 

samples and four different estimates of regression line (we use R; the code is in CL, p. 2-18).  
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Figure 3.4. 20N = ; four different samples and four different estimates (red) of the 

true regression line (black) 

 

                                                 
16

 Statistics is any function of a sample. 
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In order to demonstrate the unbiasedness of the OLS estimator, we must prove that 1
ˆEβ =3. 

We have already proved it “theoretically”, but now we shall check the claim “empirically”. To 

do this, we approximate 1
ˆEβ  by its sample mean – we generate many (5000) samples and cal-

culate a sample mean  mean(beta1)=2.993, i.e., 
�

1 1
ˆ ˆ( )E Eβ β≈  is indeed very close to 

1( ) 3β = . To illustrate that variance of 1β̂  diminishes when the sample size N  increases, we 

estimate 1
ˆvar( )β by its sample variance – we use 5000 samples for 10, 100N =  and 1000 : 

 

10N =  (� 1
ˆvar( )β = ) var(beta1) = 0.210 

100N =  (� 1
ˆvar( )β = ) var(beta1) = 0.015 

1000N =  (� 1
ˆvar( )β = ) var(beta1) = 0.001 

 

A similar fact (consistency of 1β̂ ) is explained by Fig. 3.5 – if the size of the sample increas-

es, the deviations of 1β̂  from 1( ) 3β =  become smaller and smaller (however, the rate of con-

vergenge is rather slow). 

 

Note that unbiasedness is true for any N  while consistency is an asymptotic property (it holds 

when N →∞ ).  

 

Histogram of beta1

beta1

F
re

q
u
e
n
c
y

0 1 2 3 4 5 6

0
5
0
0

1
0
0
0

1
5
0
0

Histogram of beta1

beta1

F
re

q
u
e
n
c
y

2.6 2.8 3.0 3.2 3.4

0
2
0
0

4
0
0

6
0
0

8
0
0

Histogram of beta1

beta1

F
re

q
u
e
n
c
y

2.85 2.95 3.05 3.15

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

 

Figure 3.5. Three histograms of the estimates 1β̂  (from left to right: 10,100,1000N = ); consistency 

means that, when N → ∞ , the estimator 1β̂  will collapse on 1β ; also note that the histograms are bell-

shaped  

 

Figure 3.5 shows that the estimator 1β̂  has a bell-shaped distribution. Under U4, we can prove 

even a more precise statement – since 1) 1 1
ˆ

i iwβ β ε= +∑  and 2) uncorrelated iε  
have a 

normal distribution 
2(0, )N εσ ,  the linear combination of ε ′ s will be also normal: 1 1

ˆ ~ ( ,Nβ β
 

2 2/ )ixεσ ∑ . A similar claim holds for 0β̂ .    
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3.4. Other Methods to Derive the OLS Estimates 

 

The above formulas for 1β̂  and 0β̂  were obtained by directly solving two linear equations. 

This method is not convenient in multivariate case, therefore we shall present three more me- 

thods to derive respective formulas.  

 

• The method of moments (MM) 

If the population (or DGP) is described by two parameters (in our case, 0β  and 1β ), in order 

to find them we have to create a system of two equations. To do this, the MM equates theoret-

ical moments to sample moments. More specifically, we shall write the system 

 

�

ˆ ( 0)

ˆcov( , ) cov( , ) ( 0)

E

X X

ε ε

ε ε

 = =


= =
 

 

which is equivallent (under U2 and some simplification of U3) to 

 

  
0 1

0 1

( ( )) 0

( ( )) 0

i i

i i i

Y b b X

X Y b b X

 − + =


− + =

∑
∑

   .                                                                                 (3.8)    

 

Notice that this system coincides with (3.2), therefore we get the same solution. Next, (3.8) 

may be written as  

 

ˆ / 0

ˆ ˆ( )( ) / 0

OLS
i

OLS OLS
i i

N

X X N

ε

ε ε

 =


− − =

∑
∑  

thus, by construction,  i) the sample mean of the OLS residuals is always 0 and ii) the residu-

als do not correlate with X.

 

 

• The matrix method 

It is convenient to use matrices when solving systems. Let Y
�

 be the column matrix 1( ,... )NY Y ′ , 

β
�

 the column matrix 0 1( , )β β ′ , 2N ×  design matrix 

11

.......

1 N

X

X

 
 =  
 
 

X , and error column matrix 

1( ,..., )Nε ε ε ′=
�

. The regression system now may be presented as Y β ε= +X
�� �

. Our goal is to 

find vector 0 1
ˆ ˆ ˆ( , )β β β=
�

 such that ( ) ( ) ( )RSS b Y b Y b′= − −X X
� � �� �

 attains its minimum at ˆb β=
��

 

(
ˆβ
�

 is the estimator of β
�

 we are looking for). The method to find 
ˆβ
�

 is the same as earlier 

(partial derivatives) but the calculus is a bit tricky: as the derivative 
RSS

b

∂

∂
�  is equal to 

2 2Y b′ ′− +X X X
��

, upon equating it to 0
�

 we get  b Y′ ′=X X X
� �

 or  
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                                                      1ˆ
( ) Yβ −′ ′= X X X

� �
.                                                (3.9) 

 

Namely this formula is used by R and GRETL to calculate 0β̂  and 1β̂ . 

 

Note that in univariate regression 

 

1

2

2
1 2

1

1 1 ... 1 1

... .......

1

i

N i i

N

X

N XX

X X X X X

X

 
     ′  = =        
 

∑
∑ ∑

X X , 

( )

2
1

22

1
( )

i i

ii i

X X

X NN X X

−
 −

′  =
 −−  

∑ ∑
∑∑ ∑

X X  

 

i

i i

Y
Y

X Y

 
′ =  

 
 

∑
∑

X
�

, ………………, 
�

� �

2
0

1

ˆ ( ) / varˆ

ˆ cov( , ) / var

X Y X XY X

X Y X

β
β

β

   − = = 
      

�
, 

 

that is, � �
1
ˆ cov( , ) / varX Y Xβ =  which is the same as in (3.3).  

 

• The „almost correct“ method 

This method helps you to memorize (3.9). To estimate β
�

 in Y β ε= +X
�� �

,  equate ε
�

 to 0
�

 

(anyway, it is on average zero): Y β= X
��

; to find 
ˆβ
�

, multiply the equality from left by the in-

verse matrix 
1−

X : 1 1 ˆ
Y β β β− −= = =X X X I

� � ��
. However, our argument is faulty because the 

inverse  
1−

X  is defined only for a square matrix, therefore we shall proceed as follows: 

Y β′ ′=X X X
��

 (now ′XX  is a square matrix),  
1( ) Y

−′ ′ =X X X
�

 1 ˆ
( ) β β−′ ′ =X X X X

� �
 – this is 

exactly (3.9). 

 

One final remark. The estimator 
ˆβ
�

 is a (two-dimensional) r.v.
17

, hence we can speak about its 

mean (we have already proven that it equals 0 1( , )β β ) and its variance. With little matrix al-

gebra it can be shown that the estimator of the variance-covariance matrix 
ˆ

var β =
�

 0 0 1

1 0 1

ˆ ˆ ˆvar cov( , )

ˆ ˆ ˆcov( , ) var

β β β

β β β

 
 
 
   

is � ( ) ( ) 112 2ˆ
var i is s X Xε εβ

−−′ ′= = ∑X X
� � �

, where 
1

i
i

X
X

 
=  
 

�
. Note 

that � 1
ˆvarβ  in this expression is the same as in (3.7), that is, � 2 2

1
ˆvar / is xεβ = ∑ . 

 

                                                 
17

 Because the formula contains random Y and X
�

.  
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In order to develop ideas of regression models, we are now going to use a simple but im-

portant economic example. Suppose that we are interested in studying the relationship be-

tween Y = exp = weekly food expenditure per person and X = inc = weekly household in-

come. Economic theory tells us that expenditure on economic goods depends on income. Con-

sequently we call Y  the dependent or response variable and X  independent or explanatory 

variable. An econometric analysis of expenditure relationship can provide answers to im-

portant questions, such as: if the income goes up by $100, how much will average weekly 

food expenditures rise? How much would we predict the weekly per person expenditure on 

food to be for a household with an income of $2000 per week? Such information is valuable 

for assesing existing market conditions, product distribution patterns, consumer buying habits, 

and consumer living conditions.  
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Figure 3.6. inc-exp scatter diagrams in GRETL (left) and R (right) 

 

We begin with a data set food.gdt in GRETL\POE. It contains two variables, exp and inc, 

its XY scatterplot in GRETL is accompanied by an estimate of a regression line (blue). Re-

spective regression model is given by the following output table:  

 

 
Model 1: OLS, using observations 1-40 

Dependent variable: exp 

 

             coefficient   std. error   t-ratio   p-value  

  -------------------------------------------------------- 

  const        83.4160      43.4102      1.922    0.0622   * 

  inc          10.2096       2.09326     4.877    1.95e-05 *** 

 

Mean dependent var   283.5735   S.D. dependent var   112.6752 

Sum squared resid    304505.2   S.E. of regression   89.51700 

R-squared            0.385002   Adjusted R-squared   0.368818 

F(1, 38)             23.78884   P-value(F)           0.000019 

Log-likelihood      -235.5088   Akaike criterion     475.0176 

Schwarz criterion    478.3954   Hannan-Quinn         476.2389 

 

 

Similar graph (see Fig. 3.6, right) and the output table in R look very much the same: 

 
Call: 

lm(formula = exp ~ inc) 

 

5 10 15 20 25 30

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

income

fo
o
d
_
e
xp

3.5. Regression Model 



©   R. Lapinskas, PE.I - 2013 

      3. Univariate regression 

 
3-17 

 

 
 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)   83.416     43.410   1.922   0.0622 .   

inc           10.210      2.093   4.877 1.95e-05 *** 

 

Residual standard error: 89.52 on 38 degrees of freedom 

Multiple R-squared: 0.385,      Adjusted R-squared: 0.3688  

F-statistic: 23.79 on 1 and 38 DF,  p-value: 1.946e-05 

 

 

Is the equation �exp= 83.416+10.210 inc  a good model of our (unknown) DGP? In what 

follows, we shall try to answer this question. 

 

3.6. Four important distributions 

 

• Random variable 
2( ) ( , )X N µ σ=  is called a  normal or Gaussian if its bell-shaped 

density function equals  

2

2

,

1 1
( ) ( ) exp ,

22

x
f x x xµ σ

µ
ϕ

σπσ

 − = = −  −∞ < < ∞    
. 

 

Here µ  and 
2σ are, respectively, the expectation 2,

( )

R

EX x x dxµ σϕ= ∫  and variance var X =  

2
2 2

,
( ) ( ) ( )

R

E X EX x EX x dxµ σϕ− = −∫  of 
2( , )N µ σ . The r.v. ( (0,1) )N N=  is called standard 

normal. Note that not every bell-shaped density is normal (see, e.g., Student‘s density below).  

• The random variable 
2
nχ  is called a chi squared r.v. with n  degrees of freedom (df) if 

its density function is the same as that of 
2

1

n

i

i

N

=
∑  where iN  are standard independent normal 

r.v.‘s. Its expectation is n  and variance 2n , therefore according to CLT for big values of n  

the r.v. ( )2 / 2n n nχ −  is close to N . Note that 
2 2 2 2 2 2 2 2
5 1 2 3 4 5 3 2( ) ( )N N N N Nχ χ χ= + + + + = +  

or, in general, 
2 2 2
r s r sχ χ χ+ = + . 

 

• Let 1, ,..., nN N N  be independent standard normal r.v.‘s. Random variable nT  is called 

the Student r.v. with n  df if its density function is the same as that of  

( ) 22 2
1

/... /
n

nn

N N
T

nN N n χ
= =

+ +
. According to the Law of Large Numbers (LLN) 

2 2/ 1
P

n n ENχ → = , therefore for big values of  n  the r.v. nT  is close to N . Note that if 

1,..., nX X  is a sample from normal population with mean µ  and variance 2σ , then the so-

called  t − ratio statistics (of X )  
. . /

X X

s e X S n

µ µ − −
= 

 
 (here 

2 2ˆ XS σ= = 2( ) /iX X−∑ ( 1)n −  

is the estimator of 
2
Xσ ) has the 1nT −  distribution.  
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• Let 
2
nχ  and 

2
mχ  be independent chi squared r.v.‘s. The ratio 

2

2

/

/

n

m

n

m

χ

χ
 is called the 

Fisher r.v. with ( , )n m  df and denoted by ,n mF . Both  
2
nχ  and ,n mF  are positive r.v.‘s (they 

take only positive values which means that their density functions, for example 
,

( )
n mFf x , 

equals zero for 0x ≤ ). If m  is large, according to the LLN, 
2 2/ 1m m ENχ ≈ = , therefore 

2
, /n m nF nχ≈  for large m . 
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Figure 3.7. The densities of the Student nT (they are close to normal and coincide with 

normal if df=inf), 
2
nχ (they equal 0 if 0x <  and have maximum at 2n − ) and ,n mF  

distributions. 

 

3.7. Hypothesis testing 

 

Let us consider once again the DGP 0 1Y Xβ β ε= + + . We say that the variable X  is signifi-

cant in the model if 1 0β ≠ . Since we do not know the true value of 1β , we can only test the 

hypothesis 0 1: 0H β =  with different alternatives 1 1: 0H β ≠ , 1 1: 0H β >  or 1 1: 0H β < . As 

always with hypotheses, we accept
18

 the null if 1β̂  is „close enough“ to 0. It can be proved 

that, provided 0H  is true, the t-ratio statistics (of 1β̂ ) �1
1 1

1

ˆ 0 ˆ ˆ/ var
ˆ. .

T
s e

β
β β

β
−

= = =

 
2 2

1
ˆ / / iS xεβ= ∑   does not depend on X  and has the 2NT −  distribution; thus, we reject 0H  

and accept 1H  if | |t  exceeds
19

 a respective Student‘s 5% critical value. The value depends on 

N , but the two-sided one is always close to  2:  

 
> qt(.975, df = c(10,20,50,100,1000)) 

[1] 2.228139 2.085963 2.008559 1.983972 1.962339 

                                                 
18

 More correct is to say „we do not reject 0H “. 
19

 T  is a r.v., its realization in a sample is a number denoted by t. In GRETL t is called t-ratio, in R  t val-

ue. 
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Thus, the rule of thumb says – if the modulus of  t  exceeds 2, reject 0H , or, in other words, 

(with the 5% significance) conclude that the variable X is significant , i.e., the coefficient 1β  

differs from 0. 

 

In our inc-exp example  t-ratio equals 4.877(=10.2096/2.09326) thus it definitely 

exceeds 2 and therefore exp depends on inc. 

 

Equivalent approach is based on  the concept of p - value. In testing a two-sided hypothesis, 

calculate 2(| | | |)NP T t− >  - if the probability is less than 0.05, reject 0H  and accept 
(1)
1H , i.e., 

conclude that X  is significant. In our example, the p −  value 40 2(| | 4.877)P T − > = 2*pt(-
4.877, df=38) equals  1.948168e-05, exactly as given in the regression output table.   

Thus, there is no ground to remove inc from the model. 

 

The third possibility to test 0 1: 0H β =  with the alternative 1 1: 0H β ≠  is to create the two-

sided ~95% confidence interval ( )1 1 1 1
ˆ ˆ ˆ ˆ2 . . , 2 . .s e s eβ β β β− + : if it covers 0, we do not reject 

0H  at ~5% significance (in our inc-exp example, 0 does not belong to (10.21 - 2*2.09, 

10.21 + 2*2.09), therefore we reject 0H ).  

 

A „good“ model should contain only significant variables 

 

Sometimes it is important to test the hypothesis 
0

0 1 1:H β β= . The t-ratio statistics then  

equals ( ) �0
1 1 1
ˆ ˆ/ varT β β β= −  and one needs to take some extra steps to test 0H  (see Comp 

Labs). 

 

3.8. Goodness of Fit (
2R ) 

 

Now we shall introduce two more parameters of the „goodness“ of a model.  
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Figure 3.8. sd=5 (left) and sd=20 (right); black line is the true regression line 

2 3Y X= − + and the red one is the estimated regression line 
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We repeat the code in p. 3-4, first with sd=
2
εσ =5 (Fig. 3.8, left) and then with sd=

2
εσ =20 

(right; note the greater (compared to the left graph) spread of the sample points around the 

regression line). The accuracy of the estimators ˆ
iβ  in the second variant is worse

20
 (see the 

estimates of  the coefficients of  X and Std.errors in the output tables below).  
 

1) Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     

(Intercept)  -1.5173     1.3691  -1.108    0.282     

X             2.8500     0.1862  15.308 9.17e-12 *** 

 

Residual standard error:6.018 on 18 degrees of freedom 6.018 is close to 5 

Multiple R-squared: 0.9287,     Adjusted R-squared: 0.9247  

 

2) Coefficients: 
            Estimate Std. Error t value Pr(>|t|)    

(Intercept) -0.06934    5.47652  -0.013  0.99004    

X            2.39995    0.74470   3.223  0.00472 **  2.39 is further from 3 

                                                     than 2.8500          

 

Residual standard error:24.07 on 18 degrees of freedom 24.07 is close to 20 

Multiple R-squared: 0.3659,     Adjusted R-squared: 0.3307  

 

The standard error of regression or residual standard error is much bigger in the second case 

(24.07 compared to 6.018). To calculate it, we can use (3.4) and the following code: 

 
YX.lm=lm(Y~X) 

sqrt(sum(YX.lm$res^2)/YX.lm$df.res) 

[1] 24.07187 

 

Clearly, if the errors are big (i.e., their standard deviation εσ  is big), the forecast of Y  for a 

new value of 0X  (that is, forecasting with 0 0 1 0
ˆ ˆŶ Xβ β= + ) will be less accurate. It can be 

shown that standard deviation of the error of the forecast ( ( )se f  in Fig. 3.9) is proportional to 

ˆεσ
 
and is given by the formula  

�
2

0
0 0 2

( )1ˆ ˆvar( ) 1 ,
( )i

X X
Y Y

N X X
εσ

−
− = + +

−∑
 

 

 

thus 1) it depends on 0| |X X−  and 2) the (approximate) 95% confidence interval prediction 

of 0Y  will be  

                                   

2
0

0 1 0 2

( )1ˆ ˆ ˆ2 1
( )i

X X
X

N X X
εβ β σ

−
+ ± + +

−∑
                  

      

 

(the point prediction of  0Y  is 0 0 1 0
ˆ ˆŶ Xβ β= + , i.e., 0 0

ˆ( , )X Y  is a point on the estimated reg-

ression line).  

                                                 
20

 That is, the concrete estimates 0β̂  and 1β̂  can be further from 0( ) 2β = −  and 1( ) 3β = . 
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Figure 3.9. The point and interval prediction in regression model 

 

The estimate  ˆεσ
 
is a measure of absolute accuracy of the model, in fact we would like to 

compare it with the values of Y . One of the measures of overall accuracy of the model is the 

correlation between Y  and Ŷ  ( cov( , )U V  is hardly a measure of dependence between U  and 

V , but cor( , ) cov( , ) / var varU V U V U V=  is). Still better measures are the modulus or 

square of � ˆ( , )cor Y Y (both will always be non-negative). 

  

The number �
2

ˆcor ( , )Y Y (can you write it explicitely?) is called the coef-

ficient of determination (of the model) and denoted by 
2

R  

Assuming that U1-U3 holds and X increases from 0X  to 0X h+ , we shall estimate respecti-

ve change in Y : 
0 00 0 1( ) ( ) X X hY X Y X h hβ ε ε +− + = + −  (the difference does not depend on 

0X !). We do not know ε , thus we agree to estimate only the expected change in Y : 

0 01 1( | )X X hE h X hβ ε ε β++ − =
�

. The point estimate of this increment is 1
ˆ hβ , but we can also 

find the interval estimate: the α −confidence interval is given by 1
ˆ((β − 1( )Nt α− ⋅  

1 1 1 1
ˆ ˆ ˆ. . ) , ( ( ) . . ) )Ns e h t s e hβ β α β−⋅ + ⋅ ⋅  where 1(0.95) 2Nt − ≈  (the 1(0.99)Nt − = (0.995, -1)Nqt  

depends on N  and, for example, for 20N =  equals 2.8 and for 100N =  equals 2.6). ��     
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Figure 3.10. In the ideal case, Ŷ Y= , i.e., ˆ( , ) 1cor Y Y = + ; the correlation between Y  

and Ŷ  is stronger in sd=5 case (left) than in sd=20 case (right) 
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Usually 
2

R  is introduced in a different (but equivalent) way which allows more convenient 

interpretation of it. Denote by TSS  the total sum of squares: 2( )iTSS Y Y= −∑ . We have 

 

( )22 2 2ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) 2 ( )( ) ( ) .i i i i i i i i i iY Y Y Y Y Y Y Y Y Y Y Y Y Y− = − + − = − + − − + −∑ ∑ ∑ ∑ ∑  

It can be shown that the cross-product term ˆ ˆ( )( )i i iY Y Y Y− −∑  is always 0, therefore
21

 

 

TSS RSS ESS= +  or 1
RSS ESS

TSS TSS
= + . 

 

It can be demonstrated that the ratio 
ESS

TSS
 or 1

RSS

TSS
−  equals 

2
R  and it is again called  

the coefficient of determination 

 

To get a feeling of what is the meaning of the coefficient of determination assume that 

 

1. 
2 0R = . Then ˆ

iY Y≡  or 0
ˆˆ 0i iY Xβ= + ⋅ , or X  has no explanatory power. In other words, 

all the fitted values, whatever is X , equal Y .  

2. Now assume that 
2 1R = . Then ˆ

i iY Y=  which means that all the points of the scatter diag-

ram are exactly on the regression line (prediction is ideal). 

 

Thus 
20 1R≤ ≤  and the more is the better. If, for example, 

2 0.17R = , we shall say that X  

explains 17% of Y ‘s variability. In our inc-exp example 
2 0.385R =  which means that  

38.5% of the variation in exp is explained by inc (the rest is explained by unobservable ε ). 

With cross-sectional data, 
2

R  values from 0.1 to 0.4 are very common.   
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Figure 3.11. Explaining Y  variation by X : all variation explained (left), most variation explained 

(centre), and little variation explained (right); in the upper row, the scatter diagrams are presented 

(they are of little value in the multivariate case) and in the lower Ŷ  vs Y .  

 

                                                 
21

 RSS=Residual Sum of Squares, ESS=Explained Sum of Squares 
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3.9. Choosing a Functional Form 

 

In our inc-exp example we have assumed that the mean household food expenditure linear-

ly depends on household income: 0 1Y Xβ β= + . However, in economic classes you have pro-

bably heard that, as income rises, we expect expenditures to increase at a decreasing rate. One 

candidate to such a behaviour is a linear-log function 0 1 logY Xβ β= + . 
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Figure 3.12. The graph of the function Y=2+5*log(X) in (log(X),Y) scale (left) and in 

(X,Y) scale (right) 

 

For any curve ( )Y f X= , its behaviour at x  can be characterized by its derivative 

0

( )
( ) lim ( )x

f x df
Df x x

x dX
∆ →

∆
= =

∆
 (which means the rate of increase at point x  or the margi-

nal effect of a change in the explanatory variable at x  or the slope of the tangent to the curve 

at the point x ) – in linear case it equals the constant 1β  and in linear-log case 1 / Xβ  (thus 

the marginal effect diminishes with increasing X ). In economics, even more popular charac-

teristic of the rate of change is elasticity defined as  0

( ) / ( )
( ) lim

/
x

f x f x
Ef x

x x
∆ →

∆
= =

∆  

( )
( )

df x
x

dX f x
⋅  which should be read as the percentage change in Y  corresponding to 1% inc-

rease of X . Thus, in linear case elasticity equals 1
0 1

X

X
β

β β
⋅

+
 and in linear-log case 

1 1

0 1 0 1

X

X X X

β β
β β β β

⋅ =
+ +

.  

 

 

Two more functions useful in regression are log-linear function 0 1log( )Y Xβ β= +
 

or  

0 1exp( )Y B Xβ=  and log-log function 0 1log( ) log( )Y Xβ β= +
 

or 1

0Y B X
β= . The latter 

function is remarkable in the sense that its elasticity is constant: ( )Ef X =  1
1

0 1B X
ββ − ⋅  

1

0 1( / )X B X
β β= . Note the meaning of the coefficient 1β  in all these four cases:  

 

1. linear – a 1 unit change in X  leads to a 1β  unit change in Y  
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2. linear-log – a 1% change in X  leads to an (approximately) 1 /100β  unit change in Y  

3. log-linear – a 1 unit change in X  leads to an (approximately) 100 1β % change in Y  

4. log-log – a 1% change in X  leads to an (approximately) 1β % change in Y  

 

As an example, we shall prove the 3rd proposition:  

a) Let Z  be any quantity; then the expression ( )new old n oZ Z Z Z− = −  is called the diffe-

rence or change. 

b) The expression ( ) /n o oZ Z Z−  is called a relative change and ( ) / *100%n o oZ Z Z−  a 

percentage change. 

c) If a relative change is „small“, it can also be given as log logn oZ Z− . Indeed, 

log( / ) log(1 ( ) / ) ( ) /n o n o o n o oZ Z Z Z Z Z Z Z= + − ≈ −  by the Taylor formula. 

d) Let oX X=  increases to 1nX X= + ; then 1log logn oY Y β− = .     �� 

 

Let us return to our four models: which of the four models describing the inc-exp relation-

ship is the best? As the left-hand-side variable in cases 1 and 2 is the same, namely Y , we can 

use 
2

R  to choose between these two. However,  

 

Do not evaluate the quality of the model based only on 
2

R . To evaluate the model it is impor-

tant to consider factors such as its adequacy to economic theory, the correct signs and magni-

tudes of the estimated coefficients, their statistical and economic significance, the precision of 

their estimation, and the ability of the fitted model to predict values of the dependent variable 

that were not in the estimation sample. 

 

In any case, we can start with 
2

R . Respective R code informs that the 
2

R of the linear-log 

model 2 is only slightly less than that of linear model 1, but model 2 better reflects economic 

theory, therefore we choose it (model 2 is � 97.19 132.17log( )exp inc= − +  and says that 1% 

increase in income will increase food expenditure by approximately $1.32 per week or that 

10% increase in income will increase food expenditure by approximately $13.22 per week). 
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Figure 3.13. inc-exp models 1 and 2 (left; which one is model 2?) and models 3 and 4 

(red) (right)  
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As we have already said, a model should not be chosen only on the basis of model fit with 
2

R  

as the criterion. Here we append the above list of recommendations: 

 

1. Choose a shape that is consistent with what economic theory tells us about the relationship. 

2. Choose a shape that is sufficiently flexible to „fit“ the data. 

3. Choose a shape so that assumptions U1-U4 are satisfied (that is, test residuals for normality 

and homoskedasticity). 

 

We shall return to issue #3 a bit later, but now let us compare  models 3 and 4 – since their left 

hand sides are the same, namely log( )Y , we can use 
2R  and conclude that model 4 is more 

accurate (it also better reflects theory). However, these two groups (models1,2 and models 

3,4) cannot be compared by
2

R  because their lhs‘s are different (and thus TSS  are different). 

To compare the best models 2 and 4, we shall rescale model 4 to the Y , instead of log( )Y ,  

axis. The log-log model 0 1log( ) log( )Y Xβ β ε= + +
 

can be rewritten as Y = 0exp(β +  

1 log( ))Xβ ⋅ exp( )ε , therefore we predict Y  as (4)Ŷ = 0 1
ˆ ˆexp( )Xβ β+ ⋅ 2ˆexp( (0, ))E N εσ =

 

�exp(log )Y ⋅ 2ˆexp( / 2)εσ . Now � �
22

(4) (4)( , ) 0.38R cor= =exp exp , thus model 4 is marginally 

better than model 2
22

.   

   

3.10.  Does our model satisfy U3 and U4? 

 

Recall that OLS estimators are BLUE&C if U1-U4 are satisfied. What if some of them, speci-

fically, U3 and U4, are not satisfied?   

 

U3. Let us start with U3: 
2var i εε σ≡ , i.e., the variance of errors does not depend on i  or,  

maybe, on any other iZ  (the model satisfying this condition is called homoskedastic, 

otherwise it is heteroskedastic). If U3 is violated, the OLS estimators of the coefficients are 

still unbiased, consistent and the interpretation of 
2R  is unaffected. However, the OLS esti-

mator  1β̂  has no longer minimum variance and  also the OLS estimator of the variance, 

�
1
ˆvar OLSβ , is biased  and thus the t - ratios and p - values are unreliable even in large samples.  

 

We propose two solutions to heteroskedasticity problem. 

 

1. Recall that the OLS estimator of 1
ˆvarβ  (under assumption 

2var i εε σ≡ ) is (see (3.6)) 

� ( ) � ( ) ( )2 2
2 2 2 2 2

1
ˆvar 1/ var 1/ / ( 2)i i i i i ix x x x e Nβ ε= = ⋅ −∑ ∑ ∑ ∑ ∑ . If the variances of errors 

are not equal, use another formula: �

( )
2 2

1 2
2

ˆvar
2

i i

i

x eN

N
x

β =
−

∑
∑

. It is called White‘s heteroskedas-

ticity-consistent standard errors or heteroskedasticity robust standard errors or simply robust 

                                                 
22

 Another opportunity to compare models 2 and 4 is to use the Box-Cox transformation described in [AST, p. 

166].  
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standard errors and it gives a consistent variance estimator. Note that we change neither 1β̂  

nor residuals, we only correctly the estimate � 1
ˆvarβ .  

 

To perform the procedure in GRETL, one has just to check respective box. Import the food 

data set from POE, add logarithms of the two variables and go to Model→Ordinary Least 

squares, fill in variable windows and uncheck „Robust standard errors“: 

 
Dependent variable: l_food_exp 

 

             coefficient   std. error   t-ratio    p-value  

  --------------------------------------------------------- 

  const       3.96357       0.294373    13.46     4.84e-016 *** 

  l_income    0.555881      0.100660     5.522    2.57e-06  *** 

 

It seems that the errors of our model are heteroskedastic (see Fig. 3.14). Therefore we shall 

repeat the same procedure with „Robust standard errors“ checked: 

 
Dependent variable: l_food_exp 

Heteroskedasticity-robust standard errors, variant HC1 

 

             coefficient   std. error   t-ratio    p-value  

  --------------------------------------------------------- 

  const       3.96357      0.163363     24.26     9.87e-025 *** 

  l_income    0.555881     0.0666362     8.342    4.08e-010 *** 

 

 

The differences in estimations are colored in yellow (in both cases p - values are much less 

than 0.05, therefore our conclusion concerning the significance of l_income is the same). 

 

2. The OLS 1β  estimate in 1. is not efficient. To get an efficient estimator, we have to use 

another, weighted least squares or WLS procedure. Assume that in 0 1Y Xβ β ε= + + , the 

standard deviation vari iσ ε=  is not a constant but the function of a certain variable, for 

example ( )i if Xσ = ; most often i icXσ =  or i ic Xσ = . Assume that i icXσ =  and divide 

the i th equation by iX  (the numbers 
2 2 21/ (1/ ( )) ( 1/ )i i if X Xσ = =  are called weights): 

 

0 1i i iY Xβ β ε= + +  

0 1

* * *
1 0

/ / /i i i i i

i i i

Y X X X

Y X

β β ε

β β ε

= + +

= + +
 

 

Since 
*var iε  now is constant (thus, this new model is homoskedastic), we can safely apply 

OLS to estimate all the parameters and then return to the original equation. Note that in WLS 

we minimize ( )2 2
0 1 0 1( , ) 1/ ( ) ( ( ))i i iRSS b b f X Y b b X= − +∑ . 

 

The usual problem is to find right weights (we shall use graphs and relevant tests to this end).    
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Figure 3.14. log(inc)-log(exp) scatter diagram together with a regression line 

(left) and residuals of the log-log model (right) 

 

In Fig. 3.14 (right) one can see that the spread of the residuals around their mean ( 0≡ ) is inc-

reasing with log(inc), thus, probably, εσ  is proportional to it. To test the null homoske-

dasticity hypothesis 
2

0 0: iH cσ ≡  with alternative 
2 2

1 1: log ( )iH c incσ = , we shall use the 

Breusch-Pagan test:  

 

1. Estimate the model 0 1log(exp) log( )incβ β ε= + +  with OLS. 

2. Run the regression 
2 2

0 1ˆ log ( )i i iinc uε γ γ= + +  and test the hypothesis 0 1: 0H γ =  (if we 

reject it, errors are heteroskedastic and we have to use WLS with the 21 / log ( )inc  weight).   

 

Note that instead of looking for the p −value of 1γ  in the printout of the second regression, 

we have to go, in the first model window, to Tests| Heteroskedasticity| Breusch-Pagan – the 

answer there is  

  
Test statistic: LM = 3.761727, 

with p-value = P(Chi-square(1) > 3.761727) = 0.052438 

 

which means that we should not care much about heteroskedasticity. Nevertheless, in order to 

demonstrate the use of WLS, go to Model| Other linear models| Weighted Least Squares...| 

(create in advance the weight variable with series 1/ log( ) ^ 2=ww income  and) fill in the 

Weight variable window with ww  etc: 

 
Dependent variable: l_food_exp 

Variable used as weight: ww 

 

             coefficient   std. error   t-ratio    p-value  

  --------------------------------------------------------- 

  const       3.99897      0.159356     25.09     2.95e-025 *** 

  l_income    0.543296     0.0604561     8.987    6.10e-011 *** 

 

Statistics based on the weighted data: 

 

Sum squared resid    0.419384   S.E. of regression   0.105054 

R-squared            0.680025   Adjusted R-squared   0.671605 
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Schwarz criterion   -61.42103   Hannan-Quinn        -63.57750 

 

Statistics based on the original data: 

 

Mean dependent var   5.565019   S.D. dependent var   0.424068 

Sum squared resid    3.892513   S.E. of regression   0.320054 

 

Note a slightly smaller std.error (more efficient estimator) now. 

 

In general, it is recommended to take care of heteroskedasticity only in severe cases. We shall 

also extent the analysis of this problem in the next chapter. Kai daug kintamųjų, Whito testas 

 

U3. The errors are called uncorrelated if cov( , ) 0i j i jEε ε ε ε= ≡  for  all i j≠ . This condition 

is often violated in time series context. Specifically, assume that 

 

                                               

0 1

1

(3.10 )

, | | 1 (3.10 )

t t t

t t t

Y X a

u b

β β ε

ε ρε ρ−

= + +


= + <
 

 

(we say that the model has autocorrelated or serially correlated errors). Note that now yester-

day‘s error 1tε −  contains some information about today‘s error tε : 1cov( , )t tε ε − = 1cov( tρε − +
 

1 1, ) vart t tu ε ρ ε− −=  0≠ , therefore this information can be used in regression. Indeed, subtrac-

ting 1tYρ − = 0ρβ +  1 1tXρβ − + 1tρε −  from the first equation we get a multivariate model 

 

0 1 1 2 3 1t t t t tY Y X X uα α α α− −= + + + +  

 

with Y ‘s and X ‘s lags in rhs and uncorrelated errors tu . We shall analyze the model in the 

next chapter, here we mention only that estimating (3.10a) with OLS and ignoring violation of 

U3, we get unbiased and consistent estimators ˆOLS
iβ  (and forecasts based on them). However, 

the estimator is inefficient and the variances of the regression coefficients will be biased.  

 

The (pseudo) autocorrelation in errors is often the result of the misspecification of the model. 

For example,  in GRETL go to File| Open data| Sample file...| Ramanathan| data6-6 (the data 

set contains the percent of the total US population that lives on farms). 

 

The model 0 1farmpop yearβ β ε= + +  is not very succesful (compare the actual and fitted 

graphs of farmpop, Fig. 3.15, left; see also the graph of the residuals (Fig. 3.15, right - iner-

tia or persistency of the residual curve is the first sign of autocorrelation; as the first formal 

autocorrelation test we shall use the DW or Durbin-Watson statistics – it is always between 0 

and 4; if it is not close to 2, errors are autocorrelated). Note that here the std.error was 

estimated with HAC = Heteroskedasticity and Autocorrelation Consistent procedure. 

 
Dependent variable: farmpop 

HAC standard errors, bandwidth 2 (Bartlett kernel) 

 

             coefficient   std. error   t-ratio    p-value  

  --------------------------------------------------------- 

  const      646.257       64.0368       10.09    8.53e-013 *** 

  year        -0.324848     0.0324780   -10.00    1.11e-012 *** 

  rho          0.944462      Durbin-Watson        0.055649 
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Figure 3.15. Graphs of farmpop and inadequate regression line (left); persistent residu-

als of the linear model (right) 

 

Most probable explanation of the observed „autocorrelation“ is the wrong  specification of the 

model. Let us try a quadratic model 
2

0 1 2farmpop year yearβ β β ε= + + +  (Durbin-Watson 

statistics is still far from 2, the graph of the residuals (Fig. 3.16, right) still demonstrates persi-

stency).  

 
Dependent variable: farmpop 

HAC standard errors, bandwidth 2 (Bartlett kernel) 

 

              coefficient       std. error     t-ratio    p-value  

  ---------------------------------------------------------------- 

  const      37165.9          2125.09           17.49    1.28e-020 *** 

  year         -37.4115          2.15670       -17.35    1.72e-020 *** 

  sq_year        0.00941526      0.000547170    17.21    2.31e-020 *** 

  rho            0.695629        Durbin-Watson           0.601455 
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Figure 3.16. The model with a quadratic trend (note the „wrong“ behavior of the blue parabola 

around 1990, left) and its persistent residuals (right); the left model suggests to explore the 

exponential trend 0 1 2exp( )farmpop yearβ β β ε= + + , but this is an example of a rather 

complicated nonlinear regression model. 
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We shall respecify the model once again: 1_ ( log( ) log( ))t t tld farmpop farmpop farmpop −= −
 

= 0 1 t tyearβ β ε+ +  (the meaning of the lhs is the percentage growth of farmpop in year t ). 

 
Model 3: OLS, using observations 1949-1991 (T = 43) 

Dependent variable: ld_farmpop 

 

             coefficient    std. error    t-ratio   p-value 

  --------------------------------------------------------- 

  const      -1.19588       1.24153       -0.9632   0.3411  

  year        0.000581457   0.000630206    0.9226   0.3616  

 

rho                 -0.148626   Durbin-Watson        2.266147 

 

It seems that autocorrelation has gone but now the model has insignificant variable year, 

therefore the model can still be improved (remove year (then the percentage growth will be 

the same for all the years, it is Model 4); to forecast log( )tfarmpop , use the formula  

�log( )t =farmpop  1log( ) _ ( )t tforecast of− +farmpop ld_farmpop ). 
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Figure 3.17. The graph of ld_farmpop  and yhat‘s of two growth models (left); un-

correlated residuals of  Model 4 (right) 

 

U4. The requirement of normality,  
2~ (0, )N εε σ , is necessary if one wants to obtain correct 

p  - values when testing 
(0)

0 : i iH β β= . We shall apply the 
2χ  goodness-of-fit test to validate 

normality (we do not know ε , therefore we use their estimates ε̂  which are hopefully close to 

ε ). In GRETL, upon creating the model  
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go to Tests| Normality of residual – in the Fig. 3.16 one can see the bell-shaped histogram to-

gether with the p - value of the 0 :H errors have normal distribution ; it equals 0.7068, there-

fore we have no ground to reject 0H .  Note that if the errors do not depart much from nor- 
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Figure 3.18. Histogram of residuals and the p  - value of normality test 

 

mality, in large samples, the p - values presented in the 4th column will be close to the correct 

ones. 
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3.11.  Nonlinear regression 

 

The word  nonlinear is a bit confusing – here we mean a regression nonlinear in parameters, 

e.g., exponential 0 1 2exp( )Y Xβ β β ε= + +  or power 2

0 1Y X
ββ β ε= + +  (it is close to 

1

0Y B X e
β ε=  which is equivallent to the linear model 0 1log( ) log( )Y Xβ β ε= + + ) or the lo-

gistic regression tY =  ( )0 2 3/ 1 exp( ( )) ttβ β β ε+ − − + . The estimation procedure is similar to 

that of OLS, but now we may have problems with minimizing RSS. In the first example of 

exponential regression we get a system of nonlinear equations 

 

( )

( )

( )

0 1 2 0 1 2
0

0 1 2 0 1 2 2
1

0 1 2 0 1 2 1 2
2

( , , ) ( 2) ( exp( )) 0

( , , ) ( 2) ( exp( )) exp( ) 0

( , , ) ( 2) ( exp( )) exp( ) 0

i i

i i i

i i i i

RSS
b b b Y b b b X

b

RSS
b b b Y b b b X b X

b

RSS
b b b Y b b b X b b X X

b

∂
= − − + = ∂

∂
= − − + ⋅ =

∂
∂

= − − + ⋅ ⋅ =
∂

∑

∑

∑

 

 

which can be solved only by the use of iterative numeric methods (the common problem is to 

choose a good zeroth iteration). 

 

We shall present a short explanation on how the iterative method works. Assume for simplici-

ty that we have only two parameters: 0 1( , , )i i iY f X b b ε= + , 
(0)
0b  and 

(0)
1b  (the zeroth itera-

tion) are numbers close to the minimizing ones and  

 

( )2 (0) (0)
0 1 0 1 0 1

(0) (0) (0) (0) (0) (0)
0 10 0 1 1 0 1

0 1

(0) (0) (0) (2 2 2
(0) (0) (0) (0)0 0 1 10 0 1 1
0 1 0 12

0 10

( , ) ( ( , , )) ( , )

( ) ( , ) ( ) ( , )

( ) ( )( ) (
( , ) ( , )

2! 1!1!

i iRSS b b Y f X b b RSS b b

RSS RSS
b b b b b b b b

b b

b b b b b b b bRSS RSS
b b b b

b bb

= − ≈ +

∂ ∂
− + −

∂ ∂

− − − −∂ ∂
+ +

∂ ∂∂

∑

0) 2 2
(0) (0)
0 12

1

)
( , )

2!

RSS
b b

b

∂

∂
 

 

(we approximate the surface 0 1( , )z RSS b b= by a quadratic one given by its Taylor 

expansion). To minimize RSS, calculate partial derivatives of this quadratic expression and 

equate them to zero. It is convenient to rewrite the system in matrix notation: 

 
2 2

(0)2
00 0 1 0 0

2 2 (0)
1 1

2
1

1 0 1

RSS RSS RSS

b bb b b b

RSSRSS RSS b b

bb b b

 ∂ ∂ ∂     −∂ ∂ ∂ ∂     = −    ∂∂ ∂ −    ∂   ∂ ∂ ∂ 
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(all the derivatives are estimated at the point ( )(0) (0)
0 1 ,b b ). To simplify the above expression, 

rewrite it as 2 1M S M= −  or 
1

2 1S M M
−= − , i.e., 

(1) (0)
0 0 1

2 1(1) (0)
1 1

b b
M M

b b

−
   
   = −
   
   

. We repeat the pro-

cedure at point 

(1)
0

(1)
1

b

b

 
 
 
 

 etc until 

( )
0

( )
1

n

n

b

b

 
 
 
 

 (almost) stops to change – this will be a solution to our 

RSS minimizing problem. More subtle variants of this gradient descent procedure are imple-

mented in the nls function present in both GRETL and R.  

 

As an example, we shall consider the data set USPop from the car package in R. The set con-

tains two variables  

 

year  census year (once in 10 years, 1790 through 2000) 

population US population in million  

 

We shall create two models, exponential and logistic, based on censuses from 1790 till 1930 

and then predict population till 2000. The code is in Practicals, both models are not very 

succesful in the long run. 

 

1800 1850 1900 1950 2000

0
5

0
1

5
0

2
5

0

Exponential

year

p
o

p
u

la
tio

n

1800 1850 1900 1950 2000

0
5

0
1

5
0

2
5

0

Logistic

year

p
o

p
u

la
tio

n

 

Figure 3.19. The US population graph and two trends based on the forecasts of the nonli-

near models for 1790 through 1930 

 

Exponential:  15.292 13.897*10 ^ ( 12)*exp(1.552 /100* )population year= − + −   

Logistic:  ( )202.1/ 1 exp( 0.031*( 1916))population year= + − −  

  

Note that in the time series setting, if the predictive variable is time, the regression curve is 

called a trend.  
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4. Multivariate Regression 

 

It is rarely the case that economic relationships involve just two variables. Rather, a dependent 

variable Y  can depend on a whole series of explanatory variables or regressors. For example, 

the demand for a good does not just depend on its price but also on the prices of close substi-

tutes or complements, the general level of prices and on the resouces of consumers. Thus in 

practice we are normally faced with relationships of the form 

 

                                           0 1 1 ... k kY X Xβ β β ε= + + + +                                               (4.1a) 

 

where Xs  stand for causes and Y  for the effect. The sample produced by this DGP can be 

written as a system of equations 

 

1 0 1 11 1 1

0 1 1

...

.................................................

...

k k

N N k kN N

Y X X

Y X X

β β β ε

β β β ε

= + + + +


 = + + + +

 

or 

                                                             Y β ε= +X
�� �

                                                         (4.1b) 

               

where  

0
11 11 1

1

1

1 ...

... , .................. , , ...
....

1 ...

k

N N kN N
k

X XY

Y

Y X X

β
ε

β
β ε

ε
β

 
     
     = = = =                 

 

X
�� �

. 

 

Our observations can be presented by the matrix 

1 11 1

1

...

.......................

...

k

N N kN

Y X X

Y X X

 
 
 
 
 

,  1(1, ,..., )i i kiX X X=
�

 de-

notes the vector of the i th observation of explanatory variables, X is the design matrix, β
�

 the 

vector of coeffients, and ε  the error of the DGP.  

 

 

4.1. Ordinary Least Squares (OLS)  

 

The formula 0 1 1 ... k kY X Xβ β β= + + +  describes (unknown) population regression equation
1
, 

we want to use the sample data to estimate its unknown coefficients. Whatever estimation me-

thod we use, the „plane“ 0 1 1
ˆ ˆ ˆ ˆ... ( )k kY X X Yβ β β= + + + =  is called a sample regression equa- 

tion or a fit to the scatter diagram and Ŷ  is a predicted value of Y . The difference ˆY Y−  is 

                                                 

1
 If 1k = , it is a line in 

1
( , )X Y

 
plane; if 2k =  a plane in three-dimensional 

1 2
( , , )X X Y space, and if 3k ≥  a 

„hyperplane“ in 
1k

R
+

 space. 
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referred to as a residual and denoted by ε̂  or e . The slope coefficient 1β  equals 

1 2( 1, ,..., )kY X X X+ −  1 2( , , ..., )kY X X X  (verify), thus, 1β  reflects the isolated (holding the 

other variables constant) influence of 1X  on Y  (or, as it is often called, influence of  1X  on Y  

ceteris paribus, i.e., when all the rest of X ‘s do not change). 

 

To estimate the coefficients , 0,1,..., ,m m kβ =  we shall again use the OLS method, but first we 

formulate conditions under which the OLS estimators will be BLUE&C
2
. Note that in fact the 

conditions coincide with the univariate case, the only new requirement is M5.  

 

 M1. The DGP is described by the linear model Y β ε= +X
�� �

  where the output random variab-

le (r.v.) Y  depends on two r.v.‘s, X
�

and ε .  

The further conditions M2-M4 describe the properties of unobservable ε  and its relationship 

with observable X
�

. 

 

M2. ( )| 0E ε =X
��

 (strict exogeneity) – this means that whatever are the observations, the er-

rors on average equal 0: 1( | ,..., ) 0
N N

R
z f z X X d zε =∫ �

�� �� � �
. Note that M2 implies ( )| 0i iE Xε ≡

�
, 

0,iEε ≡ 0i iE Xε =
��

 
( iε  and any ,m iX  do not correlate) and ( | ) ( | )i i i iE Y E Y X X β= =X

�� �
.  

 

M3. 2var( | ) εε σ=X I
�

 – this means that the conditional distribution of the errors given the 

matrix of explanatory variables has constant variances and zero covariances.In particular, this 

means that each error has the same variance and that any two error terms are uncorrelated.   

 

M4. Sometimes a requirement of normality is added: 2| ~ (0, )N εε σX I
��

 which says that condi-

tional density of ε
�

 (and, therefore, of any iε ) is normal (this is equivalent to saying that 

2| ~ ( , )Y N εβ σX X I
��

 or 2| ~ ( , )i iY N X εβ σX
��

). 

 

The following assumption has no analogue in univariate case: 

 

M5. There exist no exact linear relationship between the sample values of any two or more of 

the explanatory variables
3
 - we mean that it must not be 

the case that, for example, 3 4iX = +   12 iX  for all i  (that 

is, it must not be the case that the fourth column in the 

design matrix X  is a linear combination of the first and 

second columns); another way to express this condition is 

to say that 1rank k= +X  or det 0′ ≠X X . 

 

The OLS estimator of the coefficients , 0,1,..., ,m m kβ =  

in multivariate case is defined in the same way as pre-

viously: find 0 1, ,..., kb b b  such that the residual sum of 

                                                 
2
 Recall that the BLUE properties hold for any size samples whereas C (=consistency) is a large sample or asym-

ptotic property. 
3
 If the condition is not satisfied, the model is called multicollinear.  
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squares RSS = 0 1( , ,..., )kRSS b b b = 2 2
0 1 11

ˆ( ( ... ))
N

i i k ki ii
Y b b X b X ε

=
− + + + =∑ ∑  

were as small 

as possible (the estimated regression plane must be as close to the sample points as possible).  

 

In other words, we have to equate all the partial derivatives to zero and  solve the system 

 

0 1 1

1 0 1 1

0 1 1

( ( ... )) 0

( ( ... )) 0

..............................................................

( ( ... )) 0

i i k ki

i i i k ki

ki i i k ki

Y b b X b X

X Y b b X b X

X Y b b X b X

 − + + + =


− + + + =


 − + + + =

∑
∑

∑

 

 

or just to use the formula (3.9) 

                                                        
1ˆ

( ) Yβ −′ ′= X X X
� �

.                                                        (4.2) 

 

The expressions of the coefficients are rather complicated, for example, if 2k = , 

 
� � � �

� � �( )
1 1 2 1 2

1 2

1 2 1 2

cov( , ) var cov( , ) cov( , )ˆ

var var cov( , )

X Y X X Y X X

X X X X

β
−

=
−

, 

therefore all statistical programs prefer to use the matrix expression (4.2). Another variant of 

(4.2) which helps us to memorize the formula is to recall univariate regression and (3.3): 

 

�

�

0 1

1 2 2 2

ˆ ˆ

( )( ) ( ) ( ) cov( , )ˆ

( ) ( ) ( ) var

i i i i i i

i i i

Y X

Y Y X X Y Y X X X Y X Y

X X X X X X X

β β

β

 = −


− − − −
= = = =

− − −

∑ ∑ ∑
∑ ∑ ∑

 .               

 

In multivariate case, assuming 1(1, ,..., )i i kiX X X ′=
�

, the OLS estimator of β
�

 can be expressed 

similarly as ( ) 1

1 1

ˆ N N

i i i ii i
X X X Yβ

−

= =
′= ⋅∑ ∑

� � � �
 
4
.   

 

In multivariate case, the Gauss-Markov theorem is true again: 

 

Under assumption that the conditions M1-M3 and M5
5
 hold true, the OLS estimators 

0β̂ , 1β̂ ,..., ˆ
kβ  are (both conditionally and unconditionally) BLUE&C 

 

As earlier, if the null 0
0 : m mH β β=  is true, the t - ratio 

0
ˆ

ˆ( ) /
m

m m sββ β−  has the ( 1)N kT − +  dist-

ribution
6
 (note that the number of degrees of freedom is  N-(k +1)!) where 

2 2
ˆ

m

mm
s s Xβ = , 

                                                 
4
 Let (1, )

i i
X X=
�

. Prove that 1β̂  is the same as above. 

5
 Note that the assumption M5 is needed just to ensure that the inverse matrix 

1
( )

−′X X
 
in (4.2 ) exists. 
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2 2ˆ( )s εσ= =  2 / ( ( 1))ie N k− +∑ ,and 
ij

X  is the the element in the i th row and j th column of 

the inverse matrix 1( )−′X X . In general, � ( ) 12ˆ
var sεβ −′= X X
�

 
, i.e.,  � 2ˆ ˆcov( , ) ml

m l s Xβ β = . To 

describe the closeness of fit in multiple regression, we again use the coefficient of determina-

tion 2 1
RSS

R
TSS

= −   which, as in a univariate case, equals �
2

ˆ( , )cor Y Y .  

 

4.2. An Example 

 

What are the criteria of a good model? The first ones are 1) all the variables must be signifi-

cant, 2) their signs can be explained by the economic theory,  and 3) if we can choose among 

several models, choose the one with the highest 
2

R or similar coefficient of goodness of fit (in 

fact, we should also take into account the number of variables on the rhs, see Sec. 4.4 as well 

as some other factors and this is what we shall do in the  next chapters). 

 

As the first example of multivariate regression, consider the household.txt file where we have 

a random sample of 25 four-person (two adults) households. It contains information in hund-

reds of dollars on their annual disposable income inc and their annual total expenditure 

cons on nondurable goods and services. The expenditure data in the file excludes spending 

on durable goods, and hence is a reasonable approximation to the economist‘s definition of 

consumption
7
. Our aim is to create a model of consumption. 

 

cons total expenditure     

inc disposable income      

las stocks of liquid assets (around the 1st of July)  

fexp expenditure on food 

 

We import the data to GRETL and start with univariate regression. 

 
Model 1: OLS, using observations 1-25 

Dependent variable: cons 

 

             coefficient   std. error   t-ratio   p-value  

  -------------------------------------------------------- 

  const       30.7063      20.6438       1.487    0.1505   

  inc          0.812402     0.113151     7.180    2.60e-07 *** 

 

Mean dependent var   163.2936   S.D. dependent var   81.31436 

Sum squared resid    48958.73   S.E. of regression   46.13719 

R-squared            0.691479   Adjusted R-squared   0.678065 

F(1, 23)             51.54928   P-value(F)           2.60e-07 

Log-likelihood      -130.2217   Akaike criterion     264.4434 

Schwarz criterion    266.8811   Hannan-Quinn         265.1195 

 

 

                                                                                                                                                         
6
 All the distribution results in our model hold conditional on X , for example 

2ˆ | ~ ( , )
mm

m m
N Xεβ β σX . 

7
 Both the life-cycle hypothesis and the permanent income hypothesis of consumer behaviour suggest that con-

sumption depends not so much on income as on some measure of total lifetime resources. At the very least, some 

measure of consumers wealth needs to be included in a consumption function (we use las).  
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Figure 4.1. Actual (red) and fitted (blue) consumption: model 1 (left) and model 2 (right); model 

2 is more accurate (blue line is closer to the actual cons line) 

 

Formally speaking, this is an acceptable model – the coefficient 1β̂  has the right sign, it is si-

gnificant, 
2

R  is quite impressive. On the other hand, it contradicts to our economic theory 

because it is improbable that most of income goes to immediate consumption.   

 

We extend our model by including las to the rhs: 

 
Model 2: OLS, using observations 1-25 

Dependent variable: cons 

 

             coefficient   std. error   t-ratio   p-value 

  ------------------------------------------------------- 

  const       36.7901      17.2945       2.127    0.0449  ** 

  inc          0.331830     0.172101     1.928    0.0668  * 

  las          0.125786     0.0376880    3.338    0.0030  *** 

 

Mean dependent var   163.2936   S.D. dependent var   81.31436 

Sum squared resid    32501.96   S.E. of regression   38.43646 

R-squared            0.795184   Adjusted R-squared   0.776564 

F(2, 22)             42.70676   P-value(F)           2.66e-08 

Log-likelihood      -125.1007   Akaike criterion     256.2014 

Schwarz criterion    259.8580   Hannan-Quinn         257.2156 

 

Recall the interpretation of the coefficients: if you take any two stratas of population where 

inc in a second one is 1 unit higher, cons there will be on average 0.3318 units greater, ce-

teris paribus, and if you take any two stratas of population where las in a second one is 1 unit 

higher, cons in the second strata will be on average 0.1258 units greater, ceteris paribus. 

 

When presenting regression results, it is customary to abbreviate the above table and express it 

as  

� 36.79 0.33 0.13

(1.82) (2.59)

cons inc las= + +
 

where, beneath estimated coefficients, the relevant t −  ratios are placed. 
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Is Model 2 better than Model 1? Let us begin with the coefficient at inc – it is much smaller 

and even insignificant at 5% level, but this is not surprising. In life-cycle and permanent in-

come theories of consumption, it is some measure of overall lifetime resources (for example, 

las) rather than current measured income that is held to be the major influence on consump-

tion. The t − ratios now are also smaller compared with 6.93 in model 1 which reflects the fact 

that inc and las are close to multicollinear (see Sec. 4.3) since ( , ) 0.84cor inc las = .  

 

******************** 

 

What will happen to the coefficient of, say, inc if we change the units of its measurement, 

e.g., instead of “hundreds of dollars” our records will be in “thousands of dollars” (this effec-

tively means that all observations must be divided by 10, that is, inc10=inc/10)?   

 
Dependent variable: cons 

Heteroskedasticity-robust standard errors, variant HC1 

 

             coefficient   std. error   t-ratio   p-value 

  ------------------------------------------------------- 

  const       36.7901      14.4557       2.545    0.0185  ** 

  inc10        3.31830      1.81934      1.824    0.0818  * 

  las          0.125786     0.0484841    2.594    0.0166  ** 

 

Mean dependent var   163.2936   S.D. dependent var   81.31436 

Sum squared resid    32501.96   S.E. of regression   38.43646 

R-squared            0.795184   Adjusted R-squared   0.776564 

F(2, 22)             35.57516   P-value(F)           1.28e-07 

Log-likelihood      -125.1007   Akaike criterion     256.2014 

Schwarz criterion    259.8580   Hannan-Quinn         257.2156 

 

Thus, only the coefficient 1β  and its std.error were modified, both they have increased 

10 times. Note that if the model contains log( )inc  then, when passing to log( /10)inc , the 

only change will be in the const, i.e., the intercept of the regression line will remain the 

same (why?).   

   

4.3. Multicollinearity 

 

Sometimes explanatory variables are tightly connected and it is impossible to disentangle the 

individual influences of explanatory variables. For example, consider the model  0Y β= +  

1 1 2 2X Xβ β ε+ +  and assume that 2 0 1 1i iX a a X= +  for all 1,...,i N= . Substituting this 

expression into the model, we get 0 2 0 1 2 1 1 0 1 1( ) ( )Y a a X Xβ β β β ε γ γ ε= + + + + = + + . Thus, 

however good are our two estimates of 0γ  and 1γ , we will never be able to obtain estimates of 

three original parameters 0 1,β β  and 2β . Fortunately, this situation virtually never arises in 

practice and can be disregarded. What frequently happens with real-world data is that an 

approximate linear relationship occurs among the sample values of explanatory variables. If 

one of the columns of the design matrix X is an approximate linear function of one or more 

the others, then the matrix ′X X  will be close to singularity – that is, its determinant det ′X X

will be close to zero. Recall that the estimator of the variance-covariance matrix of 
ˆβ
�

 is given 

by �
ˆ

varβ =
�

 
( ) 12

Sε
−′X X , that is, if det ′X X

 
is „close to zero“ (or the design matrix close to 
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singular or our data close to multicollinear), then ( ) 1−′X X will be „big“ and every estimator 

ˆ
mβ  will be imprecise. Exactly collinear data are very rare, sometimes they are only close to 

collinear and, in econometrics, namely this case is termed multicollinearity. If this is the case, 

our model is „strange“ - 
2

R  is big, but all (or some of) the variables are „insignificant“ and/or 

their signs are wrong, and even small changes to the data set may have a marked effect on 

such estimates. The problem may be explaines by the fact that variables are tightly connected, 

it is impossible to disentangle the individual influences of explanatory variables.  

 

The sample is called multicollinear if one of the columns of the design matrix 

X is close to a linear function of one or more the others. 

 

A popular measure of multicollinearity is the variance inflation factor (VIF) defined as 
2ˆ( ) 1/ (1 )m mVIF Rβ = −  where 2

mR  is the coefficient of multiple determination when the varia-

ble mX  is regressed on all the other explanatory variables (one can show that ˆvar mβ =
2 2ˆ( ) / ( )m mi mVIF X Xεβ σ −∑ ). If a certain ˆ( )mVIF β exceeds 10 and respective p - value is 

>0.05, this may mean that ˆ
mβ  is only spuriously insignificant and, in fact, there is no need to 

remove mX
 
from the model. 

 

What to do if we detect (approximate) multicollinearity? If our purpose is to predict Y  and 
2

R is high, there is no need to change anything; however, if our purpose is to estimate the in-

dividual influence of each variable, then such a model is bad. Are you sure that you need eve-

ry variable in the model? Maybe you can drop some of them and eliminate multicollinearity? 

Another method is to combine all or some multicollinear variables into groups and to use the 

method of  principal components (see an example in Computer Labs).   

 

Note that except when it is perfect, multicollinearity does not imply any violation of the clas-

sical assumptions M1-M3 – the OLS estimators retain all the desired properties of unbiased-

ness, efficiency, consistency etc (they are still BLUE&C), we just need many more observa-

tions to get precise estimates of the coefficients.  

 

Returning to our Model 2:  

 
Variance Inflation Factors 

Values > 10.0 may indicate a collinearity problem 

 

            inc    3.333 

            las    3.333 

 

thus we should not care much about the multicollinearity problem  

 

As a final note: multicollinearity inflates all the variances, thus deflates all the t −values, and 

makes variables „insignifican t“. How can we distinguish true insignificance from multicolli-

nearity? One of the solutions is to use the F − test (see Sec. 4.7): if the seemingly insignificant 

parameters are truly zero, then the F − test should not reject the joint hypothesis
8
 involved. If 

it does, we have an indication that the low t −values are due to multicollinearity. 

                                                 
8
 The 0

H hypothesis is all the relevant coefficients are jointly zeros. 



©   R. Lapinskas, PE.I - 2013 

      4. Multivariate  regression 

 

 

4-8 

 

4.4. AIC, SIC and Similar Measures of Fit  

 

Once again, is Model 2 better than Model 1? We could use R – squared to compare these 

models (the more the better, thus it seems that Model 2 with R-squared=0.795184 is 

better than Model 1 with R-squared=0.691). However, 
2

R  always increases when we 

add more variables. Indeed, recall that 2 1 /R RSS TSS= −  and  

 

( ) ( )
0 1 2 0 1

2 2

0 1 1 2 2 0 1 1, , ,( ) ( )min mini i i i ib b b b bY b b X b X Y b b X− + + ≤ − +∑ ∑ . 

 

This means that if we add one more variable to the rhs (in our case, we added las), even if 

the variable is in no way connected with Y , 
2

R  will increase. To test it further, add a variable 

norm1 generated with series norm1 = randgen(N,0,1) to the rhs of the model: 

 
Model 3 

Dependent variable: cons 

 

             coefficient   std. error   t-ratio    p-value 

  -------------------------------------------------------- 

  const       37.5095      16.7214       2.243     0.0358  ** 

  inc          0.330694     0.187518     1.764     0.0924  * 

  las          0.124530     0.0480249    2.593     0.0170  ** 

  norm1       -1.00167     10.9164      -0.09176   0.9278  

 

Mean dependent var   163.2936   S.D. dependent var   81.31436 

Sum squared resid    32489.51   S.E. of regression   39.33344 

R-squared            0.795263   Adjusted R-squared   0.766014 

F(3, 21)             22.95634   P-value(F)           7.88e-07 

Log-likelihood      -125.0959   Akaike criterion     258.1918 

Schwarz criterion    263.0673   Hannan-Quinn         259.5441 

 

Here, as one can see, despite the fact that norm1 has no relation with cons, 
2

R now is big-

ger that in Model 2. It means that we have to look for a “better” criterion of fit which would 

penalize for new variables and increase only if the new variable significantly lowers RSS = 

Sum squared resid (in our example RSS has only slightly decreased from 32501.96 to 

32489.51). 

 

Commonly reported criteria for model comparison are
9
: 

 

Adjusted 
2

R   2 1 ( 1) / ( )R RSS N TSS N k= − − −       (the more the better) 

 

Akaike Information Criterion    ( / ) exp(2 / )AIC RSS N k N=   (the less the better) 

 

Schwarz Bayesian Criterion          /( / ) k N
SIC RSS N N=             (the less the better; it penaliz-

es model’s complexity more heavily than AIC)  

 

Note that some statistical programs print out not AIC and SIC but, under the same name, their 

logarithms. 

                                                 
9
 Note that all they increase with the number of variables k ; as a consequence, AIC and SIC will decrease only if 

the new RSS is considerable smaller. 
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Applying these criteria to our three models, we see that Model 2 is best:   

 
Akaike criterion      264.4434 256.2014   258.1918 

Schwarz criterion 266.8811 259.8580  263.0673    

 

 

4.5. Categorical Variables on the Right Hand Side 

 

Regression line 0 1Y Xβ β= +  describes the average value of Y  for a given X . So far we ha-

ve used a continuous or numeric variable, but what if X  is a categorical or nominal variable 

such as gender or race? For example, the file hsb.txt (hsb=high school and beyond) contains 

15 variables describing a nationally representative sample of 600 high school seniors:  

 

 
 MALE RACE SES  SCTYP  HSP  LOCUS

 CONCPT  MOT  CAR  RDG  WRTG  MATH 

 SCI  CIV 

 0 1 1 1 3 0.29

 0.88 0.67 10 33.6 43.7 40.2

 39.0 40.6 

 1 1 1 1 1 -0.42

 0.03 0.33 2 46.9 35.9 41.9

 36.3 45.6 

 0 1 1 1 1 0.71

 0.03 0.67 9 41.6 59.3 41.9

 44.4 45.6 
..................................................................................... 

 

where 

 

MALE
10 1=male, 0=female 

RACE 1=hispanic, 2=asian, 3=black, 4=white 

SES socio-economic status: 1=lower, 2=middle, 3=upper 

SCTYP school type (2 levels) 

HSP high school program (3 levels) 

LOCUS Locus of control 

CONCPT self concept 

MOT motivation 

CAR career choice (17 levels) 

RDG      reading t-score 

WRTG     writing t-score 

MATH     math t-score 

SCI      science t-score 

CIV      civics t-score 

 

We want to examine whether writing skills WRTG depend on sex, i.e., what are the average 

values of  WRTG in these two groups and do these values differ significantly? We can create 

two subgroups of males and females, estimate sample means in both groups, and use T − test 

                                                 
10

 Even if one uses 1 and 0 to code male and female, these „numbers“ are labels rather than numbers. 
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to test the equality of these two means. Alternatively, we can use regression analysis to do this 

in one step. What is even more important, we can generalize it to the case of many levels (are 

the differences among RACEs significant?) where the T − test  is not applicable and also inc-

lude other variables into equation. 

 

To tell GRETL that MALE is a label rather than number, select MALE and go to Variable| Edit 

attributes and check „Treat this variable as discrete“ button. The standard procedure to deal 

with nominal variables is, instead of one discrete variable MALE to introduce (in our case, 

two) numerical dummy (or indicator) variables DMALE_1 and DMALE_2 for, respectively, 

females and males: 

 

DMALE_1 = 1 if  MALE=0 and    =0 if MALE=1 (for females)  

DMALE_2 = 1 if  MALE=1 and    =0 if MALE=0 (for males) 

 

and to replace the original design matrix 

 

1 1

2 2

1

1

............................

WRTG MALE

WRTG MALE

 
 
 
 
 

 by 

1 1 1

2 2 2

1 _1 _ 2

1 _1 _ 2

.........................................................

WRTG DMALE DMALE

WRTG DMALE DMALE

 
 =  
 
 

X  or, specifically, by 

1 43.7 0 1

1 35.9 1 0

1 59.3 0 1

.................

 
 
 
 
 
 

.  

 

Unfortunately, the regression equation 0 1 2_1 _ 2WRTG DMALE DMALEβ β β ε= + + +  is 

exactly multicollinear because in X  the first column of 1‘s equals _1 _ 2DMALE DMALE+  

(this is called the dummy variable trap).  Remember: always drop one dummy variable from 

the model, i.e., instead of 0 1 2_1 _ 2WRTG DMALE DMALEβ β β ε= + + +  estimate the equation 

0WRTG γ= + 1 _ 2DMALEγ ε+ ; the level (or group) where _ 2 0DMALE =  (women) is cal-

led the base, 1γ  shows the average change of WRTG  in the second group of males compared 

with the base group of women and the p−  value shows whether the change is significant.  

 

In GRETL, to create the two dummy variables, select SEX (remember, it is now a discrete 

variable) and go to Add| Dummies for selected dummy variables. We get  

 
Model 1: OLS, using observations 1-600 

Dependent variable: WRTG 

 

             coefficient   std. error   t-ratio   p-value  

  -------------------------------------------------------- 

  const       54.5544       0.522008    104.5     0.0000   *** 

  DMALE_2     -4.76835      0.773876     -6.162   1.32e-09 *** 

 

Log-likelihood      -2197.306   Akaike criterion     4398.612 

Schwarz criterion    4407.406   Hannan-Quinn         4402.036 
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which should be interpreted as follows: in the base group (where DMALE_2=0, i.e., in the fe-

males‘ group) the average value of WRTG is 54.554; in the group where DMALE_2=1 (i.e., in 

males‘ group) WRTG decreases on average by 4.768 and equals 49.786, and the increase signi-

ficantly differs from 0 (because the p−  value 1.32e-09<0.05 ).  

 

If we repeat similar procedure with RACE, we get
11

 

 
Dependent variable: WRTG 

 

             coefficient   std. error   t-ratio    p-value  

  --------------------------------------------------------- 

  const       46.7197       1.09700     42.59     5.88e-183 *** 

  DRACE_2      8.98028      1.92780      4.658    3.93e-06  *** 

  DRACE_3     -0.419718     1.63602     -0.2565   0.7976    

  DRACE_4      7.13520      1.18276      6.033    2.83e-09  *** 

 

Log-likelihood      -2183.708   Akaike criterion     4375.417 

Schwarz criterion    4393.005   Hannan-Quinn         4382.264 

 

which reads as follows: in the base group of hispanic students the mean WRTG is 46.719, in 

the second group of asian students WRTG increases (with respect to hispanic group) by 8.980 

(and the change is definitely not 0); in black group it is lower than in hispanic group but the 

difference (compared with the base group) is not significant, and in white group it is signifi-

cantly higher.  

 

If at least one dummy variable DRACE_i is significant, the model should contain the dummy 

variables of the RACE group. Another approach advices to remove insignificant terms, DRA-

CE_3 in our case. This is equivallent to combining the base subgroup with the 3rd subgroup 

(the base now will consist of subgroups 1 and 3): 

 
Dependent variable: WRTG 

 

             coefficient   std. error   t-ratio    p-value  

  --------------------------------------------------------- 

  const       46.5310       0.813207    57.22     1.63e-244 *** 

  DRACE_2      9.16899      1.78056      5.150    3.55e-07  *** 

  DRACE_4      7.32391      0.925484     7.914    1.22e-014 *** 

 

Log-likelihood      -2183.742   Akaike criterion     4373.483 

Schwarz criterion    4386.674   Hannan-Quinn         4378.618 

 

Both Akaike and Schwarz criteria now have decreased, therefore we can take this model as 

the best one among those based on race only. 

 

Thus, to describe (predict)  WRTG we can use different models (which of the three is the 

best?):  

 

0 1

0 1 2

_ 2

_ 2 _ 4

WRTG DMALE

WRTG DRACE DRACE

β β ε

β β β ε

= + +

= + + +
 

0 1 2 3_ 2 _ 2 _ 4WRTG DMALE DRACE DRACEβ β β β ε= + + + +  

                                                 
11

 Note, in order to avoid the dummy variable trap, we exclude the base variable DRACE_1 from the model. 
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Regression models also allow us to combine categorical and continuous variables. For 

example, two models which regress WRTG on RDG and also takes into account sex effects, 

could be written as follows: 

 

0 1 3
0 1 3

0 3

0 1 3 4

0 1 3 4

0 3

if _ 2 1
_ 2

if _ 2 0

_ 2 ( _ 2)*

( )* if _ 2 1 (male)

* if _ 2 0 (female)

RDG DMALE
WRTG DMALE RDG

RDG DMALE

WRTG DMALE DMALE RDG

RDG DMALE

RDG DMALE

β β β ε
β β β ε

β β ε

β β β β ε

β β β β ε

β β ε

+ + + =
= + + + = 

+ + =

= + + + + =

+ + + + =


+ + =

    

 

In the first model, only the intercept is different for the two sex subgroups whereas in the se-

cond both the intercept and slope differs in the two subgroups (this is the model with interac-

tion of DMALE_2 and RDG). We get   

 
Dependent variable: WRTG 

 

             coefficient   std. error   t-ratio    p-value  

  --------------------------------------------------------- 

  const       17.5275      1.56570      11.19     1.54e-026 *** 

  DMALE_2      5.28965     0.582836      9.076    1.63e-018 *** 

  RDG          0.616056    0.0287517    21.43     5.56e-076 *** 

 

Log-likelihood      -2026.178   Akaike criterion     4058.355 

Schwarz criterion    4071.546   Hannan-Quinn         4063.490 

 

and (here DMR_2=DMALE_2*RDG) 

 
Dependent variable: WRTG 

 

             coefficient   std. error   t-ratio    p-value  

  --------------------------------------------------------- 

  const       14.3001      2.23308       6.404    3.08e-010 *** 

  DMALE_2    -11.3273      3.04212      -3.723    0.0002    *** 

  RDG          0.677691    0.0418525    16.19     3.85e-049 *** 

  DSR_2       -0.116185    0.0574622    -2.022    0.0436    ** 

 

Log-likelihood      -2024.127   Akaike criterion     4056.254 

Schwarz criterion    4073.842   Hannan-Quinn         4063.100 

 

Thus, the best model so far (according to Akaike) is the last one. Note that the stricter 

Schwarz criterion chooses the above, more parsimoniuos, model.  
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Figure 4.2. Model without interaction (only the intercepts for males and females differ, left) and with inte-

raction (both intercepts and slopes differ, right) 

 

In R we get exactly the same models, however the commands differ: 

 
hsb=read.table(file.choose(),header=TRUE) # go to hsb.txt 

head(hsb) 

attach(hsb) 

summary(lm(WRTG~factor(MALE)))      # factor recodes numbers to labels            

summary(lm(WRTG~factor(MALE)*RDG))  # * stands for the interaction  

 

 

4.6. Testing Hypotheses: One Linear Restriction  

 

We have already mentioned that to test the hypothesis 0
0 : m mH β β=  we use the the t - ratio 

statistics 
0

ˆ
ˆ( ) /

m
m m sββ β−  which has the ( 1)N kT − +  distribution if disturbances are normal (the 

distribution is only approximately Student‘s
 
if disturbances are not normal). However, in mul-

tivariate case we can test many more hypothesis, for example, 0 ( 1): 0,..., 0k r kH β β− − = =  or 

0 1 2:H β β=  (which is equivalent to 0 1 2:1 ( 1) 0H β β⋅ + − ⋅ = ) or 0 1 1 3 3: 1H a aβ β+ =  etc. In 

the first case, we have r  restrictions (we shall study this case in the next section) and in the 

second and third cases one (linear
12

) restriction. There are several methods to test such hypo-

theses. 

 

Student or T − test.  If 0 1 1 3 3: 1H a aβ β+ =  is true, the difference 1 1 3 3
ˆ ˆ 1a aβ β+ −  should not 

differ much from zero, or, more precisely, the t − ratio   

 

�

1 1 3 3 1 1 3 3

2 11 13 2 33
1 1 3 31 1 3 3

ˆ ˆ ˆ ˆ1 1

ˆ ˆ 2var( )

a a a a
T

S a X a a X a Xa a ε

β β β β

β β

+ − + −
= =

+ ++
 

                                                 
12

 
0 1 3 2

: 2 1H β β β− = −  is an example of nonlinear restriction. 
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should not be „big“. Random variable T  has Student‘s distribution with ( 1)N k− +  d.f., the-

refore if the p − value ( 1)(| | | |)N kP T t− + ≥  is less than 0.05  (here t  is the realization of T  in 

our sample), we reject 0H  with the 5% significance (for the definition of 
11

X ,
13

X etc, see 

Sec. 4.1; this is where we need the variance-covariance matrix �
ˆ

varβ
�

). Note that in practice 

this test is rarely performed.    

 

 

Fisher or F − test. Let us consider two models – unrestricted  

 

                                               0 1 1 ... k kY X Xβ β β ε= + + + +                                        (UR) 

 

and restricted, assuming that 0 1 1 3 3: 1H a aβ β+ =  is true: 

 

                  ( )0 1 1 2 2 1 1 3 3 4 4(1 ) / ... k kY X X a a X X Xβ β β β β β ε= + + + − + + + +
 
             (R) 

 

If 0H  is true, both models should be of more or less of the same accuracy, i.e., RRSS −  

0URRSS ≈  or, more precisely, 

 

( ) /

/ ( ( 1))

R UR

UR

RSS RSS r
F

RSS N k

−
=

− +
 

 

should not be big (here r  is the number of restrictions, in our case it is 1). Both numerator and 

denominator are sums of squares of normal r.v.‘s, therefore it does not come as a surprise that 

F  has Fisher‘s distribution , ( 1)r N kF − + . The p - value of this test is calculated by virtually all 

statistical programs and if p −value is less than 0.05, we reject 0H .  

 

 

Wald (large sample) test  

 

Recall that the denominator in  

 

�

2

1 1 3 3

1 1 3 3

ˆ ˆ 1

ˆ ˆvar( )

a a
TS

a a

β β

β β

 + − =
 + 

 

 

(here TS stands for the Test Statistics) is a square root of the consistent estimator of 

1 1 3 3
ˆ ˆvar( )a aβ β+ , thus, when N  is big, it is safe to treat � 1 1 3 3

ˆ ˆvar( )a aβ β+  as a nonrandom true 

variance which implies that TS  is a square of a standard normal r.v.  In other words, TS  has 

a 
2
1χ  distribution; now, if the p - value 

2
1( )P tsχ >

 
of the test is less than 0.05, we reject 0H .  
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4.7. Testing Hypotheses: r  Linear Restrictions 

 

The hypotheses 0 ( 1): 0,..., 0k r kH β β− − = =
 
is frequently met in econometrics, it tests whether 

we have to keep the last , 1 ,r r k≤ ≤  variables in our regression model (thus, if we accept it, 

at, say,  5% significance level, we remove all of them from the model).  Note that to accept 

this hypothesis is not the same as to accept r  separate hypothesis 0 : 0mH β = , 

( 1),...,m k r k= − − , at the same significance level. Another example of several restrictions is 

the hypothesis 
(1) (1) (1)

0 11: ... ,kkH a a cβ β+ + = (2) (2) (2)
11 ... kka a cβ β+ + =  which contains two 

restrictions.   

 

Student or T − test.  It is not applicable in the case of more than one restriction. 

 

Fisher or F − test. The only difference with the case of one restriction is in calculating RRSS

(now there will be r  restrictions on the coefficients). Again, if 0H  is true, the F  statistics 

should not be „big“ or, more precisely, if , ( 1)( ) 0.05r N kP F f− + > < , where f  is the realization 

of F  in our sample, we reject 0H . Specifically, the p − value of the the null 

0 1: ... 0kH β β= = =  (i.e., Y  is essentially a constant 0β  plus some unpredictable ε , or, in 

other words, knowing the values of 1,..., kX X  does not affect the expected value of Y ), is 

presented in the regression output table in the line  (see a few pages above) 

 
F(3, 596) 210.8339     P-value(F) 3.44e-93 

 

(thus we reject 0H ). Note that the F − statistics there was  

 
2 2 2

2 2

( ) / ( ) / /

/ ( 1) (1 ) / ( 1) (1 ) / ( 1)

R UR UR R

UR UR

RSS RSS k R R k R k

RSS N k R N k R N k

− −
= =

− − − − − − − −
 

 

where 
2

R  is the usual R−squared from the regression of Y  on 1,..., kX X . 

  

4.1 example.  (Chow test)  Let us assume that we use use two samples and create two regres-

sion models. For instance, consider a system 

 

0 1 1

0 1 1

... , 1,...,

... , 1,...,

i i k ki i

i i k ki i

Y X X i n

Y X X i n n m

β β β ε

β β β ε

′ ′ ′ ′= + + + + =
 ′′ ′′ ′′ ′′= + + + + = + +

 

where, for example, Y  is wage and 'X s are age, education, experience etc. Now say that the 

first sample is that of males and the second of females and our question is  whether these two 

models, i.e., their coefficients, coincide? Calculate 1 2URRSS RSS RSS= +  first; next, to obtain 

RRSS  treat two samples as one and estimate RRSS  of this model – the F − statistics equals     

( ) /

/ ( 2 )

R UR

UR

RSS RSS k
F

RSS n m k

−
=

+ −
. 
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The Chow test can be performed in an equivalent manner as follows – write the above system 

as 

0 0 1 1 1( ) ( ) ... ( ) , 1,...,i i i i k k ki iY M M X X i m nβ α β α β α ε= + + + + + + + = + , 

where M is a male‘s dummy variable and test 0 0: ... 0kH α α= = =  (what are unrestricted and 

restricted models?). To perform the Chow test in R, use ( , )UR Ranova mod mod . 

 

Wald (large sample) test  

 

To test the hypothesis 
(1) (1) (1)

0 11: ... ,kkH a a cβ β+ + = (2) (2) (2)
11 ... kka a cβ β+ + =  (can you write 

a simple variant of 0H ?) with two restrictions, we use the fact that in large samples the test 

statistics 

 

� ( ) � ( )

2 2

(1) (1) (2) (2)(1) (2)
1 11 1

(1) (1) (2) (2)
1 11 1

ˆ ˆ ˆ ˆ... ...

ˆ ˆ ˆ ˆvar ... var ...

k kk k

k kk k

a a c a a c
TS

a a a a

β β β β

β β β β

   
+ + − + + −   

= +   
+ + + +   

   

, 

 

provided 0H  holds true, has 2
2χ  distribution (if we have r  restrictions, similar statistics will 

have 2
rχ  distribution). Thus, if 2

2( ) 0.05P tsχ > < , we reject 0H . 

 

 

Lagrange multiplier (LM) (large sample) test 

 

This is a modification of the F − test in large samples to test the hypothesis 

0 ( 1): 0,..., 0k r kH β β− − = = . The restricted model now is  

                                         0 1 1 ( 1) ( 1)... R
k r k rY X Xβ β β ε− + − += + + + +                               (R) 

and unrestricted 

 

                               0 1 1 ( 1) ( 1)... ... UR
k r k r k kY X X Xβ β β β ε− + − += + + + + + + .                   (UR) 

 

(can you write down the F  statistics?). 

 

The LM  test is performed as follows: 

 

Step 1 estimate the restricted model and save its residuals , 1,...,R
ie i N= ; 

Step 2 regress R
ie  against all

13
 1,..., kX X  plus a constant (the model is termed auxiliary 

regression) and calculate 2
auxNR ; it has been shown that this random variable, 

                                                 
13

 If the omitted variables , ...,
k r k

X X−  
truly have zero coefficients in DGP, then the residuals 

R
e , at least 

approximately, should be uncorrelated with each of these variables in the sample. This suggests running a regres-
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provided 0H  is true, has the 2
rχ  distribution, therefore, if  the p−value 

2 2( )r auxP NRχ >  is less than 0.05, we reject 0H . 

 

To reason the LM − test, note that if the DGP is described by the unrestricted model, the ef-

fects of omitted  variables ( 1) ,...,k r kX X− +  should be captured by R
ie , thus regressing them on 

all the X ′ s should lead to a good fit and nonzero 2
auxR ; thus big values of  2

auxNR  mean rejec-

tion of 0H . 

 

***************** 

 

As a general note, in order to simplify the model, choose one, the least significant, variable 

and, if its p−value is greater than 0.05, remove it from the original model; then repeat the 

procedure with  a new model. Another possibility is the bulk removal of several variables at a 

time (use the F or LM tests to this end; simple rule of thumb says - add a variable to this list 

if its p−value is more than 0.5 (not 0.05!) ).  

 

There exist an automated procedure to simplify the model by removing insignificant variables 

(it is called stepwise regression). It is a risky procedure, especially in multicollinearity case,  

because sometimes just adding a few new observations could lead to a quite different model. 

To perform this regression, in GRETL, in model window, go to Tests| Omit variable, check 

„sequential...“ box; in  R it is implemented by stepAIC function in MASS package and is 

performed with a step-by-step simplification of the model based on minimizing AIC. 

 

********************* 
 

Now we shall apply some of the above discussed tests to two examples. 

 

4.2 example.  The popular Cobb-Douglas production function may be expressed as a nonli-

near multiplicative regression of the form 1 2 , 1,...,t

t t tX aK L e t T
εβ β= = . It can be transformed 

to a simpler linear log-log model 0 1 2log log logt t t tX K Lβ β β ε= + + +  where, for example, 

1β  is the elasticity of output X  with respect to capital K . Clearly, if the quantities of capital 

and labor inputs are doubled, then the output becomes 1 22 X
β β+

 and we say that economy has 

constant returns to scale if  1 2 1β β+ = . We shall test the assumption for the data in 

klein_maddala.txt where we have two inputs for both capital and labor. The model in GRETL 

is  

 

Dependent variable: l_X 

 

             coefficient   std. error   t-ratio   p-value 

  ------------------------------------------------------- 

                                                                                                                                                         

sion of these residuals on those independent variables excluded under 
0

H , which is almost what the LM test 

does. However, it turs out that, to get a usable test statistic, we must include all of the independent variables in 

the regression (we must include all regressors because, in general, the omitted regressors in the restricted model 

are correlated with the regressors that appear in the restricted model).  
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  const       -0.711093     1.31102     -0.5424   0.5911  

  l_L1         1.40931      0.392238     3.593    0.0010  *** 

  l_L2        -0.451694     0.408992    -1.104    0.2772  

  l_K1         0.911616     0.228243     3.994    0.0003  *** 

  l_K2        -0.546145     0.206974    -2.639    0.0125  ** 

 

In the model window, go to Tests| Linear restrictions, type in b[2]+b[3]+b[4]+ b[5]=1 

and get 

Restriction: 

 b[l_L1] + b[l_L2] + b[l_K1] + b[l_K2] = 1 

 

Test statistic: Robust F(1, 34) = 2.7806, with p-value = 0.104599 

 

Restricted estimates: 

 

             coefficient   std. Error   t-ratio    p-value  

  --------------------------------------------------------- 

  const        1.37524     0.610646       2.252   0.0307    ** 

  l_L1         1.31848     0.345917       3.812   0.0005    *** 

  l_L2        -0.693092    0.303169      -2.286   0.0284    ** 

  l_K1         1.25294     0.111731      11.21    3.89e-013 *** 

  l_K2        -0.878326    0.0811165    -10.83    1.02e-012 *** 

 

The constant returns to scale one-restriction hypothesis 0 1 2 3 4: 1H β β β β+ + + =  is tested 

here with the F −  test; the p−  value 1,34( 2.78) 0.10 0.05P F > = > , therefore we have no 

ground to reject 0H  (in the table, the restricted model is presented). Similar answer is given 

by the T −  test: go to Tests| Sum of coefficients and get 

Variables: l_L1 l_L2 l_K1 l_K2  

   Sum of coefficients = 1.32309 

   Standard error = 0.193755 

 

Since the interval 1.32 2*0.19±  covers 1, we do not reject 0H  with 5% significance. 

4.3 example.  Open in GRETL hsb.txt (see Section 4.5). Our aim is to create a model for 

WRTG. As a first step, we shall, in two steps, dummify all nominal variables: in GRETL‘s 

main window select SEX and go to Variable| Edit attributes and check „Treat this variable as 

discrete“ (repeat the same with RACE etc); then select all nominal variables and go to Add| 

Dummies for selected discrete variables and check „Skip the lowest value“. Since we have 

many variables, probably we shall have to remove some insignificant variables from the mo-

del. Go to Model| Ordinary Least Squares| choose WRTG as dependent and all the rest as inde-

pendent variables.  

 

Dependent variable: WRTG 

Heteroskedasticity-robust standard errors, variant HC1 

 

             coefficient   std. error   t-ratio     p-value  

  ---------------------------------------------------------- 

  const      10.6918       2.32765       4.593     5.38e-06  *** 

  LOCUS       0.333209     0.434551      0.7668    0.4435    

  CONCPT     -0.131674     0.421186     -0.3126    0.7547    
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  MOT         1.92976      0.817126      2.362     0.0185    ** 

  RDG         0.187808     0.0394520     4.760     2.46e-06  *** 

  MATH        0.252978     0.0415044     6.095     2.02e-09  *** 

  SCI         0.153911     0.0431880     3.564     0.0004    *** 

  CIV         0.163680     0.0354927     4.612     4.94e-06  *** 

  DSEX_2      4.22260      0.619358      6.818     2.37e-011 *** 

  DRACE_2     1.33683      1.27671       1.047     0.2955    

  DRACE_3    -1.71909      1.15637      -1.487     0.1377    

  DRACE_4     0.753261     0.814667      0.9246    0.3556    

  DSES_2     -0.0912213    0.708517     -0.1287    0.8976    

  DSES_3     -0.178942     0.788942     -0.2268    0.8207    

  DSCTYP_2    1.27310      0.709316      1.795     0.0732    * 

  DHSP_2      0.409338     0.727809      0.5624    0.5740    

  DHSP_3     -0.357951     0.784231     -0.4564    0.6483    

  DCAR_2     -4.45071      1.42617      -3.121     0.0019    *** 

  ........................................................ 

  DCAR_17    -3.19713      2.10858      -1.516     0.1300    

 

Log-likelihood      -1915.428   Akaike criterion     3896.855 

Schwarz criterion    4041.954   Hannan-Quinn         3953.339 

 

We begin improving the model by the bulk exclusion of the „most insignificant“ variables 

(those with p−value > 0.5 (not 0.05!) they are marked in yellow color) in one step: in the 

model window, go to Tests→Omit variables and select „yellow“ variables -   

  Test on Model 1: 

 

  Null hypothesis: the regression parameters are zero for the variables 

  CONCPT, DSES_2, DSES_3, DHSP_2, DHSP_3 

  Test statistic: Robust F(5, 567) = 0.231201, p-value 0.948854 

  Omitting variables improved 3 of 3 model selection statistics. 

 

Model 2: OLS, using observations 1-600 

Dependent variable: WRTG 

Heteroskedasticity-robust standard errors, variant HC1 

 

             coefficient   std. error   t-ratio    p-value  

  --------------------------------------------------------- 

  const        9.94476     2.13700       4.654    4.06e-06  *** 

  LOCUS        0.370853    0.418428      0.8863   0.3758    

  MOT          1.89264     0.769885      2.458    0.0143    ** 

  RDG          0.190454    0.0390748     4.874    1.42e-06  *** 

  MATH         0.260353    0.0409793     6.353    4.30e-010 *** 

  SCI          0.151334    0.0429677     3.522    0.0005    *** 

  CIV          0.168753    0.0351944     4.795    2.08e-06  *** 

  DSEX_2       4.27932     0.609212      7.024    6.13e-012 *** 

  DRACE_2      1.32978     1.27842       1.040    0.2987    

  DRACE_3     -1.67773     1.15199      -1.456    0.1458    

  DRACE_4      0.741039    0.813787      0.9106   0.3629    

  DSCTYP_2     1.39801     0.669593      2.088    0.0373    ** 

  DCAR_2      -4.42289     1.40775      -3.142    0.0018    *** 

  ............................................................ 

  DCAR_17     -3.23395     2.12697      -1.520    0.1290    

 

Log-likelihood      -1916.061   Akaike criterion     3888.122 

Schwarz criterion    4011.236   Hannan-Quinn         3936.048 
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The p−  value of the F −  test is greater than 0.05, therefore we accept the hypothesis that all 

five yellow variables together are insignificant. Now, we repeat the procedure with blue va-

riables (in the previous case, the answer was predictable but now we have to test respective 

hypothesis (which hypothesis?)):  

 
  Null hypothesis: the regression parameters are zero for the variables 

  LOCUS, DRACE_2, DRACE_3, DRACE_4 

  Test statistic: Robust F(4, 572) = 1.63755, p-value 0.163262 

  Omitting variables improved 2 of 3 model selection statistics. 

 

Model 3: OLS, using observations 1-600 

Dependent variable: WRTG 

Heteroskedasticity-robust standard errors, variant HC1 

 

             coefficient   std. error   t-ratio     p-value  

  ---------------------------------------------------------- 

  const        8.22222     1.98614       4.140     4.00e-05  *** 

  MOT          1.78128     0.756928      2.353     0.0189    ** 

  RDG          0.188642    0.0394039     4.787     2.15e-06  *** 

  MATH         0.277458    0.0400766     6.923     1.18e-011 *** 

  SCI          0.179913    0.0412264     4.364     1.51e-05  *** 

  CIV          0.166843    0.0352533     4.733     2.79e-06  *** 

  DSEX_2       4.41259     0.602006      7.330     7.84e-013 *** 

  DSCTYP_2     1.53279     0.671763      2.282     0.0229    ** 

  DCAR_2      -4.25045     1.40136      -3.033     0.0025    *** 

  ....................................................... 

  DCAR_17     -3.26318     2.17952      -1.497     0.1349    

 

R-squared            0.626687   Adjusted R-squared   0.611781 

Log-likelihood      -1920.171   Akaike criterion     3888.341 

Schwarz criterion    3993.868   Hannan-Quinn         3929.421 

 

Again p−  value of the F −  test is greater than 0.05, therefore we accept the hypothesis that 

all four blue variables are together insignificant. The final model contains only significant va-

riables, its Schwarz criterion is minimum, R-squared is quite large. We can stop here or to 

continue with removing step by step all the insignificant DCAR_ ⋅   In this case the final model 

is  

Dependent variable: WRTG 

Heteroskedasticity-robust standard errors, variant HC1 

 

             coefficient   std. error   t-ratio    p-value  

  --------------------------------------------------------- 

  const        6.44443     1.72918       3.727    0.0002    *** 

  MOT          2.02391     0.741207      2.731    0.0065    *** 

  RDG          0.190966    0.0398450     4.793    2.09e-06  *** 

  MATH         0.282662    0.0398036     7.101    3.58e-012 *** 

  SCI          0.179969    0.0406589     4.426    1.14e-05  *** 

  CIV          0.173323    0.0348552     4.973    8.68e-07  *** 

  DSEX_2       4.55269     0.549151      8.290    7.72e-016 *** 

  DCAR_2      -3.02935     1.07918      -2.807    0.0052    *** 

  DCAR_4      -2.31168     1.16972      -1.976    0.0486    ** 

  DCAR_5      -4.47529     2.04220      -2.191    0.0288    ** 

  DCAR_7      -3.65748     1.59903      -2.287    0.0225    ** 

  DCAR_12     -3.11489     1.86644      -1.669    0.0957    * 

  DCAR_16     -3.43138     1.04889      -3.271    0.0011    *** 
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Log-likelihood      -1925.887   Akaike criterion     3877.775 

Schwarz criterion    3934.935   Hannan-Quinn         3900.026 

 

This final model does not suffer from multicollinearity (all VIFs are less than 3), its Akaike is 

the smallest one in our list of models. We spent a lot of time when creating the model but we 

can automate the selection procedure if in the very first model window go to Tests| Omit va-

riables| and check the „Sequential elimination of variables using two-sided p-value:“ box - the 

final model has even smaller AIC=3870.79. Thus the procedure based on removing several 

variables at once can not always be the best. On the other hand, the criteria based on „leave 

only significant terms in the model“ and „look for a model with minimum AIC“ not always 

lead to the same result.    Per pratybas su CPS1985.txt 

 

 

4.8. Violation of M1 

                                                    0 1 1 2 2Y X Xβ β β ε= + + + ,                                   (4.3.1) 

 

but you run  

                                                             0 1 1Y Xγ γ ε= + + �                                          (4.3.2) 

 

(thus, an important 2X  is omitted; this happens quite often, especially when the rhs contains 

many variables). To partially fill this gap, run a fictitious regression 2 0 1 1X X uα α= + +  (re-

call that 1 2 1 1cov( , ) / var( )X X Xα = , cf. (3.3)); then 

  

0 1 1 2 0 1 1

0 2 0 1 2 1 1 2

0 1 1

( )

( ) ( ) ( )

.

Y X X u

X u

X

β β β α α ε

β β α β β α β ε

γ γ ε

= + + + + + =

+ + + + + =

+ + �

 

 

The coefficient 1γ , estimated in (4.3.2), equals 1β  only in the case where 1 0α = , that is, 

when 2X  is not correlated with 1X . In any other case, 1 1ˆ( | )E γ β≠X
 
thus 1̂

OLSγ  is generally 

biased
14

 and inconsistent. The result is expected, because if 1X  and 2X  correlates, then 1X  

                                                 
14

 This is called the omitted variable bias. This bias is important: if our DGP has, for example, 10 variables, but 

we know only 7 – our decision to remove some variables will be biased and our final model may be wrong.  

 

Until now we have assumed that the multiple regression equation we are estimating includes 

all the relevant explanatory variables from the DGP. In practice, it is rarely the case. Someti-

mes some relevant variables are not included due to oversight or our ignorance, or lack of ob-

servations. On the other hand, sometimes some irrelevant variables are included. 

 

 

   4.8.1. Omission of Relevant Variables 

 

 

Suppose that our DGP is  
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and the model‘s (4.3.2) error 2 2Xε β ε= +�  correlates which implies bias
15

 of 1̂γ . The bottom 

line is: when searching for the „right“ model, do not start with too simple model.    

 

To better understand the claim, imagine that you generate N  random numbers 11 1,..., NX X , 

then
16

 21 2,..., NX X , and finally 1, ..., Nε ε ; calculate respective iY  according to the, say, for-

mula 0.5iY = − + 1 23 7.2i i iX X ε− + . However, instead of using the matrix 

1 11 21

1 2

....................

N N N

Y X X

Y X X

 
 
 
 
 

 as 

your data set to estimate 0 1,β β , and 2β  from (4.3.1), you use (because of lack of 2X  data or 

your ingorance of the DGP) the matrix 

1 11

1

............

N N

Y X

Y X

 
 
 
 
 

 and estimate 
(1)
0γ̂  and 

(1)
1̂γ  of (4.3.2). Re-

peat the procedure n  times where n  is a „big“ number - you will get that ( )(1) ( )
1 1
ˆ ˆ... /

n
nβ β+ +  

is „not close“ to 1 ( 3)β =  from (4.3.1), i.e., the estimator 1̂γ  is a biased estimator of 1β  from 

(4.3.1) as we have proved it earlier “theoretically”.  

 

 

4.8.2. Inclusion of Irrelevant Variables 

 

Assume that our ( , )X Y  data are generated by 0 1 1Y Xβ β ε= + + , but we possess more data 

and begin with the model 0 1 1 2 2Y X X uγ γ γ= + + + instead. Is it true that 1̂γ  and 2γ̂  are unbia- 

sed estimators of 1β  and 2 ( 0)β = ? The answer is „yes“: recall that (see p. 4-3) 

 
� � � �

� � �( )
1 1 2 1 2

1 2

1 2 1 2

cov( , ) var cov( , ) cov( , )
ˆ

var var cov( , )

X Y X X Y X X

X X X X

γ
−

=
−

; 

now, since 0 1 1Y Xβ β ε= + + , after some simplification we get 1 1ˆEγ β=  and, similarly, 

2ˆ 0Eγ = . 

 

This result, coupled with the result from the previous section, might lead us to believe that it is 

better to include variables (when in doubt) rather to exclude them. However, this is not exactly 

so, because though the inclusion of irrelevant variables has no effect on the bias of the estima-

tors, it does affect the variances. 

 

The variance of 1β̂  is given by 2 2
1 1

ˆvar / ixβ σ= ∑  and 1̂var γ = 2 2 2
12 1/ (1 ) ir xσ − ∑  where 12r  

is the correlation between 1X  and 2X . Thus 1 1
ˆˆvar varγ β>  unless 12 0r = . Hence we will be 

                                                 
15

  Recall that 1̂
γ  is BLUE&C only if U1-U3 holds (see p. 3-6). In particular, 1̂

γ  is unbiased if 1
X  does not cor-

relate with the error. 
16

 To make 2
X  correlate with 1

X , use, for example, the formula 2 1
1 2 .X X v= + +   
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getting unbiased but inefficient estimators by including irrelevant variables. It can be also  

shown that the estimator for the residual variance we use is an unbiased estimator of 2σ . 

 

To get a better understanding of the claim, imagine that you generate N  random numbers 

11 1,..., NX X , then 1, ..., Nε ε , and, finally, calculate respective iY  according to the, say, formula 

0.5iY = − + 13 i iX ε+ . However, instead of using the design matrix 

11

1

1

........

1 N

X

X

 
 
 
 
 

 to estimate 0β  

and 1β  from (4.3.2), you use (because you do not know the true DGP) the formula 

0 1 1 2 2Y X Xβ β β ε= + + +
 
and the design matrix 

11 21

1 2

1

..................

1 N N

X X

X X

 
 
 
 
 

 (here 21 2,..., NX X  are genera-

ted by some arbitrary rule) to calculate 
(1)
0β̂ , 

(1)
1β̂  and 

(1)
2β̂ of  (4.3.1). Repeat the procedure n  

times where n  is a „big“ number: you will find that ( )(1) ( )
1 1
ˆ ˆ... /

n
nβ β+ +  is „close“ to 

1 ( 3)β =  from (4.3.1) and ( )(1) ( )
2 2

ˆ ˆ... /
n

nβ β+ +  is „close“ to 2 ( 0)β = , i.e., the estimators 1β̂  

and 2β̂  are unbiased estimator of 1β  from (4.3.2) as we have proved earlier. 

 

4.9. Generalized Least Squares (GLS) 

 

 

Let  

                                                                Y β ε= +X
�� �

.                                               (4.4.1) 

 

So far we have analyzed the case where the condition M3, namely, 
2

var( | ) NIεε σ=X
�

 holds 

(in words – errors , 1,..., ,i i Nε =  are uncorrelated and all have the same variance 
2
εσ ). In ma-

ny instances, the behavior of errors is close to the above described, thus the OLS estimator 

1ˆ
( )OLS Yβ −′ ′= X X X

� �
 is a „good“ one (what does it mean „good“?). However, sometimes

17
 

2
var NIεε σ= ≠V
�

 and then 
ˆ OLSβ
�

 is no longer BLUE (in fact, it is unbiased and consistent but 

no longer efficient, and also the OLS estimate �
ˆ

var OLSβ
�

is biased). If V  is known (it is rarely 

so), define the matrix P  as a solution to the equation
18

 1−′ =P P V , multiply from the left the 

                                                 
17

 We omit conditioning. 
18

 What are the dimensions of the matrix V? And P? 

If a relevant variable is omitted, estimators of the coefficients are biased and  

inconsistent (however, if the excluded variable is not correlated with the included 

variable(s), then there will be no omitted variable bias). 

If irrelevant variable is included, estimators of the coefficients are unbiased,  

but less precise.  
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both sides of (4.4.1) by P , and define 
*

Y Y= P
� �

, 
* =X PX , *ε ε= P

� �
. Then (4.4.1) transforms 

to 

  

                                                                
* * *

Y β ε= +X
�� �

                                           (4.4.2) 

 

where  now 
*

var NIε =
�

. Applying the usual OLS to (4.4.2), we obtain the formula of what is 

called a generalized least squares estimator -1 1 -1ˆ
( )GLS Yβ −′ ′= X V X X V

� �
. It can be shown that 

ˆGLSβ
�

 is BLUE in the class of linear unbiased estimators (and, of course, 
ˆ ˆGLS OLSβ β=
� �

 if 

NI=V ). 

 

To make the matters more transparent, let us assume that 
2 2
1( ,..., )Ndiag σ σ=V ; then 

1 2 2
1(1 / ,...,1/ )Ndiag σ σ− =V , 1(1 / ,...,1 / )Ndiag σ σ=P , and multiplication by P  is equivalent 

to dividing the i th equation by (known!) iσ  which results in 
*

var 1iε ≡ . We get 

 

0 1 1, ,/ 1/ / ... / , 1,..., ,i i i i i k k i i iY X X i Nσ β σ β σ β ε σ= ⋅ + ⋅ + + ⋅ + =  

or 
* * * *

0 1 1, ,1 / ... , 1,..., ,i i i k k i iY X X i Nβ σ β β ε= ⋅ + ⋅ + + ⋅ + =  

 

 where to obtain the estimators of β
�

 the usual OLS can be applied). Note that in univariate 

case we have already used this procedure (called WLS, see p.3-25). 

 

 

What to do if the V  is not known? Even in the simplest case 
2 2
1( ,..., )Ndiag σ σ=V , we have 

to estimate ( 1)N k+ +  parameters what is impossible since we have only N  observations
19

 

(the rule of thumb says that we usually need at least 5 to 10 observations per one parameter to 

get a satisfactory estimator of β
�

). Therefore, we have to assume some simplifying conditions 

concerning V , for example, if V  is a diagonal matrix, suppose that 2
0 1 ,i m iXσ α α= +  for 

some , 1,..., ,m m k=  (now, we have to estimate only two extra parameters). The case where 

we use estimated V̂  is called the feasible or estimable generalized least squares
20

, the estima-

tors have good properties in large sample. In what follows, we shall consider two most popu-

lar cases of GLS.   

 

 

4.9.1. Heteroskedastic Errors 

 

The case where var( | )ε X
�

 
is diagonal, but not equal to 

2
εσ  times the identity matrix NI , is 

referred to as heteroskedasticity. It means that the error terms are mutually uncorrelated, while 

                                                 
19

 Thus, the procedure of estimating β
�

 is unfeasible. 
20

 Denoted, respectively, FGLS and EGLS. 
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the conditional variance of iε  may vary over the observations
21

. Heteroskedasticity does not 

cause bias or inconsistency in the ˆOLS
mβ , whereas something like omitting an important va-

riable would have this effect. However, without the homoskedasticity assumption  ˆOLS
mβ  are 

no longer best, the OLS estimators of the ˆvar mβ  are biased, and the usual OLS t − statistics 

do not have Student‘s distribution even in large samples. Similarly,  F statistic no longer has 

Fisher distribution, and the LM statistic no longer has an asymptotic 2χ  distribution. 

 

Our strategy will be as follows: 

1. Assume that 0 1 1 ... k kY X Xβ β β ε= + + + +
 
is the true model and test the hypothesis 0 :H

the model is homoskedastic or, in other words, 
2 2

0 : ( | ) , 1,..., .iH E i Nε σ≡ =X   

2. If we accept the hypothesis
22

, do nothing (i.e., use the usual OLS estimators). 

3. If we reject the hypothesis, there are two variants: 

   3a) stick to the OLS estimators ˆ
mβ , but correct the estimators of ˆvar mβ  (White correction); 

   3b) instead of OLS, use the weighted least squares (WLS) and get another model with bet-

ter
23

 estimators ˆWLS
mβ  and � ˆvar

WLS
mβ .  

 

 

1. Heteroskedasticity tests. 

 

The most popular are the Breusch-Pagan (BP) and White tests. Generally speaking, if 0H  is  

false, the variance 
2

var( | )i iσ ε= X  can be virtually any function of the mX ‘s. The BP test 

assumes a linear function, i.e., 0var( | )iε π= +X 1 1, ,...i k k iX Xπ π+ + ; then the null hypothesis  

of homoskedasticity is formulated as 0 1: ... 0kH π π= = = . To test it, we use the approximate 

equality 
2 2 2ˆi i iσ ε ε≈ ≈ and run a regression 

 

                                   
2

0 1 1, ,ˆ ... , 1,...,i i k k i iX X u i Nε π π π= + + + + = ;                           (4.5) 

 

both the F  or LM  statistics for the overall significance of explanatory variables in explai-

ning 2ε̂  can be used to test 0H . The LM version of this test is typically called the Breusch-

Pagan test for heteroskedasticity, its test statistics is 
 
 which, under the null hypothesis, is dist-

ributed asymptotically as 
2
kχ  (thus, if 

2
( ) 0.05kP LMχ > < , we reject 0H ).  Koenker sugges-

                                                 
21

 If 
2

var( | )i εε σ≡X , the errors are (or the model is) called homoskedastic. 

22
 Remember that here (and always) the correct wording ought to be „if we fail to reject 

0
H “.  

23
 „Better“ means with smaller variance compared to the estimators obtained by the OLS formulas. 
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ted another form of the LM statistic which is generally preferred (it is less dependent on the 

deviation of the errors ε  from normality).         

The alternative hypothesis in the White test for heteroskedasticity assumes that var( | )iε X  is 

described not by the linear function like in (4.5), but a more complicated one which can be 

approximated by its Taylor expansion up to the second power; the testing procedure begins 

with the regression 

                         
(1) (1) (2) (2)2 2

0 1 1 1 21 1 12
ˆ ... ... ...kkX X X X X uε π π π π π= + + + + + + + + .       (4.6) 

The number of variables in (4.6) increases very quickly (if 3k = , it has 9 terms; if 6k =  the 

White regression would generally involve 27 regressors, unless some are redundant). This 

abundance of regressors is a weakness in the pure form of the White test, therefore there exists 

a simplified form of the test which involves only square terms (and no cross products). In any 

case, we use the LM statistics to test the hypothesis that all π ‘s are zeros.  

4.4 example.  We use the data in hprice.txt to test for heteroskedasticity and create a relevant 

model in a housing price equation.  

 

price house price, $1000s 

assess   assessed value, $1000s 

bdrms    number of bedrooms 

lotsize  size of lot in square feet 

sqrft    size of house in square feet 

colonial =1 if home is colonial style 

lprice   log(price) 

lassess  log(assess) 

llotsize log(lotsize) 

lsqrft   log(sqrft) 

We start with the OLS Model 1, using levels and excluding assess: 

 

0 1 2 3 4price bdrms lotsize sqrft colonialβ β β β β ε= + + + + + . 

 

Some explanatory variables are insignificant, therefore, in Model 1 window, go to Tests| Omit 

variables and check the “Sequential elimination ...“ box. The final Model 2 is   

 
Model 2: OLS, using observations 1-88 

Dependent variable: price 

 

             coefficient    std. error    t-ratio    p-value  

  ----------------------------------------------------------- 

  const      5.93241       23.5124         0.2523   0.8014    

  lotsize    0.00211349     0.000646560    3.269    0.0016    *** 

  sqrft      0.133362       0.0113969     11.70     2.11e-019 *** 

 

R-squared            0.663143   Adjusted R-squared   0.655217 

Log-likelihood      -484.0985   Akaike criterion     974.1970 

Schwarz criterion    981.6290   Hannan-Quinn         977.1912 
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To test 0 :H the (original) model is homoskedastic, we use the modified BP (or Koenker) test 

(in Model 1 window, go to Tests| Heteroskedasticity| Koenker): 

Breusch-Pagan test for heteroskedasticity 

Dependent variable: scaled uhat^2 (Koenker robust variant) 

 

             coefficient     std. error    t-ratio   p-value 

  ---------------------------------------------------------- 

  const      -8376.57       3398.84        -2.465    0.0158  ** 

  bdrms       1637.59       1092.47         1.499    0.1377  

  lotsize        0.214738      0.0737843    2.910    0.0046  *** 

  sqrft          1.27670       1.53140      0.8337   0.4069  

  colonial   -2848.36       1680.54        -1.695    0.0938  * 

 

Test statistic: LM = 16.150571, 

with p-value = P(Chi-square(4) > 16.150571) = 0.002824 

 

The  small p−value evidences against the null (thus the variance depends on lotsize). 

This means that the usual standard errors reported in Model 1 table (and further sequential 

procedure) may be not reliable.  

 

As a side note, heteroskedasticity is often reduced when passing to logarithms:  
 

Model 3: OLS, using observations 1-88 

Dependent variable: lprice 

 

             coefficient   std. error   t-ratio    p-value  

  --------------------------------------------------------- 

  const      -1.34959      0.651041     -2.073    0.0413    **      

  colonial    0.0537962    0.0447732     1.202    0.2330    

  llotsize    0.167819     0.0381806     4.395    3.25e-05  *** 

  lsqrft      0.707193     0.0928020     7.620    3.69e-011 *** 

  bdrms       0.0268304    0.0287236     0.9341   0.3530    

Now, the respective Koenker test rejects heteroskedasticity:  

 
Breusch-Pagan test for heteroskedasticity 

Dependent variable: scaled uhat^2 (Koenker robust variant) 

Test statistic: LM = 5.913380, 

with p-value = P(Chi-square(4) > 5.913380) = 0.205711 

 

and sequential elimination using two-sided alpha = 0.10 ends in 

 

Model 4: OLS, using observations 1-88 

Dependent variable: lprice 

 

             coefficient   std. error   t-ratio    p-value  

  --------------------------------------------------------- 

  const       -1.64007     0.601880     -2.725    0.0078    *** 

  llotsize     0.168457    0.0384596     4.380    3.37e-05  *** 

  lsqrft       0.762369    0.0808862     9.425    7.44e-015 *** 
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We cannot compare directly Model 2 and Model 4 (left sides of the models differ) but we can 

go back to price in Model 4 as follows: 

 
ols lprice 0 llotsize lsqrft # the log-log model  

yhatt=exp($yhat+$sigma^2/2)  # return to the fitted price  

genr cor2_log = corr(price,yhatt)^2 # Replaced scalar cor2_log = 0.72 

  

Thus, upon comparing Model 2 (its R-squared=0.663143) with Model 4, we choose, at 

the moment, Model 4 (we can compare Model 2 and Model 4 by their R-squared because 

the number of variables on their rhs is the same).  �� 

 

2. If we do not reject the homoskedasticity hypothesis, use the usual OLS estimators. 

3a. If we reject the heteroskedasticity hypothesis, the first variant of our behavior is to stick 

to the OLS estimators ˆ
mβ , but correct the estimators of ˆvar mβ . This White correction will 

not change ˆ
mβ ‘s (remember, they are unbiased, but ineffective), it will only correct � ˆvar mβ .  

 

To motivate this correction, recall that in univariate case   

 

1 1 12
ˆ i

i i i

i

x
w

x
β β ε β ε= + = +∑ ∑

∑
 

and  2
1

ˆvar vari iwβ ε=∑ . If 
2

var iε σ≡ , we replace all var iε  by 2
s = 2 / ( 2)ie N −∑  and get 

�
1
ˆvarβ = 2 2

iw s∑ . If var iε ≡ 2σ , we estimate var iε  by 
2
ie  and get the White-corrected formu-

la: 

� 2 2
1

ˆvar
2

i i

N
w e

N
β =

− ∑  

 

(the White heteroskedasticity-consistent standard error or heteroskedasticity robust standard 

error for 1β̂  is given by the square root of this quantity). Note that this � 1
ˆvarβ  is a consistent 

estimator of 1
ˆvar β , that is, in large samples it is a good approximation to 1

ˆvar β . However, do 

not use robust standard errors in small samples if there is no heteroskedasticity; for example, 

the corrected t  - statistics will not necessarily have Student‘s distribution.  

 

In multiple regression models, the formulas are more complex, but the correction principle is 

the same.  

In GRETL, the correction is done by checking the „Robust standard errors“ box in Model| 

Ordinary Least Squares...  window. In R, use the hccm function from the car package or 

vcovHC function from the sandwich package. 

As an example, we correct Model 1 which suffers from heteroskedasticity and then apply 

sequential procedure: 
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Model 5: OLS, using observations 1-88 

Dependent variable: price 

Heteroskedasticity-robust standard errors, variant HC1 

 

             coefficient   std. error    t-ratio    p-value  

  ---------------------------------------------------------- 

  const      5.93241       33.6711       0.1762    0.8606    

  lotsize    0.00211349     0.00120361   1.756     0.0827    * 

  sqrft      0.133362       0.0168342    7.922     8.12e-012 *** 

 

Log-likelihood      -484.0985   Akaike criterion     974.1970 

Schwarz criterion    981.6290   Hannan-Quinn         977.1912 

 

Breusch-Pagan test for heteroskedasticity (robust variant) - 

  Null hypothesis: heteroskedasticity not present 

  Test statistic: LM = 13.8412 

  with p-value = P(Chi-square(2) > 13.8412) = 0.000987224 

 

We got the same model, i.e., the same coefficients (but different standard errors and, 

consequently, p−values). It means that price‘s reaction to, say, sqrft is the same but 

now we are more confident that about the model.   
 

 

3b. If we reject the homoskedasticity hypothesis, the second variant of our behavior is to 

use, instead of OLS, the weighted least squares (WLS) procedure which allows us to get ano-

ther model with better estimators ˆWLS
mβ  and � ˆvar

WLS
mβ .  

 

Assume that 2var( | ) ( )X h Xε σ=
� �

 where ( )h X
�

 is some function of 1( ,..., )kX X X=
�

. Provided 

we know ( )h X
�

, replace the regression equations  

 

                                             0 1 1 ...i i k ki iY X Xβ β β ε= + + + +                                           (4.7) 

with  

0 1 1/ / / ... / /i i i i i k ki i i iY h h X h X h hβ β β ε= + + + +  (here ( )i ih h X=
�

), 

or 

                                            
* * * *

0 0 ...i i k ki iY X Xβ β ε= + + + .                                              (4.8) 

 

Now 
* 2

var iε σ≡ , therefore the last equation does not suffer from heteroskedasticity and its 

OLS estimators ˆ
mβ  are BLUE&C. Note that, mathematically, the OLS estimation of (4.8) is 

equivalent to minimizing  

 

                                  2
0 1 1( ... ) /WLS

i i k ki iRSS Y b b X b X h= − − − −∑                              (4.9) 

 

with respect to mb  in original variables. The procedure is called the Weighted Least Squares 

(WLS), 1/ ih  the weights, and respective solutions ˆWLS
mβ  the WLS estimators of mβ . Clearly, 

if we know ( )h X
�

, the estimators ˆWLS
mβ  are BLUE&C.  
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The basic problem with WLS is that usually we do not know ( )h X
�

. However, if we have es-

tablished (for example, with the BP test) that ( )h X
�

 is a certain linear function of X
�

, we can 

replace ih  in (4.9) by ˆ( )ih X
�

. This procedure of correcting for heteroskedasticity is called the 

Feasible Generalized Least Squares (FGSL) and can be described as follows: 

 

1. Run the OLS regression of Y  on 1,..., kX X  and obtain the residuals ε̂ . 

2. Create 2ˆlog( )ε . 

3. Run the regression of 
24

 2ˆlog( )ε  on 1,..., kX X  and obtain the fitted values, ĝ . 

4. Exponentiate the fitted values: ˆ ˆexp( )h g=  

5. Estimate the equation 0 1 1 ...i i k ki iY X Xβ β β ε= + + + +
 
by WLS, using weights ˆ1/ h . 

 

The steps 3 and 4 are necessary to guarantee that the weights ĥ  would be positive. Now, 

when we use ĥ  instead of h , the FGLS estimators are biased but consistent and asymptotical-

ly (i.e., in large samples) more efficient than OLS. If you have some doubt about the variance 

specified in steps 3 and 4, use heteroskedasticity-robust standart errors of 3a. 

 

The White correction does not change the coefficients of the original model, it only correctly 

estimates standard errors (and, thus, p −values) of the coefficients. 

The weighted regression changes the coefficients and makes them more accurate. 

Whatever technique we use, it does not remove heteroskedasticity from the data.      

 

In GRETL, the FGLS procedure is done automatically through Model| Other linear models|  

Weighted Least Squares... or with the help of the following script: 

 

ols price 0 bdrms lotsize sqrft colonial 

series logres = log($uhat^2) 

ols logres 0 bdrms lotsize sqrft colonial 

series hhat = exp($yhat) 

series ww = 1/sqrt(hhat) 

wls ww price 0 bdrms lotsize sqrft colonial –-robust 

omit --auto=0.10 

series yhat6 = $yhat 

 

 

The output is presented below.  

 
Model 6: WLS, using observations 1-88 

Dependent variable: price 

Heteroskedasticity-robust standard errors, variant HC1 

Variable used as weight: ww 

 

                                                 
24

 This procedure (called the Harvey-Godfrey test) is similar to the BP test and can be used interchangeably with 

it.  
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             coefficient   std. error    t-ratio    p-value  

  ---------------------------------------------------------- 

  const      40.5412       26.3001        1.541    0.1269    

  lotsize     0.00320714    0.00161870    1.981    0.0508    * 

  sqrft       0.110514      0.0125189     8.828    1.21e-013 *** 

 

Statistics based on the weighted data: 

 

R-squared            0.557315   Adjusted R-squared   0.546899 

Log-likelihood      -328.9427   Akaike criterion     663.8854 

Schwarz criterion    671.3174   Hannan-Quinn         666.8796 

 

The standard errors in Model 6 are comparable with the those from Model 2, but now, in Mo-

del 6, we have better (that is, more effective or more precise) estimates of β ′ s. Thus, we can 

use Model 6 as our final model of price  (note that yhat6 is very close to yhatt thus both 

models can be used to fit price). 
 

 

Model 2: OLS, using observations 1-88 

Dependent variable: price 

 

             coefficient    std. error    t-ratio    p-value  

  ----------------------------------------------------------- 

  const      5.93241       23.5124         0.2523   0.8014    

  lotsize    0.00211349     0.000646560    3.269    0.0016    *** 

  sqrft      0.133362       0.0113969     11.70     2.11e-019 *** 

 

R-squared            0.663143   Adjusted R-squared   0.655217 

Log-likelihood      -484.0985   Akaike criterion     974.1970 

Schwarz criterion    981.6290   Hannan-Quinn         977.1912 

 

 

***************************** 
 

The WLS estimators require an assumption about the form of heteroskedasticity. If that as-

sumption is correct, the generalized least squares estimator is minimum variance. If that as-

sumption is wrong (what is quite probable in multivariate case), then, like the OLS estimator, 

the WLS estimator will not be minimum variance, and its standard errors will be incorrect. 

This problem can be avoided by using OLS with White standard errors where an assumption 

about the form of heteroskedasticity is not needed, but then the potential reduction in variance 

of ˆ
mβ ’s from generalized least squares will not be realized. Thus, which variant to choose?  

 

After correcting for heteroskedasticity via WLS, one can test the residuals from the trans-

formed model to see if any evidence of heteroskedasticity remains. If there is no evidence of 

remaining heteroskedasticity, then we can expect that generalized least squares has improved 

the precision of estimation, and that the chance of obtaining incorrect standard errors has been 

reduced. However, if we wish to err on the side of caution, or if further modeling fails to elim-

inate heteroskedasticity, we can use robust standard errors in conjunction with the generalized 

least squares estimator. Robust standard errors can be used not only to guard against the pos-

sible presence of heteroskedasticity when using least squares, they can be used to guard 

against the possible misspecification of a variance function when using generalized least 

squares. 
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**************************** 

 

As a final practical note – take care of heteroskedasticity only in severe cases, otherwise the 

usual OLS procedure gives quite satisfactory and reliable results.  

 

 

4.9.2. Autoregressive Errors 

 

We will now look at another case where the assumption 
2

var( | ) NIε σ=X
�

 is violated, name-

ly: what happens if the condition M3: cov( , ) 0i j i jEε ε ε ε= =  for all i j≠  fails (if this as-

sumption does not hold, the errors are called autocorrelated). Autocorrelation is held to occur 

most frequently when estimating equations using time series data (and to underline the case, 

we will use the index t  instead of i ). With such a data, there may be a tendency for random 

errors or shocks, or disturbancies to „spill over“ from one time period to the next. For 

example, if inflation tY  in one quarter is rather high then it is quite probable that the inflation 

will also be high next quarter, i.e., the correlation 1( , )t tcor Y Y +  will not be zero.   

 

The consequences of autocorrelation are much the same as in homoskedastic case: the OLS 

estimators ˆOLS
mβ  remain unbiased and consistent, but are no longer best or asymptotically ef-

ficient. More seriously, the usual OLS formulas for estimating the variances of the estimators 

become biased, thus invalidating the customary OLS inferential procedures.   

 

Perhaps the most popular way of modelling autocorrelated (or serially correlated) disturbances 

has been to replace the classical assumptions concerning the disturbances tε  by the model 

 

                                                     1 , | | 1t t tuε ρε ρ−= + < ,                                              (4.10) 

 

where , 1,..., ,tu t T=  is a sequence of uncorrelated r.v.‘s  with zero mean and constant varian-

ce 
2
uσ . The process { }tu  is called the white noise (WN) process and { }tε  in (4.10) the first-

order autoregressive process AR(1). The coefficient ρ  indicates the strenght of relationship 

between 1tε −  and tε  (in fact, it equals 1( , )t tcor ε ε − ): if it is close to 0, { }tε  will be close to 

WN (thus the „no correlation“ condition will be „almost true“) and if ρ  is close to +1, then 

the trajectories of { }tε  will have the property of persistency or inertia (this is the first sign of 

„nonwhiteness“). The autoregressive disturbances satisfy 0tEε ≡  and 
2 2

var / (1 )t uε σ ρ≡ − , 

i.e., the zero-mean and homoskedasticity conditions, but nevertheless do not satisfy M3 in 

full. The parameters ρ  and 
2
uσ  are typically unknown, and, along with mβ , we may wish to 

estimate them.   
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Figure 4.3. One trajectory of WN ( 0ρ = , left) and AR(1) process ( 0.8ρ = , right) 

 

Note that our case of autoregressive errors is a particular case of GLS with  
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Our strategy in dealing with autoregressive models will be as follows: 

 

1. Assume that  

0 1 1

1

...t t k kt t

t t t

Y X X

u

β β β ε

ε ρε −

= + + + +


= +  

 
is the true model and test the hypothesis 0 :H the errors constitute WN or, in other words, 

0 : 0H ρ = .  

2. If we fail to reject the hypothesis, do nothing (i.e., the usual OLS procedure applies). 

3. If we reject the hypothesis, there are two variants: 

   3a) stick to the OLS estimators ˆ
mβ , but correct the estimators of ˆvar mβ  (respective stan-

dard errors are known as HAC (heteroskedasticity and autocorrelation consistent) er-

rors); 

   3b) instead of OLS, use quasi-differenced variables and get another model with better
25

 es-

timators ˆGLS
mβ  and � ˆvar

GLS
mβ .  

                                                 
25

 „Better“ means with smaller variance compared to the estimators obtained by the OLS formulas. 
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 1. Testing for autocorrelation. 

 

The most popular are the Durbin-Watson (DW) and Breusch-Godfrey (BG) tests.  

 

• The Durbin-Watson statistics is defined as  

                                               
2 2

1

2 1

( ) /
T T

t t t

t t

DW e e e−
= =

= −∑ ∑ .                                       (4.11) 

The numerator  in (4.11) can be written as ( )2 2 2
1 1 12 2t t t t t t te e e e e e e− − −− + ≈ −∑ ∑ ∑ ∑ ∑ , 

therefore  

ˆ2, if 0
ˆ2(1 )

ˆ0, if 1
DW

ρ
ρ

ρ
=

≈ − = 
=

. 

The DW statistics (which is present in GRETL regression table) can serve as a rough guide to 

test the hypothesis 0 : 0H ρ = – if DW is „close“ to 2, the disturbances are, most probably, 

close to WN. The problem with DW is that, given 0 : 0H ρ =  is true, the critical values of its 

sampling distribution depends on the sample size T , the number of explanatory variables k , 

and on the values taken by those explanatory variables
26

. Even more so, the DW test is a test 

for first-order autocorrelation only, therefore it does not test the null 0 1 2: 0, 0H ρ ρ= =  for a 

second-order process AR(2) such as 1 1 2 2t t t tuε ρ ε ρ ε− −= + +  and also for higher order proces-

ses such as 4t tε ρε −= + tu  (such disturbances are quite common if your time series is 

quarterly). Another serious disadvantage of the DW statistics is that it is biased towards 2 

when a lagged response variable 1tY −  is included among the regressors of an equation. For 

example, if 0tY β= +  1 2 1t t tX Yβ β ε−+ +  and tε  follows a first-order autoregressive process, 

then it is very likely that the DW statistic would fail to detect the autocorrelation. Therefore 

another test is far more applicable than the DW test.  

• Suppose that we wish to test 0 1 2: 0H ρ ρ= =  in the model  

0 1 2 1

1 1 2 2

t t t t

t t t

Y X Y

u

β β β ε

ε ρ ε ρ ε
−

− −

= + + +


= + +
 

 

1) Run the OLS regression of tY  on tX  and 1tY −  and obtain the OLS residuals ˆt teε = , t =  

1,...,T . 

2) Run the auxiliary regression of te  against 1 1, , ,t t tX Y e− −  and 2te − , 3,...,t T= , to obtain the 

F test for joint significance of 1te −  and 2te − . If these two lags are jointly significant at a small 

enough, say, 5% level then we reject 0H  and conclude that the errors are serially correlated 

                                                 
26

 R can estimate the p − value with the dwtest function from the lmtest package. 
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(to find the respective p−value in GRETL, in the OLS model window go to Tests| Autocorre-

lation| Lag order for test:2→OK; there you will find the LMF statistics and respective p-

value).  

3) An alternative to computing the F test is to use the Lagrange multiplier form of the statis-

tic. The LM statistic for testing 0H  is simply 
2

( 2) auxLM T R= −  where 
2
auxR  is just the usual 

R−squared from the auxiliary regression (under the null hypothesis, 
2
2~

asymp

LM χ ). This is 

usually called the Breusch-Godfrey test for AR(2) serial correlation (in GRETL, to apply the 

LM test, go to the same window and look for T ⋅R^2; it is followed by respective p−value).� 

 

In many cases, the presence of autocorrelation is not an indication that the model has autocor-

related errors but rather that it is misspecified, for example, suffering from omitted variables 

or lagged terms, or just because of wrong functional form (e.g., X was used instead of log ).X

We shall discuss the issue later. 

 

4.5 example.  The file icecream.dat contains five time series (30 four-weekly observations): 

 

cons consumption of ice cream per head (in pints) 

income average family income per week (in US Dollars) 

price price of ice cream (per pint) 

temp average temperature (in Fahrenheit) 

time  index from 1 to 30 

The model used to explain consumption of ice cream is a linear regression model with inco- 

me, price, and temp as explanatory variables.  

 

Figure 4.4. It seems that cons most closely follows temp 
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Model 1: OLS, using observations 1-30 

Dependent variable: cons 

 

             coefficient   std. error    t-ratio   p-value  

  --------------------------------------------------------- 

  const       0.197315     0.270216       0.7302   0.4718   

  income      0.00330776   0.00117142     2.824    0.0090   *** 

  price      -1.04441      0.834357      -1.252    0.2218   

  temp        0.00345843   0.000445547    7.762    3.10e-08 *** 

 

rho                  0.400633   Durbin-Watson        1.021170 

 

While the coefficient estimates have the expected signs, the DW statistics is computed as 1.02 

which is quite far from 2; thus, most probably, the null hypothesis 0 : 0H ρ =  should  be rejec-

ted against the alternative of positive autocorrelation. Note that ˆ 0.401ρ =  which can also be 

obtained by running the regression 1t t tvρ −= +uhat uhat : 

Dependent variable: uhat1 

 

             coefficient   std. error   t-ratio   p-value 

  ------------------------------------------------------- 

  uhat1_1     0.400633      0.177417     2.258    0.0319  ** 

 

 

The p−value is <0.05, thus once again we reject 0 : 0H ρ = . To double check, in the Model 1 

window go to Tests→Autocorrelation: 

Breusch-Godfrey test for first-order autocorrelation 

OLS, using observations 1-30 

Dependent variable: uhat 

 

             coefficient    std. error    t-ratio   p-value 

  --------------------------------------------------------- 

  const       0.0615530     0.257165       0.2394   0.8128  

  income     -0.000115792   0.00110852    -0.1045   0.9176  

  price      -0.147641      0.791862      -0.1864   0.8536  

  temp       -0.000203334   0.000432839   -0.4698   0.6426  

  uhat_1      0.428282      0.211215       2.028    0.0534  * 

 

  Unadjusted R-squared = 0.141235 

 

Test statistic: LMF = 4.111588, 

with p-value = P(F(1,25) > 4.11159) = 0.0534 

 

Alternative statistic: TR^2 = 4.237064, 

with p-value = P(Chi-square(1) > 4.23706) = 0.0396 

 

Ljung-Box Q' = 3.6, 

with p-value = P(Chi-square(1) > 3.6) = 0.0578 

 

All the p−values are less than or just marginally greater than 0.05, therefore we stick to the 

assumption that the errors are AR(1). 
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Figure 4.5. Both graphs indicate that residuals have the persistency property (for a long time they have the 

same sign), therefore they are, probably, AR(1) 

 

2. If we do not reject the hypothesis that errors make WN, use the usual OLS estimators. 

3a. If we reject the WN hypothesis, the first variant of our behavior is to stick to the OLS 

estimators ˆ
mβ , but correct the estimators of ˆvar mβ  

(these standard errors are known as the 

Newey-West consistent estimator or HAC or heteroskedasticity and autocorrelation consis-

tent errors). To motivate this correction, recall that in univariate case   

1 1 12
ˆ i

i i i

i

x
w

x
β β ε β ε= + = +∑ ∑

∑
. 

Taking into account the equality 

1 , 1

var cov( , )
T T

t t s

t t s

Z Z Z

= =

=∑ ∑ , we get  

                              

2
1

21

1

cov( , )

ˆvar var 1

var

t s t sT
t s

t t T
t

t t

t

w w

w

w

ε ε
β ε

ε

≠

=

=

 
 
 = ⋅ + 
  
 

∑
∑

∑
,                           (4.12)   

 

from which, upon replacing cov and var by their estimates, we get the HAC � 1
ˆvarβ . Do not be 

disturbed if you see slightly different HAC standard errors in different statistical programs – 

there are many variants of (4.12). In GRETL, go to Model→Ordinary Least Squares and 

check the Robust standard errors box: 

 
Dependent variable: cons 

HAC standard errors, bandwidth 2 (Bartlett kernel) 

 

             coefficient   std. error    t-ratio   p-value  

  --------------------------------------------------------- 
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  const       0.197315     0.299594       0.6586   0.5159   

  income      0.00330776   0.00118427     2.793    0.0097   *** 

  price      -1.04441      0.876164      -1.192    0.2440   

  temp        0.00345843   0.000410546    8.424    6.63e-09 *** 

 

 

Compared with Model 1, the only changes are in std. error, t-ratio, and p-value, 

but all they are not essential. 

 

3b. If we reject the WN hypothesis, the second variant of our behavior is to transform the 

original equation so that the new errors become WN. This approach not only corrects standard 

errors but also change coefficients and make the estimators efficient. We shall consider two 

procedures – the Cochrane-Orcutt (CORC) and Hildreth-Lu.  

 

• The iterative CORC procedure is described as follows. Take the simplest model 

 

                                                          0 1t t tY Xβ β ε= + +                                           (4.13)

  

where 1t t tuε ρε −= + , multiply the lagged equation 1 0 1 1 1t t tY Xβ β ε− − −= + +  by ρ , and su-

btract it from the first equation in (4.13). We get   

 

                                          1 0 1 1(1 ) ( )t t t t tY Y X X uρ β ρ β ρ− −− = − + − +                      (4.14) 

 

or 

                                                         
* * *

0 1t t tY X uβ β= + +                                          (4.15) 

 

where 
*

1t t tY Y Yρ −= −  and 
*

1t t tX X Xρ −= −  are quasi-differenced variables; since tu  are se-

rially independent with a constant variance, the OLS estimators in (4.15) will produce the 

BLUE&C estimators 1β̂  and 
*

0 0
ˆ ˆ / (1 )β β ρ= − . The only problem is with ρ  - as a rule, we do 

not know it, therefore we shall estimate it with the help of the following iterative process: 

 

1. Estimate (4.13) with OLS; use its residuals 
(1)
t̂ε  to estimate 

(1)(1)
(1) 1

(1) 2

ˆ ˆ

ˆ

t t

t

ε ε
ρ

ε
−=∑

∑
.  

2. Substitute (1)ρ to (4.14) and estimate (4.15) with OLS; denote its estimated coefficients by 

*(1)
0β  and 

(1)
1β ; substitute 

(1) *(1) (1)
0 0 / (1 )β β ρ= −  and 

(1)
1β  to (4.13) and calculate 

(2)
t̂ tYε = −  

(1) (1)
0 1 tXβ β− , then estimate 

(2)(2)
(2) 1

(2) 2

ˆ ˆ

ˆ

t t

t

ε ε
ρ

ε
−=∑

∑
. 

3. Substitute (2)ρ  to (4.14) etc; this iterative procedure will be stopped when the estimates of 

ρ from two succesive iterations differ no more than some preselected value, such as 0.001. 

The final ρ̂  is then used to get the CORC (or FGLS) estimates of both original 1β  in (4.13), 

ρ , and 
*

0 0 / (1 )β β ρ= − . These FGSL estimators are not unbiased but they are consistent and 

asymptotically efficient.  
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Note that if there are lagged values of Y  as explanatory variables, one should not use the 

CORC procedure (the standard errors of ˆ
mβ  from (4.15) are not correct even asymptotically). 

Another complication with the CORC procedure is that minimizing of RSS in (4.15) can pro-

duce multiple solutions for ρ . In this case, the CORC procedure might give a local minimum. 

Hence it is better to use a grid-search procedure.   

 

• The grid-search Hildreth-Lu procedure is as follows. Calculate quasi-differenced 
*

tY  

and 
*
tX for different values of ρ  at intervals of 0.1 in the range 1 1ρ− ≤ ≤ . Estimate the reg-

ression of 
*

tY  on 
*
tX and calculate the RSS in each case. Choose the value of ρ for which the 

RSS is minimum. Again repeat the procedure for smaller intervals of ρ  around this value. For 

instance, if the value of ρ  for which RSS is minimum is -0.6, repeat this search procedure for 

values of ρ  at intervals of 0.01 in the range 0.7 0.5ρ− < < − . 

 

4.6 example.  We continue analyzing the icecream.dat data. First, recall the OLS model: 

 
OLS -  using observations 1-30 

Dependent variable: cons 

 

             coefficient   std. error    t-ratio   p-value  

  --------------------------------------------------------- 

  const      -0.113195     0.108280      -1.045    0.3051   

  income      0.00353017   0.00116996     3.017    0.0055   *** 

  temp        0.00354331   0.000444956    7.963    1.47e-08 *** 

 

rho                  0.391242   Durbin-Watson        1.003337 

Now, go to Model→Time series→ Cochrane-Orcurtt...: 
 

Cochrane-Orcutt, using observations 2-30 (T = 29) 

Dependent variable: cons 

rho = 0.377096 

 

             coefficient   std. error    t-ratio   p-value  

  --------------------------------------------------------- 

  const      -0.130557     0.137246      -0.9513   0.3502   

  income      0.00362842   0.00148571     2.442    0.0217   ** 

  temp        0.00367472   0.000537402    6.838    2.94e-07 *** 

 

or, if you go to Model→Time series→Hildreth-Lu...,: 

 
Fine-tune rho using the CORC procedure... 

 

                 ITER       RHO        ESS 

                   1      0.38000   0.0266723 

                   2      0.37761   0.0266721 

                   3      0.37708   0.0266721 

Hildreth-Lu, using observations 2-30 (T = 29) 

Dependent variable: cons 

rho = 0.377084 

 

             coefficient   std. error    t-ratio   p-value  

  --------------------------------------------------------- 
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  const      -0.130561     0.137244      -0.9513   0.3502   

  income      0.00362847   0.00148570     2.442    0.0217   ** 

  temp        0.00367472   0.000537396    6.838    2.94e-07 *** 

 

 

 

Figure 4.6. The Hildreth-Lu graph of RSS as a function of ρ    

 

All three models are similar and can be expressed as 0.1306tcons = − + 0.0036 tincome⋅ +  

0.0037 t ttemp ε+  where 10.377t t tuε ε −+ + .      �� 

 

******************************** 

 

Again, as in heteroskedasticity case, we have to chose between two procedures: CORC or 

similar and HAC errors. However, currently another method is generally preferred by applied 

econometricians. To explain it, consider a simple model 
0 1

1

t t t

t t t

Y X

u

β β ε

ε ρε −

= + +


= +
 which can be 

transformed to 0 1 1 1 1(1 )t t t t tY X Y X uβ ρ β ρ ρβ− −= − + + − +  which can be generalized to 

0 1 1 1 2 1t t t t tY Y X X uγ θ γ γ− −= + + + + . This model is called autoregressive distributed lag model 

and is studied in Practical Econometrics.II course. 

 

***************************** 

 

We have considered two cases of GLS, namely, heteroskedastic and autoregressive errors and 

also two methods to correct the deviations of errors from the iid case – WLS and CORC 

methods, respectively. While these methods are still in use, an alternative approach has found 

increasing favor: that is, use OLS but compute robust standard errors (or more generally, co-

variance matrices). This is typically combined with an emphasis on using large datasets – 

large enough that the researcher can place some reliance on the (asymptotic) consistency 

property of OLS. This approach has been enabled by the availability of cheap computing 

power. The computation of robust standard errors and the handling of very large datasets were 

daunting tasks at one time, but now they are unproblematic. The other point favoring the new-

er methodology is that while FGLS offers an efficiency advantage in principle, it often in-

volves making additional statistical assumptions which may or may not be justified, which 

may not be easy to test rigorously, and which may threaten the consistency of the estimator.  
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*********************************** 

 

Sometimes model‘s residuals demonstrate certain kind of persistency, for example, retain the 

same sign for some time – the natural guess then is that errors are AR(1). On the other hand, 

such a behavior of residuals may just indicate that our model is misspecified. For example, 

Models 1 and 2 below are described, respectively, as 
2

0 1 2t tY t tβ β β ε= + + +  or 0tY β= +
 

1 log ttβ ε+ , thus, both have curvilinear trends. If we have mistakenly estimated them via li-

near trends, residuals will show spurious autocorrelation. To notice our mistake is easy in uni-

variate case but in the case, where we have many variables, we need some formal tests. 

 

 

 

Figure 4.7. Residuals in the second line correspond to the linear models (most probably residuals will not 

reject AR(1) hypothesis); residuals in the third line correspond to true models, they are very much like WN    

 

Thus, the autocorrelated residuals are more frequently the result of misspecified regression 

equation rather than genuine autocorrelation. The next section is devoted to misspecification 

issues.  
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4.10.  Regression Model Specification Tests 

 

 

In reading applied work, you will often encounter regression equations where the dependent 

variable appears in logarithmic form, for example, 0log( )wage β= + 1educβ ε+ . Recall that 

this model gives an (approximately) constant percentage effect as opposed to linear model 

0 1wage educβ β ε= + +  where 1β  describes a constant units effect in response to 1 year chan-

ge in educ (the former model is more realistic). On the other hand, if hourly wage‘s DGP is 

determined by 
2

0 1 2 3log( )wage educ exper experβ β β β ε= + + + + , but we omit the squared 

experience term, 2
exper , then we are committing a functional form misspecification which 

generally leads to biased
27

 estimators of 0 1 2, , and .β β β  Fortunately, in many cases, using lo-

garithms of certain variables and adding quadratics is sufficient for detecting many important 

nonlinear relationships in economics. 

 

    

 
 

Figure 4.8. We use the WAGE1.txt data set; the linear dependence of wage on educ (left) is unsatisfactory 

(probably, wage is better described as exp(
0 1β β+ educ)); the parabolic dependence of wage on exper 

(right) seems resonable 

 

 

• Should we include square and, maybe, cubic terms into the model? 

 

We shall discuss the RESET (Regression Specification Error Test) test here. If the DGP is 

correctly described by the model 0 1 1 ... k kY X Xβ β β ε= + + + + , then no nonlinear functions 

of the explanatory variables should be significant when added to the model. Clearly, we could 

add quadratic terms 
2 2
1 ,..., kX X  and, probably, mixed terms 1 2 1,..., k kX X X X− , and then use 

the F − test to test their collective significance but, if k  is large, we would loose many deg-

rees of freedom and, thus, accuracy. To use alternative approach, let Ŷ  denote the OLS fit 

from our original equation. Consider the expanded equation 

                                                 
27

 Because of the omitted variable bias. 
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2 3

0 1 1 2 3
ˆ ˆ... k kY X X Y Yβ β β δ δ ε= + + + + + + ,                       (4.16) 

 

where, for example, the term 
2

Ŷ , in fact, includes quadratic terms into the model. The null 

hypothesis now is that the original equation is correctly specified. Thus, RESET is the F −  

statistic for testing
28

 0 2 3: 0H δ δ= =  in (4.16). The distribution of F − statistic is 

approximately 2, 3N kF − −  in large samples under the null (and, of course, Gauss-Markov as-

sumptions). An  LM  version (do you remember it?) is also available (and the respective chi-

square distribution will have two df‘s). The general philosophy of the test is: if we can signifi-

cantly improve the model by artificially including powers of the predictions of the model, then 

the original model must have been inadequate.   

4.7 example.   Let us again consider the hprice.txt data set. In 4.3 example we found that the 

model 0 1 2 3price bdrms lotsize sqrftβ β β β ε= + + + + is heteroskedastic which was, probably, 

detected because of the misspecification of the model. In the model window, go to Tests→ 

Ramsey‘s RESET→squares only: 

 

Auxiliary regression for RESET specification test 

OLS, using observations 1-88 

Dependent variable: price 

 

             coefficient     std. error    t-ratio   p-value 

  ---------------------------------------------------------- 

  const      237.893        89.2875         2.664    0.0093  *** 

  bdrms       -5.40693      10.6454        -0.5079   0.6129  

  lotsize     -0.00104059    0.00118493    -0.8782   0.3824  

  sqrft       -0.0515997     0.0582962     -0.8851   0.3786  

  yhat^2       0.00202011    0.000659320    3.064    0.0029  *** 

 

Test statistic: F = 9.387619, 

with p-value = P(F(1,83) > 9.38762) = 0.00295 

 

The model is exactly the same as  

 
Dependent variable: price 

 

             coefficient     std. error    t-ratio   p-value 

  ---------------------------------------------------------- 

  const      237.893        89.2875         2.664    0.0093  *** 

  bdrms       -5.40693      10.6454        -0.5079   0.6129  

  lotsize     -0.00104059    0.00118493    -0.8782   0.3824  

  sqrft       -0.0515997     0.0582962     -0.8851   0.3786  

  sq_yhat1     0.00202011    0.000659320    3.064    0.0029  *** 

 

Log-likelihood      -478.1628   Akaike criterion     966.3255 

Schwarz criterion    978.7122   Hannan-Quinn         971.3158 

 

which means that the original equations lacks square terms. To be more specific, we shall add 

square and mixed terms to the model (bl=bdrms*lotsize etc): 

 
Dependent variable: price 

                                                 
28

 How will you test the null 
0 :H the original model is correct if you include only square term in (4.16)? 
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                coefficient      std. error    t-ratio    p-value 

  --------------------------------------------------------------- 

  const         239.504         90.0438         2.660     0.0095  *** 

  bdrms        -104.861         43.0718        -2.435     0.0172  ** 

  lotsize        -0.0112265      0.00504570    -2.225     0.0290  ** 

  sqrft           0.149445       0.0686030      2.178     0.0324  ** 

  sq_bdrms       13.2465         6.00980        2.204     0.0305  ** 

  sq_lotsize     -1.28981e-07    3.66779e-08   -3.517     0.0007  *** 

  sq_sqrft       -1.43239e-06    1.45693e-05   -0.09832   0.9219  

  bl              0.00634235     0.00199654     3.177     0.0021  *** 

  bs             -0.0167016      0.0132036     -1.265     0.2097  

  ls             -3.43006e-07    2.19292e-06   -0.1564    0.8761  

 

Log-likelihood      -457.6175   Akaike criterion     935.2350 

Schwarz criterion    960.0084   Hannan-Quinn         945.2156 

and simplify it (in Model window, go to Tests→Omit variables where check „Sequential eli-

mination of ...“): 

 
Model 4, Dependent variable: price 

 

                coefficient     std. error    t-ratio   p-value  

  -------------------------------------------------------------- 

  const        261.163         84.8316         3.079    0.0028   *** 

  bdrms        -81.9941        36.5447        -2.244    0.0276   ** 

  lotsize       -0.00822570     0.00446652    -1.842    0.0692   * 

  sqrft          0.0764229      0.0120744      6.329    1.28e-08 *** 

  sq_bdrms       7.06968        4.05795        1.742    0.0853   * 

  sq_lotsize    -1.17193e-07    1.94210e-08   -6.034    4.57e-08 *** 

  bl             0.00515397     0.00105853     4.869    5.46e-06 *** 

 

R-squared            0.810691   Adjusted R-squared   0.796668 

F(6, 81)             57.81192   P-value(F)           3.11e-27 

Log-likelihood      -458.7423   Akaike criterion     931.4845 

Schwarz criterion    948.8259   Hannan-Quinn         938.4709 

 

This „final“ model has the smallest Akaike statistic and all significant terms (at 10% signifi-

cance level). The Koenker test does not show any heteroskedasticity but the model has severe 

multicollinearity problem which can explain some (which?) „strange“ signs
29

 of the coeffi-

cients: 

 
Variance Inflation Factors 

Minimum possible value = 1.0 

Values > 10.0 may indicate a collinearity problem 

 

          bdrms   38.345 

        lotsize   83.752 

          sqrft    1.970 

       sq_bdrms   31.547 

     sq_lotsize   12.874 

             bl   83.659 

 

                                                 
29

 For example, bdrms has a negative coefficient, thus, if the number of bedrooms increases, the price (accor-

ding to our model) decreases. This is because bdrms is strongly correlated with other variables which „compen-

sate“ this „inaccuracy“. Also, it is quite possible (because of multicollinearity) that the addition or removal of a 

few observations will change the sign and value of the coefficient at bdrms. Note that the predictive power of 

the model is quite high – R-squared equals 0.81. 
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Can we cure some of the problems by passing to logarithms? If we apply RESET test to the 

model 

 
Model 5, Dependent variable: lprice 

 

             coefficient   std. error   t-ratio    p-value  

  --------------------------------------------------------- 

  const      -1.29704      0.651284     -1.992    0.0497    ** 

  bdrms       0.0369583    0.0275313     1.342    0.1831    

  llotsize    0.167967     0.0382811     4.388    3.31e-05  *** 

  lsqrft      0.700232     0.0928652     7.540    5.01e-011 *** 

Log-likelihood       25.86066   Akaike criterion    -43.72132 

Schwarz criterion   -33.81197   Hannan-Quinn        -39.72909 

 

we get  
Auxiliary regression for RESET specification test 

OLS, using observations 1-88 

Dependent variable: lprice 

 

             coefficient   std. error   t-ratio   p-value 

  ------------------------------------------------------- 

  const       87.8849      240.974       0.3647   0.7163  

  bdrms       -0.925329      2.76975    -0.3341   0.7392  

  llotsize    -4.18098      12.5952     -0.3319   0.7408  

  lsqrft     -17.3491       52.4899     -0.3305   0.7418  

  yhat^2       3.91024      13.0143      0.3005   0.7646  

  yhat^3      -0.192763      0.752080   -0.2563   0.7984  

 

Test statistic: F = 2.565042, 

with p-value = P(F(2,82) > 2.56504) = 0.0831 

 

which means that we do not need squared and cubed terms in our Model 5.  

 

 

• Which model to choose: log(Y) =… or Y =…? 

 

The final question is: which model to choose, the „final“ one for price or the one for 

lprice? We can compare directly these two models neither by 
2

R nor by AIC (because their 

lhs‘s differ) but we can repeat the procedure from Section 3.8: genr R2 = corr(price, 

exp(yhat5+sigma_5^2/2))^2 (=0.74)
30

 is smaller than 2 0.81R = , but taking into account 

the fact that the model for price has more variables and also the multicollinearity of the mo-

del, we stick to the model in logs.    

 

Here we have presented one solution to the question: how to compare two models? When the 

choice is between the linear and linear-log model, or among the log-linear and double-log spe-

cification, things are easy because we have the same dependent variable in each of the two 

models. So, we can estimate both models and choose the functional form that yields the lower 

AIC. However, in cases where the dependent variable is not the same, as, for example, in the 

linear form 0 1Y Uβ β ε= + +  and log-linear 0 1log( )Y Vβ β ε= + + , we cannot directly compa-

re these two models by AIC (in our linear model it equals 931.4845 and in log-log model 

-43.72132). 

                                                 
30

 This scalar is saved in session icon view.  
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We shall present one more method which allows us to compare such models. The model 

0log( )price β= + 1 2 3log( ) log( )bdrms lotsize sqrftβ β β ε+ + +  is equivalent to price =

0exp(β + 1bdrmsβ + 2 3log( ) log( )) exp( )lotsize sqrftβ β ε+ ⋅  which is close to the nonlinear 

model price B= + 0 1 2 3*exp( log( ) log( ))B bdrms lotsize sqrftβ β β ε+ + + . Nonlinear models 

are solved through iterative numeric procedures and a usual problem with exponential models 

is to find proper starting values. It appears that often the coefficients of the log-log model can 

serve this purpose.  

 
ols lprice 0 bdrms llotsize lsqrft 

genr B = 100  

genr B0 = exp($coeff(0)) 

genr beta1 = $coeff(bdrms) 

genr beta2 = $coeff(llotsize) 

genr beta3 = $coeff(lsqrft) 

nls price = B + B0*exp(beta1*bdrms+beta2*llotsize+beta3*lsqrft) 

    params B B0 beta1 beta2 beta3 

end nls 

series price_f = $yhat # fitted values 

 
Convergence achieved after 622 iterations 

price = B + B0*exp(beta1*bdrms+beta2*llotsize+beta3*lsqrft) 

 

               estimate       std. error    t-ratio   p-value  

  ------------------------------------------------------------ 

  B          181.268         27.5975        6.568     4.18e-09 *** 

  B0           9.47395e-06    3.11154e-05   0.3045    0.7615   

  beta1        0.100894       0.0470406     2.145     0.0349   ** 

  beta2        0.414635       0.0866969     4.783     7.41e-06 *** 

  beta3        1.58991        0.331795      4.792     7.15e-06 *** 

 

R-squared            0.769668   Adjusted R-squared   0.758568 

Log-likelihood      -467.3725   Akaike criterion     944.7449 

Schwarz criterion    957.1316   Hannan-Quinn         949.7352 

 

When comparing the final version of AIC, namely 944.7449, with the AIC of the linear model 

931.4845, we see again that the linear model is better (in the AIC sense). Thus, if our purpose 

is to use the model for prediction, both models are of similar quality, but if we want to explain 

the influence of each variable on price, the constant elasticity log-log Model 5 is more 

transparent and well-defined.       �� 

 

More direct methods to choose between 0 1 1 2 2log log logY X X uβ β β= + + +  and 0Y β= +  

1 1 2 2X X vβ β+ +  are described in [TH, p.344] or [AH, p.165]. 

 

 

 

• Are the model disturbances normally distributed? 

 

Recall that assumption M4 stated that the disturbancies had to be normally distributed about 

their zero mean. The assumption is necessary if the inferential aspects of classical regression (

t − test, F − test etc) are to be valid in small samples (for large samples, because of the central 

limit theorem and law of large numbers, tests will be asymptotically valid even if the distur-

bances are not normally distributed).  
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There are many tests for normality
31

 of errors. In GRETL, in Model 4 window go to 

Tests→Normality of residual, where you will see (Fig. 4.10, left) the histogram of residuals 

and also the 
2
2χ -statistic (=17.415) of the Doornik-Hansen test of 0 :H residuals are normal 

together with its p−value (=0.0002). We can perform three more tests of the 0H  through Va-

riable→Normality test (see the output below) but all they reject normality. However, hpri-

ce.txt contains many (88) observations and residuals are rather symmetric (see Fig. 4.9, left) 

which makes us trust all the significance tests in 0 : 0mH β = .  

 

 

 
Test for normality of uhat4: 

 

 Doornik-Hansen test = 17.4152, with p-value 0.000165325 

 Shapiro-Wilk W = 0.943844, with p-value 0.000830343 

 Lilliefors test = 0.104038, with p-value ~= 0.02 

 Jarque-Bera test = 54.0978, with p-value 1.78985e-012 

 

 

 
 

Figure 4.9. Histograms of the residuals of the linear Model 4 (left)  and log-log Model 5 (right)  

 

Similar conclusions hold for nonnormality of the residuals in the log-log Model 5 (see Fig. 

4.10,right, and the output below). 
 

 

Test for normality of uhat5: 

 

 Doornik-Hansen test = 28.854, with p-value 5.42542e-007 

 Shapiro-Wilk W = 0.95184, with p-value 0.00250267 

 Lilliefors test = 0.0664989, with p-value ~= 0.43 

 Jarque-Bera test = 34.8895, with p-value 2.6536e-008 

 

                                                 
31

 We do not know errors, therefore, as always, we use residuals to test any null hypothesis about errors. 
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4.11.  Instrumental Variables 

 

In this section you will learn how to use instrumental variables to obtain consistent estimates 

of a model parameters when its independent variables are correlated with the model errors. 

Until now, it was assumed that the error terms in the linear regression model Y β ε= +X
�� �

 sa-

tisfy the M2 and M3 conditions, that is, ( | ) 0iE ε =X  and, respectively,  

                                               
2

var( | ) var( ) NIε ε σ= =X
� �

 .                                    (4.19) 

 

Recall that the term ( | )iE ε X  in ( | )E ε =X
�

 1( ( | ),..., ( | ))NE Eε εX X  is called a conditional 

expectation of iε  given (or assuming that we know all the values in) the design matrix X  (or 

the whole information contained in X ). In our case, iY  depends on two random variables, 

observable iX
�

 and nonobservable iε , thus this conditional expectation describes the relation-

ship between iX
�

 and iε  in some sense (in expectation sense, we do not mention distributions 

of these two variables anywhere). Conditional expectations have basically the same properties 

as ordinary expectation, for example, ( | ) ( | ) ( | )i j i j i jE X X E X E X X X+ = + = +X X X
� � � � � �

 (sin-

ce we know X , we also know iX
�

, therefore we can treat it as a known number, that is, 

( | )i iE X X=X
� �

).  Some new properties of conditional expectations are: 1) if two random va-

riables, for example, iε  and jX
�

 are independent for any i  and j  or, in other words, the vec-

tor ε
�

 and X are independent, then ( | ) ( )E Eε ε=X
� �

 (recall that if the random events A and B 

are independent, then ( | ) ( )P A B P A= ), 2) whatever is the random variable U , 

( )( ) ( | )E U E E U= X (the double or total expectation rule), and 3) 

( ( ) | ) ( ) ( | )E f U f E U=X X X X  (once X  is known, ( )f X  can be treated as a constant). Here 

are three examples of their application (provided M2, i.e., ( | ) 0E ε =X , holds): 

 

1) ( | ) ( | ) ( | )E Y E Eβ ε β= + =X X X X X
� �� �

  

2) In univariate case, ( )1 1 1 12 2
ˆ( | ) ( | ) | |i i

i i

i i

x x
E E E E

x x
β β ε β ε β

 
 = + = + =
 
 
∑ ∑
∑ ∑

X X X X ,  

 

thus to prove unbiasedness of ˆOLS
mβ  it sufficies to require M2 (if we add M3, the OLS estima-

tors of mβ  are BLUE&C). If  (4.19) is violated (i.e., 
2

var( ) NIε σ= ≠V
�

), then there exist a 

BLUE&C modification of the OLS method called GLS (Generalized Least Squares) where 

now the formulas of ˆGLS
mβ  contain V

32
(we have already had two examples of V for the cases 

                                                 
32

 Prior to performing OLS, multiply from the left both sides of the equation Y β ε= +X

�� �

 
by the matrix P  from 

′ =P P V ; the transformed errors become uncorrelated and homoskedastic. 
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of heteroskedastic
33

 and autoregressive errors). If the matrix V  is unknown and must be esti-

mated, the method is called an FGLS (Feasible GLS). 

 

3) Let 1 2Y X X ε= + +  and 1 2 1 2( | , ) 0EX EX E X Xε= = = . Then 0EY = , 1 1( | )E Y X X= +

2 1( | )E X X , 1 2 1 2( | , )E Y X X X X= +  (can you prove all these claims?), and also 

1 2 1 2( ( | , )) ( ) 0E E Y X X E X X= + = ( )EY= . 

 

Let us return to the case where some of the explanatory variables correlate with ε . To simpli-

fy matters, consider a univariate case 0 1Y Xβ β ε= + + . It is easy to verify that ( | ) 0E Xε =  

implies cov( , ) 0Xε = . Indeed, ( ) ( )cov( , ) ( ) ( )X E E X EX E X EX Eε ε ε ε ε= − ⋅ − = − ⋅ =

( )( | ) 0.E XE Xε =  An important claim can be derived from this equality: if ε  correlates with 

X  (such an X
 
is called endogeneous in the model; an explanatory variable which does not 

correlate with ε  is exogenous), then ( | ) 0E Xε ≠  and 1
ˆ( | )E β X  in 2) above is no longer 1β  

(thus 1
ˆOLSβ  will be biased). Even more so, the bias will not disappear in large samples (thus 

1
ˆOLSβ  is inconsistent). Indeed, as it follows from (3.5), 1 1 12

ˆ i i

i

x

x

ε
β β β= + = +∑

∑
�

�

cov( , )

var

X

X

ε
 

→ 1β . The implications are very serious: if (in multivariate case) ε  correlates with any mX , 

then all OLS estimators of the coefficients are no longer BLUE&C. In addition, none of the 

usual hypothesis testing or interval estimation procedures are valid.  

 

To give an intuitive explanation to the above , consider univariate regression 

0 1( )Y Xβ β ε= + + = 2 0.3 X ε+ +  where X  and ε  are positively correlated: ( , ) ~X ε
2 2(0,0;3 ,1 , ( )N ρ = 0.7). 

 
library(MASS); set.seed(2);N=100;ro=0.7 

Sigma=matrix(c(3^2,3*1*ro,1*3*ro,1^2),2,2) 

Sigma 

Xeps=mvrnorm(N,c(0,0),Sigma) 

X=Xeps[,1]; eps=Xeps[,2] 

Y=2+0.3*X+eps  # DGP 

plot(X,Y) 

mod=lm(Y~X);summary(mod) 

abline(2,0.3); abline(mod,lty=2) 

legend(-6.5,6,c("true","OLS estimated"),lty=c(1,2)) 

 

In words: Y  depends not only on X , but also on many other variables which reside in ε ; if 

X  is positively correlated with any of them, then a unit increase in X  will also cause some 

increase in ε  (thus, ˆOLSβ  could be, say, twice the true value of β  which is to measure the 

individual effect of X  on Y ).   

                                                 
33

 If errors are heteroskedastic, 
2 2

1( , ..., )
N

diag σ σ=V  and the estimators ˆ GLS

m
β  are in fact the estimators for 

weighted variables. 
 
 



©   R. Lapinskas, PE.I - 2013 

      4. Multivariate  regression 

 

 

4-50 

 

 

Figure 4.10. Explanatory variable X  is correlated with the error ε ; the estimated OLS regression line does 

not go close to the true regression line 0 1
Y Xβ β= + . 

 

Since X  is correlated with ε , the error term increases together with X  and Y  goes further 

and further from the true regression line. On the other hand, the OLS estimates 1β  according 

to its formulas, therefore, the estimated regression line does not coincide with the true one (the 

OLS estimator of 1β  is biased and inconsistent). In Computer Labs, 3.9 Example, we explain 

how to correct the problem.   

 

Now we shall present several cases where X  and ε  are correlated. 

 

• Measurement error 

 

The errors-in-variables problem occurs when an explanatory variable is measured with error. 

To demonstrate that the variable correlates with the disturbance in this case, consider the fol-

lowing example. Let us assume that an individual’s personal saving is based on their “perma-

nent” or long-run income.  

A theory of consumer spending which states that people will spend money at a level consistent 

with their expected long term average income. The level of expected long term income then 

becomes thought of as the level of "permanent" income that can be safely spent. A worker will 

save only if his or her current income is higher than the anticipated level of permanent inco-

me, in order to guard against future declines in income. 

Let iY  be the annual savings, iX  the permanent annual income of the ith worker, and 

0 1i i iY Xβ β ε= + +  a simple model to represent this relationship. Since the permanent income 

X is unobservable, we replace it with a proxy observable variable 
*

X =  current income, 

-6 -4 -2 0 2 4 6

-2
0

2
4

6

X

Y

true
OLS estimated
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*
X X u= + , 

2
~ (0, )uu σ . Now 

* *
0 1 0 1i i i i iY X Xβ β ε β β ε= + + = + + , where 

*
1( )i i iuε ε β= − , 

but since 
* *

cov( , )i iX ε = 2
1 1(( ) ( )) 0i i i i uE X u uε β β σ+ ⋅ − = − ≠  the OLS estimator of 1β  in our 

observable equation is inconsistent. Later, we shall discuss another, not the OLS, method to 

estimate 1β  in such a situation. 

 

• Simultaneous equation bias 

 

Recall that in a competetive market, the prices and quantities of goods are determined jointly 

by the forces of supply and demand, i.e., as a solution of the simultaneous system of two equa-

tions, one equation for the supply curve and the other equation for the demand curve:  

0 1

0 1

( )

( )

D D D
t t t

S S S
t t t

Q P

Q P

β ε β

β ε β

 = + +


= + +  

Take a look at the first, demand, equation and assume that 2
Dε  is bigger than in previous mo-

ment – this implies that the demand curve will be lifted upwards and that now both coordi- 

  

Figure 4.11. The crossing point of the supply and demand curves defines the equilibrium price and quantity 

 

nates of the new point of equilibrium, price and quantity, will increase. This means that the 

error Dε  and explanatory variable P  are positively correlated, the OLS procedure will fail if 

applied to the equation because of the endogeneity problem; the resulting bias (and incon-

sistency) is called the simultaneous equation bias.   

 

• Omitted variable 
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When an omitted variable is correlated with an included explanatory variable, then the regres-

sion error will be correlated with this explanatory variable, making it endogenous. The classic 

example is from labor economics. A person’s wage is determined by in part his or her level of 

education. Let us specify a log-linear regression model explaining observed hourly wage as
34

  

2
0 1 2 3log( )WAGE EDUC EXPER EXPERβ β β β ε= + + + + . 

What else affects wages? Labor economists are most concerned about the omission of a varia-

ble measuring ability which may affect the quality of their work and their wage. This variable 

is a component of the error term, since we usually have no measure for it. The problem is that 

not only might ability affect wages, but more able individuals may also spend more years in 

school, causing a positive correlation between ε  and the education variable EDUC, so that 

cov( , ) 0EDUC ε > . 

************************* 

In the simple linear regression model 0 1Y Xβ β ε= + +
 

where X  is random and 

cov( , ) 0X EXε ε= ≠ , the OLS estimators ˆOLS
mβ  

are biased and inconsistent. When faced with 

such a situation, we must consider alternative estimation procedurs. Recall that if the U1-U3 

assumptions hold, ˆOLS
mβ can be obtained via the method of moments (see Sect. 3.3): 

                   
� ( )

0 1

0 1

ˆ(0 ) (1/ ) ( ( )) 0

ˆ(0 cov( , ) cov , ) (1/ ) ( ( )) 0

i i

i i i

E N Y b b X

X X N X Y b b X

ε ε

ε ε

 = = = − + =


= = = − + =

∑
∑

            (4.20) 

Now 0 cov( , )X ε≠ , therefore we cannot use the above system. Suppose, however, that there 

is another variable Z , called an instrument, such that 

i)   Z  does not have a direct effect on Y (it does not belong to the rhs of the model). 

ii)  Z  is not correlated with ε , it is exogenous. 

iii) Z  is strongly (or at least not weakly
35

) correlated with X , the endogenous explanatory 

variable. 

 

In the second equation of (4.20), replace X  by Z  and solve the system: you will get 

 

1

0 1

( )( )
ˆ

( )( )

ˆ ˆ

i iIV

i i

IV IV

Z Z Y Y

Z Z X X

Y X

β

β β

 − −
=

− −


= −

∑
∑  

                                                 
34

 Logaritmic transformations are often used for variables that are monetary values such as wages, salaries, inco-

me, prices, sales, and expenditures, and in general for variables that measure the „size“ of something. These va-

riables have the characteristic that they are positive and often have densities that are positively skewed, with a 

long tail to the right. Logs of such variables are usually closer to normal.     
35

 See a footnote in p. 4-54. 
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These new, instrumental variables (IV), estimators have the following properties: 

• They are consistent (very good!) 

• However, if the X  is exogeneous but we replace it with Z , the variance of the in-

strumental variables estimator will always be larger than the variance of the OLS esti-

mator (if instrument is weak, IV estimation is not reliable).  

Another, equivallent to the IV, the two-stage least squares (2SLS) method can be described as 

follows: assume that the variable X  in 0 1Y Xβ β ε= + +  is endogenous and Z is its instru-

ment, i.e, ( , ) 0XZ cor X Zρ = ≠ . 

Stage 1. Use the OLS method in 0 1X Z uδ δ= + +  and save the fitted values
36

 0
ˆˆ (
OLS

X δ= +

1
ˆ )
OLS

Zδ . 

Stage 2. In the original regression equation, replace X  by X̂  and find ordinary OLS estima-

tors – these are denoted as
2

1
ˆ SLSβ . Note that they are exactly the same as 1

ˆ IVβ .      

In principle, it would be enough to only use the IV method, however there is a complication – 

what to do if there were two or more instruments (1) (2), ,...Z Z ? In the system of equations  

0 1

(1)
0 1

(2)
0 1

( ( )) 0

( ( )) 0

( ( )) 0

...........................................

i i

i ii

i ii

Y b b X

Z Y b b X

Z Y b b X

 − + =

 − + =

 − + =



∑
∑
∑

 

we will have two unknowns ( 0b  and 1b ) and at least three equations, therefore, most proba-

bly, the system will be inconsistent. We could remove some redundant equations with Z ’s 

but, generally, discarding information is not attractive. It appears that it is 2SLS which gives 

us the right solution (in Stage 1, regress X on (1) (2),Z Z and so on). In general multivariate 

case, if in    

                                 * *
0 1 1 1 1... ...l l n nY X X X Xβ β β γ γ ε= + + + + + + +                (4.21) 

1,..., lX X  stand for egzogenous variables, * *
1 ,..., nX X   for endogenous, and 1,..., pZ Z (where 

(!)p n≥ ) for instruments, in Stage 1, save the OLS fits *
0 1 1

ˆ ˆ ˆˆ ...m l lX X Xδ δ δ= + + + +
 

(1) ( )
1

ˆ ˆ... p
l l pZ Zδ δ+ ++ + , 1,...,m n= , then, in Stage 2, substitute these fits to (4.21) for * ,mX

 

1,...,m n= ,
 
and use OLS again. If p n= (one instrument for one endogenous variable), we say 

                                                 
36

 Since 1
0,

XZ
ρ δ≠  also 0≠  (why?). 
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that the equation is (exactly) identified, if p n>  overidentified. In both these cases parameters 

of the model will be consistently estimated.  

 

4.8 example.  We use the data on married women in the file mroz.txt to estimate the wage 

model 

2
0 1 2 3log( )WAGE EDUC EXPER EXPERβ β β β ε= + + + + . 

……………………………………………………………………………………………………………………………… 

lfp         dummy variable = 1 if woman worked in 1975, else 0 

educ          Wife's educational attainment, in years 

wage          Wife's 1975 average hourly earnings, in 1975 dollars 

mothereduc       wife's mother's education level 

fathereduc       wife's father's education level 

exper          Actual years of wife's previous labor market experience 

………………………………………………………………………………………………………………………………… 

 

 

Using the N=428 women (out of 753) in the subsample who are in the labor force (Sam-

ple→Restrict, based on criterion…→lfp=1), the OLS estimates and their standard errors are 

given by the following regression output table: 

Dependent variable: l_wage 

 

             coefficient    std. error    t-ratio    p-value  

  ----------------------------------------------------------- 

  const      -0.522041      0.198632      -2.628    0.0089    *** 

  educ        0.107490      0.0141465      7.598    1.94e-013 *** 

  exper       0.0415665     0.0131752      3.155    0.0017    *** 

  sq_exper   -0.000811193   0.000393242   -2.063    0.0397    ** 

 

We estimate that an additional year of education increases wages approximately 10.75%, ce-

teris paribus. However, if an unobservable ability, living in ε , has a positive effect on wage 

(i.e., if ε  correlates with educ), then this estimate is overstated, as the contribution of ability 

is attributed to the education variable. Therefore, probably, it would be better for the govern-

ment to redirect the state investment in education and spend tax dollars on, say, social security 

instead of schools.  

 

We shall use instrumental variables to correctly estimate the influence of educ on l_wage. 

A mother’s education mothereduc does itself not belong in the daughter’s wage equation, 

and it is reasonable to propose that more educated mothers are more likely to have more edu-

cated daughters (thus educ and mothereduc correlate). Another question is whether a 

woman’s ability is correlated with her mother’s education (to be a valid instrument, these var-

iables must be uncorrelated). To test the assumption, we shall use the Hausman test later, but, 

for a while, we assume it to be true.   

 

Stage 1.  

Dependent variable: educ 
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               coefficient   std. error   t-ratio    p-value  

  ----------------------------------------------------------- 

  const         9.77510      0.423889     23.06     7.57e-077 *** 

  exper         0.0488615    0.0416693     1.173    0.2416    

  sq_exper     -0.00128106   0.00124491   -1.029    0.3040    

  mothereduc    0.267691     0.0311298     8.599    1.57e-016 *** 

 

Note that the coefficient of  mothereduc is very significant, with a t −value greater than
37

 

3.16. Now we save educ_hat and perform  

Stage 2. 

Dependent variable: l_wage 

 

             coefficient    std. error    t-ratio   p-value 

  --------------------------------------------------------- 

  const       0.198186      0.493343       0.4017   0.6881  

  exper       0.0448558     0.0141644      3.167    0.0017  *** 

  sq_exper   -0.000922076   0.000423969   -2.175    0.0302  ** 

  educ_hat    0.0492630     0.0390562      1.261    0.2079  

 

Note that the coefficient 0.049 is in fact the IV coefficient for educ (not educ_hat) and, 

surprisingly, not significant. Also, both stages can be performed in one step with Mod-

el→Instrumental variables→Two-Stage Least Squares…  (see Fig. 4.12).     

 

A few words about the Hausman test whose p −value is presented in the model’s printout 

below. Note that, in order to test that, in equation on p. 4-53, educ correlates with unobserv-

able ε  (this is where the mothereduc resides), it makes no sense to calculate the sample 

correlation between  educ and observable ε̂  (because, according to the OLS procedure (see 

(3.8)), this correlation is always 0). This is why the Hausman test takes another approach. The 

null hypothesis 0 :H X  is egzogenous in 0Y β= + 1Xβ ε+  (thus, in our case, 0H : educ is 

egzogenous) is equivalent to 0 :H the OLS estimate of 1β  is consistent against the alternative 

1H : X is endogenous (in this latter case we should look for an instrumental variable). The idea 

of the test is to compare the performance of the LS estimator to an IV estimator. Under the 

null and alternative hypotheses, we know the following: 

 

• If the null hypothesis is true, both the least squares estimator ˆOLSβ and the instrumen-

tal variables estimator ˆ IVβ are consistent. Thus, in large samples the difference be-

tween them converges to zero. Naturally, if the null hypothesis is true, use the more ef-

ficient estimator, which is the least squares estimator. 

• If the null hypothesis is false, the least squares estimator is not consistent, and the in-

strumental variables estimator is consistent. Consequently, the difference between 

them does not converge to zero in large samples. If the null hypothesis is not true, use 

the instrumental variables estimator, which is consistent. 

 

                                                 
37

 The rule of thumb says that if the t − value of the candidate to the instrumental variable is greater than  3.16=

10 (or respective F − statistic >10), we can rely on that instrument, it is strong.    
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Figure 4.12. Fill in the Instruments box with all the egzogeneous variables plus instruments 

 

Dependent variable: l_wage 

Instrumented: educ  

Instruments: const exper sq_exper mothereduc  

 

 

             coefficient    std. error       z      p-value 

  --------------------------------------------------------- 

  const       0.198186      0.472877       0.4191   0.6751  

  exper       0.0448558     0.0135768      3.304    0.0010  *** 

  sq_exper   -0.000922076   0.000406381   -2.269    0.0233  ** 

  educ        0.0492630     0.0374360      1.316    0.1882  

 

 

 

Hausman test - 

  Null hypothesis: OLS estimates are consistent 

  Asymptotic test statistic: Chi-square(1) = 3.00338 

  with p-value = 0.0830908 

 

Weak instrument test -  

  First-stage F-statistic (1, 424) = 73.9459 

 

The weak instrument test gives the value of F − statistic equal to 8.599^2=73.9459 which is 

more than 10, thus, mothereduc  is a very strong instrument. On the other hand, is educ 

correlated with ε ? (If it is not, ˆOLS
mβ  are consistent and there is no need for instruments.) The 

p−value of the relevant Hausman test is 0.083 and this implies that, in fact, we do not need 

instruments (at least, with 5% significance). However, note two changes as compared to the 

original OLS estimates. First, the estimated return to education is 4.93%, which is lower than 

the OLS estimate of 10.75%. This is consistent with the fact the least squares estimator tends 

to overestimate the effect of education if educ is positively correlated with the omitted fac-

tors in the error term. Also notice that the standard error on the coefficient of education 

(0.0374) is over 2.5 times larger than the standard error reported with the OLS estimates 

(0.0141). This reflects the fact that even with a good instrumental variable, the IV estimator is 

not efficient. How can we improve the efficiency of the IV estimator? One of the possibilities 

is to add more and stronger instruments, namely, we shall add fathereduc. Respective 

model is 
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Dependent variable: l_wage 

Instrumented: educ 

Instruments: const exper sq_exper mothereduc fathereduc 

coefficient std.error  z       p-value 

--------------------------------------------------------- 

const   0.0481003  0.400328   0.1202  0.9044 

exper   0.0441704  0.0134325  3.288   0.0010 *** 

sq_exper  -0.00089897 0.0004017 -2.238   0.0252 ** 

educ   0.0613966  0.0314367  1.953   0.0508 * 

 

Hausman test - 

Null hypothesis: OLS estimates are consistent 

Asymptotic test statistic: Chi-square(1) = 2.8256 

with p-value = 0.0927721 

 

Sargan over-identification test - 

Null hypothesis: all instruments are valid 

Test statistic: LM = 0.378071 

with p-value = P(Chi-square(1) > 0.378071) = 0.538637 

 

Weak instrument test - 

First-stage F-statistic (2, 423) = 55.4003 

 

This output means that at least one instrument is strong ( F >10), but their usefulness is doubt-

ful. The Sargan test claims that both instruments are valid (if the test rejects, the specification 

of the model is rejected in the sense that the sample evidence is inconsistent with joint validity 

of all (in our case, two) moment conditions; without additional information it is not possible to 

determine which of the population moments is incorrect, i.e., which of the instruments are 

invalid). 

 

Compare the model with the previous where only mothereduc was used as an instrument: 

the estimate of the return to education increased to 6.14% and the standard error has slightly 

reduced; note that educ is now statistically significant. 

 

4.12.  Simultaneous Equations Models 

[HGL, Ch. 11,p.446] 
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5. DISCRETE RESPONSE MODELS 

 

In this course, we have primarily focused on econometric models in which dependent variable 

was continuous – quantities, prices, and industrial outputs are example of such variables. 

However, microeconomics is a general theory of choice, and many of the choices that individ-

uals or firms make cannot be measured by a continuous response variable. If the choice is of 

“either-or” nature, it can be represented by a binary variable that takes the value 1 in the case 

of “success” and 0 otherwise. Examples include the following: 

 

• An economic model explaining why some college students decide to study medicine 

and others do not. 

• One can use the mroz.txt data to estimate the labor force participation model. 

• The consumer loan default predicting model etc 

 

We shall introduce shortly two models, logit and probit, to describe these cases (we assume 

that the probability of positive outcome, that is ( 1)P Y = , depends on explanatory variables 

and our purpose will be to model the dependence). Other examples of discrete response are 

models for count data, for example, 

 

• The number of children in a household. 

• The number of trips to a physician a person makes during a year etc 

 

The response variable in these cases takes the values 0, 1, 2,… and the variable is often satis-

factory desribed via the Poisson distribution where its parameter λ  may depend on explanato-

ry variables (Poisson regression model). 

 

 

5.1. Maximum Likelihood Estimation 

 

Strictly speaking, (one-dimensional) population is a distribution function ( , )F θ⋅
�

 depending 

on several, usually unknown, parameters θ
�

 (for example, normal population with unknown 

mean µ  and variance 2σ , 2( , )θ µ σ=
�

, is described by the bell-shaped density function 

( , )yϕ θ =
� ( ) ( )2 21/ 2 exp ( ) / 2 ,y x Rσ π µ σ− − ∈ ). A collection of N  independent r.v. 1( ,Y

 

..., )NY , each having the same distribution, is called a random sample from respective popula-

tion; if we take a concrete realization of these r.v., namely, the numbers 1( ,..., )Ny y , this col-

lection is called a concrete sample (we have already agreed to always use the uppercase letters 

and to distinguish the samples by a context). Mathematical statistics strives to find functions 

of a sample (namely, estimators or estimates, denoted as 
ˆθ
�

) such that they are “close” in 

some sense to θ
�

. For example, the method of moments (MM) suggests to estimate the normal 

population moments, i.e., the first moment µ  and the second central moment 2σ , by its sam-

pling moments:  

ˆ / ,
MM

iY Y Nµ = =∑      

� ( )22
/ ( 1).

MM

iY Y Nσ = − −∑  
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The maximum likelihood (ML) method is more complicated: it takes the probability (more 

specifically, density) of the sample 1 1( ,..., ; ) ( , ) ... ( , )N NY Y Y Yϕ θ ϕ θ ϕ θ= ⋅ ⋅
� � �

, treats it as a func-

tion of θ
�

 and searches for the value of θ
�

 which maximizes the likelihood function 

1 1( ; ,..., ) ( ,..., ; )N NL Y Y Y Yθ ϕ θ=
� �

 (the maximizing value 
ˆθ
�

 is called the ML estimator or esti-

mate). For example, in the normal case  

( ) ( )2 2 2
1( , ; ,..., ) 1/ 2 exp ( ) / 2

N

N iL Y Y Yµ σ σ π µ σ= − −∑ ; 

to find its maximum, we have to differentiate L  with respect to µ  and 2σ . However, as a 

rule, it is easier to differentiate the logarithmic likelihood function logl L= which, in normal 

case, equals to  

2 2 2 2
1( , ; ,..., ) ( / 2) log log 2 ( ) / 2N il Y Y N N Yµ σ σ π µ σ= − − − −∑ . 

 

One can readily verify that in this, normal, case ML estimators (almost) coincide with the MM 

estimators: 

ˆ /
ML

iY Y Nµ = =∑  

� ( )22
/

ML

iY Y Nσ = −∑ . 

 

More complicated example describes the case where the mean value of Y  depends on some 

external variable X , for example, 
2

0 1 , ~ (0, )Y X Nβ β ε ε σ= + +  (this is a univariate regres-

sion model and our purpose is to estimate (using the sample ( )1 1( , ),..., ( , )N NX Y X Y ) three pa-

rameters, 0 1,β β  and 2σ ). The estimation may be complicated in the case where X  is a ran-

dom variable, but we know that if the model satisfies conditions U1 – U4, then the method of 

OLS gives the BLUE&C estimators. It is easy to show that OLS in normal case (i.e., where 
2| ~ ( , )Y N εβ σX X I

��
) is exactly the same as the method of ML. Indeed, since 

2 2 2 2
0 1 1 1 0 1( , , ; ,..., , , ..., ) ( / 2) log log 2 ( ) / 2N N i il Y Y X X N N Y Xβ β σ σ π β β σ= − − − − −∑ , 

to maximize l  is the same as minimize 2
0 1( )i iY Xβ β− −∑ . 

  

More to the point is the example of the Bernoulli r.v. which takes two values: 

 

1 with probability ,

0 with probability ( 1 ).

p
Y

q p


= 

= −
 

 

Relevant random sample is 1( ,..., )NY Y  where each iY  is the Bernoulli r.v. (concrete sample is 

a collection of 0’s and 1’s and obviously, if p  is closer to 1, the sample contains more uni-

ties).   
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To estimate the probability ( ( 1))p P Y= = , we can use either MM or ML. Since p EY= , the 

MM proposes ˆ MM
p Y=  (Y  is the relative frequency of successes). The ML method is based 

on the equality 1( ) (1 )Y Y
P Y p p

−= − which implies that the probability of the sample equals 

1( ; ,..., ) (1 )N N
S N S

NL p Y Y p p
−= −  where 1 ...N NS Y Y= + + . Thus, to maximize 1( ; ,..., )Nl p Y Y =   

log ( ) log(1 )N NS p N S p+ − − , we differentiate l  with respect to p : 

 

0
1

N N
p

S N S
l

p p

−
′ = − =

−
 

 

and obtain 

( )ˆ ML NS
p Y

N
= = 1

 

 

(note that this ML estimator of p  is in no way connected with least squares). In general, ML 

estimators have some nice properties (in „regular“ cases they are asymptotically unbiased, 

effective and consistent), therefore they are widely used.  

 

 

5.2. Binary Response Variable 

 

So far, to describe the dependence of Y  on explanatory variables we mostly used a linear re-

gression model 0 1 1 ...Y Xβ β= + +
 k kXβ ε+ + . However, in the case where Y  attains only 

two values, 0 and 1, the model is unsatisfactory. To explain this, consider the date set coke.txt 

which describes a population of customers who bought either coke or pepsi:   

 

Y  = coke  =1 if coke chosen, =0 if pepsi chosen 

1X  = pratio           price coke relative to price pepsi 

2X  = pr_pepsi   price of 2 liter bottle of pepsi 

3X  = pr_coke     price of 2 liter bottle of coke 

4X  = disp_pepsi  = 1 if pepsi is displayed at time of purchase,  

                                                              otherwise = 0 

5X  = disp_coke       = 1 if coke is displayed at time of purchase,  

                                                              otherwise  = 0 

 

Our purpose is to establish how the chances (that is, probability) to buy coke depends on the 

available explanatory variables or, in other words, we want to create a model ( 1)p P Y= = =   

1( ,..., )kf X X . For simplicity, we analyse the univariate model first, assume that the condi-

tions U1-U3 hold true and consider the model 

 

0 1 ,β β ε= + +coke pratio
 

 

                                                 
1
 Once again, MM estimator coincides with the ML estimator, but, in general, this is rarely true.   
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where, taking into account the fact that coke equals 1 or 0,  

 

0 1 0 1

0 1 0 1

1 ( ) with probability ,

( ) with probability 1 ( ).

β β β β
ε

β β β β

− + +
= 

− + − +

pratio pratio

pratio pratio
 

 

Note that ( )| 0E ε ≡pratio  and ( )( ) 0| ( 1 | )E P β= = = +coke pratio coke pratio
 

1β pratio . The problem with this linear probability model is that the variance of ε  de-

pends on pratio: 

 

0 1 0 1var( ) ( (1 ( ))ε β β β β= + ⋅ − +pratio) pratio , 

 

thus the model is heteroskedastic. Still bigger problem is that 0 1β β+ pratio  can be less 

than 0 or bigger than 1 what contradicts the properties of probabilities. Thus we have to look 

for another model and, clearly, any distribution function F will serve our purpose well: 

 

0 1( ) .F β β ε= + +coke pratio  

 

The most popular distribution functions in this context are logistic ( ) ( ) exp( ) /F x x x= Λ =  

(exp( ) 1),x x R+ ∈ , and normal ( )1/2 2( ) ( ) (2 ) exp / 2 ,
x

F x x z dz x Rπ −
−∞

= Φ = − ∈∫ . Both func-

tions have similar shapes (see Fig. 5.1, left), therefore we shall study only the logistic function 

in more detail. The rhs of the equation 0 1( )β β ε= Λ + +coke pratio  is now always 

between 0 and 1, however, the errors are not normal and, also, this nonlinear
2
 regression mo-

del is heteroskedastic again, therefore, 0
ˆ NLSβ  and 1

ˆ NLSβ  are ineffective (recall that weighting 

could help us here). On the other hand, the ML method is in many aspects best, so we shall 

apply it. The likelihood function now is  

 

( ) ( )10 1 1 1 0 1 0 1( , ; ,..., , ,..., ) ( ) 1 ( ) ;i i
Y Y

N N i iL Y Y X X X Xβ β β β β β −= Λ + ⋅ −Λ +∏  

 

the parameters 0β  and 1β  are estimated by maximizing this expression, which is highly non-

linear in the parameters and cannot be estimated by conventional regression programs (but 

both GRETL and R have the necessary tools). The probability model 

 

( )0 1 0 1 0 1( ) exp( ) / 1 exp( )p X X Xβ β β β β β= Λ + = + + +  

 

is called the logit model or, if one replaces Λ  by Φ , probit model. The logit model can be 

also rewritten in a linear form  

0 1log
1

p
X

p
β β= +

−
 

 

                                                 
2
 We call the respective model nls-w. 
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where the link function log / (1 )p p−  is again called a logit function (can you draw its graph 

for 0 1p< < ?) or the log-odds ratio
3
. The expression 

 

0 1
ˆ ˆˆˆ ( 1) ( )ML MLp P β β= = = Λ +coke pratio  

 

allows us to estimate the probability that a shopper will choose to buy Coke for a given pra-

tio.   
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Figure 5.1. Standard normal and logistic distribution functions (left) and different pro-

bability models for coke (right) (the script is in Computer Labs) 

 

The variance of the (standard) logistic distribution function equals 2 / 3π  as compared to 1 in 

standard normal case, therefore the estimates of mβ  obtained from the logit model have to be 

multiplied by 3 /π  to be comparable with to the estimates obtained from the probit model 

(usually both models give almost the same coefficients after this correction). The graphs in 

Fig. 5.1, right, are those of different models of ˆ( 1)P =coke . The linear model (green line) 

takes negative values for sufficiently big values of pratio, therefore it is unsatisfactory. On 

the other hand, the weighted logistic model nls-w is almost as good as logit model but the 

latter one is easier to apply.  

 

In fact, the curves themselves are not of big interest, more important is the prediction rule of 

the response value (for what value of pratio the customer will buy Coke?) and also the 

quality of the forecast. One of the goodness-of-fit measures is the percent correctly predicted. 

Define a binary predictor of coke to be one (we predict, a shopper will buy coke but not pep-

si) if the predicted probability is at least 0.5 and zero otherwise. There are four possible out-

                                                 
3
 For example, if the probability of a household possessing an automobile is 0.75p =  then the odds ratio, i.e., 

the ratio / (1 )p p− , is 0.75/0.25 = 3/1, or odds of three to one that a car is possessed. What is the odds ratio if  

1 / 10p = ? 
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comes on each pair ˆ( , )i iY Y : when both are zero or both are one, we make the correct predic-

tion. The „Number of cases ‚correctly predicted‘ “ is the percentage of times that ˆ
i iY Y=  (in 

our example it is 66.2%)  

 
Model 1: Logit, using observations 1-1140 

Dependent variable: coke 

 

             coefficient   std. error      z        p-value      slope   

  ----------------------------------------------------------------------- 

  const        2.52508      0.271574      9.298   1.43e-020        

  pratio      -2.71081      0.266631    -10.17    2.79e-024    -0.666411 

 

McFadden R-squared   0.082656   Adjusted R-squared   0.080105 

Log-likelihood      -719.0694   Akaike criterion     1442.139 

Schwarz criterion    1452.216   Hannan-Quinn         1445.945 

 

Number of cases 'correctly predicted' = 755 (66.2%) 

f(beta'x) at mean of independent vars = 0.246 

Likelihood ratio test: Chi-square(1) = 129.582 [0.0000] 

 

           Predicted 

              0     1 

  Actual 0  508   122 

         1  263   247 

 

The threshold probability of 0.5 is rather arbitrary (for example, a bank issues a loan only if 

the predicted probability of default is less than 0.05). Interestingly, all four probability curves 

in Fig. 5.1 cross the 0.5 level at the same point of pratio=0.928, thus all they have the same 

percent correctly predicted and the same „Actual-Predicted“ table.  

 

There are also variuos pseudo R-squared measures for binary response. McFadden suggests 

the measure 01 /URl l− , where URl  is the log-likelihood function for the estimated (unrestric-

ted) model, and 0l  is the log-likelihood function in the model with only an intercept. If the 

explanatory variables have no explanatory power, then pseudo R-squared is zero, just as the 

usual R-squared ( 01 /URl l−  cannot reach unity but, anyway, the more the better). The usual 

considerations for Akaike and Schwarz criteria also hold.   

 

 

Before passing to a more complex model, we shall comment other estimates in the above tab-

le.  In the usual linear model 0 1( | )E Y X Xβ β= + , the meaning of the coefficient 1β  is the 

slope of the regression line or the marginal effect of X on Y : 1( | ) /dE Y X dX β=
 
(note that 

the effect is the same for any X ; what is the meaning of 1β ?). Now the slope is estimated as 

0 1 1( | ) / ( )dE Y X dX Xλ β β β= + ⋅
 
where ( ) ( )λ ′⋅ = Λ ⋅  is the density

4
 of the logistic distribution 

function (clearly, now the slope varies with the values of X ). The factor 1β  has no particular 

meaning here but 0 1 1( )Xλ β β β+ ⋅  estimates the change of ( 1)P Y =  when X  increases to 

1X + . In interpreting the estimated model, it is useful to calculate this value at, say, the mean 

of the regressors. For convenience, it is also worth noting that the same scale factor (i.e., 

                                                 
4
 Can you calculate 0 1( )Xλ β β+ ? 
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f(beta'x)=) 0 1 1( ...)Xλ β β+ +  applies to all the slopes in the multivariate model (see 

below). 

 

Now we shall upgrade the model by including all the explanatory variables. After removing 

insignificant pr_coke, we arrive at the model 
 

Model 3: Logit, using observations 1-1140 

Dependent variable: coke 

Standard errors based on Hessian 

 

               coefficient   std. error      z      p-value    slope 

  -------------------------------------------------------------------- 

  const         -0.326933     0.724709    -0.4511   0.6519  

  disp_pepsi    -0.504248     0.179239    -2.813    0.0049   -0.122407 

  disp_coke      0.633881     0.179631     3.529    0.0004    0.156073 

  pratio        -1.32550      0.365406    -3.627    0.0003   -0.326440  

  pr_pepsi       1.15291      0.335294     3.439    0.0006    0.283936 

 

Mean dependent var   0.447368   S.D. dependent var   0.497440 

McFadden R-squared   0.102630   Adjusted R-squared   0.096251 

Log-likelihood      -703.4127   Akaike criterion     1416.825 

Schwarz criterion    1442.019   Hannan-Quinn         1426.340 

 

Number of cases 'correctly predicted' = 767 (67.3%) 

f(beta'x) at mean of independent vars = 0.246 

Likelihood ratio test: Chi-square(4) = 160.895 [0.0000] 

 

           Predicted 

              0     1 

  Actual 0  505   125 

         1  248   262 

 

The computation of the derivatives 0 1 1( ...) iXλ β β β+ + ⋅
 
of the conditional mean function is 

useful when the variable in question is continuous and, also, often produces a reasonable 

approximation for a dummy variable (our model contains two dummy variables, 

disp_pepsi and disp_coke). Another way to analyze the effect of a dummy variable on 

the whole distribution is to compute ( 1)P Y =  

over the range of 0 1 1
ˆ ˆ ...Xβ β+ +  and with the 

two values of the binary variable. Using the 

coefficients from our table, we have the 

following probabilities as a function of pra-

tio, at the mean of pr_pepsi:   

 
disp_p=0, disp_c=0: 

ˆ ( 1)P =coke =Λ (-0.3269-1.3255*pratio+ 

1.1529*mean(pr_pepsi)) 

 
disp_p=0, disp_c=1: 

ˆ ( 1)P =coke =Λ (-0.3269-1.3255*pratio+ 

1.1529*mean(pr_pepsi)+0.6339) 

 

etc. The marginal effect of any dummy variable 

is the difference between two respective curves. 

For example, if disp_p=0 and  disp_c=1, the 
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probability ( 1)P Y =  is described by the red curve. Similarly, if  disp_p=1 and  disp_c=0, the 

probability is depicted by the green curve. The difference between the curves around the mean 

value of pratio (=1.027) is close to 0.27 thus, more specifically, in the first case 58% of all 

the customers will buy coke whereas in the second only 31%. If the store charges the 

wholesaler for exposing coke, the wholesaler can estimate whether it is worthwhile to do this.  

 

 

5.3. Generalizations 

 

5.3.1. Multinomial Logit 

 

In probit and logit models, the decision maker chooses between two alternatives. Clearly we 

are often faced with choices involving more than two alternatives. These are called multino-

mial choice situations. Examples include the following: 

 

1. If you are shopping for a laundry detergent, which one do you choose? Tide, Ariel, Rex, 

and so on. The consumer is faced with a wide array of alternatives. Marketing researchers re-

late these choices to prices of the alternatives, advertising, and product characteristics. 

2. If you enroll in the Faculty of mathematics and informatics, will you major in econometrics, 

pure or applied mathematics, bioinformatics, or programming systems? 

 

In each of these cases, we wish to relate the observed choice to a set of explanatory variables. 

More specifically, as in probit and logit models, we wish to explain and predict the probability 

that an individual with a certain set of characteristics chooses one of the alternatives. The es-

timation and interpretation of such models is, in principle, similar to that in logit and probit 

models. The models themselves go under the names multinomial logit or conditional logit. 

 

 

5.3.2. Ordered Choice Models 

 

The choice options in multinomial and conditional logit models have no natural ordering or 

arrangement. However, in some cases choices are ordered in a specific way. Here are some 

examples: 

 

1. Results of opinion surveys in which responses can be strongly in disagreement, in disag-

reement, neutral, in agreement, or strongly in agreement. 

2. Assignment of grades or work performance ratings. Students receive grades A, B, C, D, and 

F, which are ordered on the basis of a teacher’s evaluation of their performance. Employees 

are often given evaluations on scales such as Outstanding, Very Good, Good, Fair, and Poor, 

which are similar in spirit. 

3. Standard and Poor’s rates bonds as AAA, AA, A, BBB, and so on, as a judgment about the 

credit worthiness of the company or country issuing a bond, and how risky the investment 

might be. 

 

When modeling these types of outcomes, numerical values are assigned to the outcomes, but 

the numerical values are ordinal and reflect only the ranking of the outcomes. In the first 

example, we might assign a dependent variable y  the values 
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1 strongly disagree

2 disagree

3 neutral

4 agree

5 strongly agree

y





= 




 

 

The usual linear regression model is not appropriate for such data, because in regression we 

would treat the y  values as having some numerical meaning when they do not. Estimation, as 

with previous choice models, is by maximum likelihood and the model itself is called ordered 

probit or logit model.    

 

5.3.3. Models for Count Data 

 

When the dependent variable in a regression model is a count of the number of occurrences of 

an event, the outcome variable is y =0, 1, 2, 3, . . . These numbers are actual counts, and thus 

different from the ordinal numbers of the previous section. Examples include the following: 

 

1. The number of trips to a physician a person makes during a year (it could depend, for 

example, on the age of the person and general condition). 

2. The number of children in a household (it could depend on whether the family lives in town 

or countryside, household income, house or apartment etc). 

3. The number of automobile accidents at a particular intersection during a month (it could 

depend on the week day). 

4. The number of awards earned by a student at one high school. Predictors of the number of 

awards earned include the type of program in which the student was enrolled (e.g., general or 

academic), the score on final exam in math, town or countryside etc. 

 

While we are again interested in explaining and predicting probabilities, such as the probabili-

ty that an individual will take two or more trips to the doctor during a year, the probability 

distribution we use as a foundation is the Poisson, not the normal or the logistic. If Y  is a Po-

isson random variable, then its probability function is 

 

e
( ) , 0,1, 2,..., 0.

!

y y

P Y y y
y

λ
λ

−

= = = >  

 

Recall that varEY Y λ= = . In a regression model, we try to explain the behavior of EY  as a 

function of some explanatory variables. We do the same here, keeping the value of 0EY ≥  by 

defining 0 1( | ) exp( ) ( 0)E Y X Xλ β β= = + ≥ . This choice defines the Poisson regression mo-

del for count data. More specifically, assume that we have a sample {( , ), {0,1, 2,...},i i iY X Y ∈  

1,..., }i N= , 
( | )

( | ; ) ( ( | )) / !, 0,1,2,...i iE Y X y
i i i iP Y y X e E Y X y yβ −= = ⋅ =

�
, and the likelihood 

function equals 

( )0 1 0 1exp( )
0 1 1

( , | , ) / !
i

i i

YN X X
ii

L Y X e e Y
β β β ββ β − + +

=
=∏

� �
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By the method of maximum likelihood, we wish to find the set of parameters β
�

 that makes 

this probability as large as posible.  A formula of the above type is difficult to work with the-

refore, as usual, we take logarithms etc. One worked example of the Poisson regression can be 

found in http://www.ats.ucla.edu/stat/r/dae/poissonreg.htm. 

 

 

 

 

 

 

 

 

genr correct1=sum(yhat1>=0.5) 

 
# smpl full 

# dataset sortby pratio 

matrix A_vs_P = ones(2,2) # create a matrix of 1’s 

genr thr=0.5 

logit coke 0 pratio 

series yhat = $yhat 

smpl coke = 0 --restrict 

genr A_vs_P[1,1]=sum(yhat<thr) 

genr A_vs_P[1,2]=sum(yhat>=thr) 

smpl full 

smpl coke = 1 --restrict 

genr A_vs_P[2,1]=sum(yhat<thr) 

genr A_vs_P[2,2]=sum(yhat>=thr) 

smpl full 

 

 
 

 



REFERENCES 

 

[AH] Asteriou D., Hall S.  Applied Econometrics (Revised Ed.),  Palgrave Macmillan, 

2007 

[HGL] Hill R.C., Griffiths W.E., Lim G.C. Principles of Econometrics, 4th Ed., Wiley, 

2012  

[M] Maddala G.S. Introduction to Econometrics, 3rd Ed., 2005 

[L] Lapinskas R.  A Very Short Introduction to Statistics with gretl, 

http://uosis.mif.vu.lt/~rlapinskas/ShortStatGRETL/  

[T] Thomas R.L.  Modern Econometrics, An Introduction. Prentice Hall, 1997  

 


	Contents
	1 INTRODUCTION
	1.1 Regression models
	1.2 Statistical Data and their Models
	1.3 Software

	2 INTRODUCTORY EXAMPLES
	2.1 Some Examples of regression Models
	2.2 Concluding Remarks

	3 UNIVARIATE REGRESSION
	3.1 Introduction
	3.2 The method of Least Squares
	3.3 Properties of the OLS Estimator
	3.4 Other Methods to Derive the OLS Estimates
	3.5 Regression Model
	3.6 Four important distributions
	3.7 Hypothesis testing
	3.8 Goodness of Fit (R^2)
	3.9 Choosing a Functional Form
	3.10 Does our model satisfy U3 and U4?
	3.11 Nonlinear regression

	4 MULTIVARIATE REGRESSION
	4.1 Ordinary Least Squares (OLS)
	4.2 An Example
	4.3 Multicollinearity
	4.4 AIC, SIC and Similar Measures of Fit
	4.5 Categorical Variables on the Right Hand Side
	4.6 Testing Hypothesis:One Linear Restriction
	4.7 testing Hypothesis: r Linear Restrictions
	4.8 Violation of M1
	4.9 Generalized least Squares (GLS)
	4.9.1 Heteroskedastic Errors
	4.9.2 Autoregressive Errors

	4.10 regression Model Specification Tests
	4.11 Instrumental Variables

	5 DISCRETE RESPONSE MODELS
	5.1 Maximum Likelihood Estimation
	5.2 Binary Response Variable
	5.3 Generalizations
	5.3.1 Multinomial Logit
	5.3.2 Ordered Choice Models
	5.3.3 Models for Count Data


	References

