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0. Introduction

Introduction

These computer labs are designed to accompany the Lecture notes ,,R. Lapinskas, Practical
econometrics.l. Regression models* http://uosis.mif.vu.lt/~rlapinskas/. We shall interchan-
geable use two free software programs, GRETL and R.

GRETL is an econometrics package, including a shared library, a command-line client
program and a graphical user interface. User-friendly GRETL offers an intuitive user
interface; it is very easy to get up and running with econometric analysis. Thanks to its
association with the econometrics textbooks by Ramu Ramanathan, Jeffrey Wooldridge, and
James Stock and Mark Watson, the package offers many practice data files and command
scripts. These are well annotated and accessible. Two other useful resources for GRETL users
are the available documentation and the GRETL-users mailing list.

We assume that the reader has some knowledge about GRETL http://GRETL.sourceforge.net/
win32/. For the newbies we recommend the author‘s Lecture Notes A Very Short Intro-
duction to Statistics with GRETL http://uosis.mif.vu.lt/~rlapinskas/ShortStatGRETL/ or
Adkins® Using GRETL for Principles of Econometrics, 3rd Edition Version 1.313 (see http://
www.LearnEconometrics.com/GRETL.html), or T.Kufel‘s Ekonometria. Rozwigzywanie
problemow z wykorzystaniem programu GRETL, Warszawa: Wydawnictwo Naukowe
PWN, 2011 (can be found in the MIF library stock). Very useful is also GRETL‘s Users
Guide which is dowloaded together with GRETL. GRETL allows to perform analysis from
the pull-down menus or using proper commands that can be executed in the console or as a
script using words only. More complex series of commands may require you to use the
GRETL script facilities which basically allow you to write simple programs in their entirety,
store them in a file, and then execute all of the commands in a single batch.

We also assume that the reader knows some basic fact about R. There are many
introductory books on R, including the author's  Jvadas j statistikg su R (see
uosis.mif.vu.lt/~rlapinskas/). In R, you run your procedures interactively, entering commands
at the command prompt and seeing the results of each statement as it is processed.
Occasionally, you may want to run an R program in a repeated, standard, and possibly
unattended fashion. For example, you may need to generate the same report once a month.
You can also write your program in R and run it in batch mode.
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1. First Steps

These Computer Labs are assumed to be performed with GRETL or R.

GRETL is an open-source statistical package, mainly for econometrics (econometrics is a part
of statistics dealing mainly with economic models and/or economic data). The name is an ac-
ronym for Gnu Regression, Econometrics and 7ime-series Library. The product can be freely
downloaded from http://gretl.sourceforge.net/.

R is an open source programming language and software environment for statistical compu-
ting and graphics. The R language is widely used among statisticians for developing statistical
software and data analysis. R is an interpreted language typically used through a command
line interpreter. The capabilities of R are extended through user-created packages, which
allow specialized statistical techniques, graphical devices, import/export capabilities, reporting
tools, etc. R uses a command line interface; however, several graphical user interfaces are
available for use with R. To download R, please choose your preferred CRAN mirror.

1.1. GRETL Basics

There are several different ways to work in GRETL. Until you learn to use GRETL's rather
simple and intuitive language syntax, the easiest way to use the program is through its built in
graphical user interface (GUI). The graphical interface should be familiar to most of you. Ba-
sically, you use your computer's mouse to open dialog boxes. Fill in the desired options and
execute the commands by clicking on the OK button. Those of you who grew up using MS
Windows will find this way of working quite easy. GRETL is using your input from the dia-
logs, delivered by mouse clicks and a few keystrokes, to generate computer code that is exe-
cuted in the background.

GRETL offers a command line interface as well. In this mode you type in valid GRETL
commands either singly from the console or in batches using scripts. Once you learn the
commands, this is surely the easiest way to work. If you forget the commands, then return to
the dialogs and let the graphical interface generate them for you.

GRETL is a very user-friendly program. However, in case of trouble, search for help. For ex-
ample, if you want to perform weighted regression, it could be not quite clear where to find
the necessary menu section or command. An approximate sequence of steps could be as fol-
lows:

e use the Find text button to search for weighted regression in the Lecture notes (LN)
of this course

use the Find text button and go through the Computer Labs

open GRETL and search through the Help section

search through the GRETL User’s Guide

open the Lee C.Adkins text Using gretl for Principles of Econometrics, 3rd ed. and
search it through

e use Google and search for gretl weighted regression

I-1
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Most of the procedures can be performed from the dialog boxes or from the script window. If
you do not remember necessary commands, try to perform the procedure with the help of
GUI, and, say, in the Modell Other linear models| Weighted Least Squares... box you will find
Help button. Also, whichever is your session, performed with GUI or through the sript or
scripts, when closing GRETL you can save the command variant of your work as an *.inp file.

1.2. Examples of Regression Models

This section accompanies Ch. 2 from the Lecture Notes Practical Econometrics.l. Regression
Models (LN).

1.1 example. GRETL This example parallels 2.1 example from LN (but uses another data
set). We shall use the pull-down menus first: open GRETL and go to FilelOpen datalSample
file...IGretl and double-click on mroz87 (this is a data set on women ‘s labor force participation
and pay). Select two variables, HE and HW, where

HE husband‘s educational attainment, in years
HW husband‘s wage, in 1975 dollars

right-click on the selection and choose XY scatterplot; select HE variable as X-axis variablel
OK - the scatter diagram obtained also contains the estimated regression line

E(HW | HE) = iy + BHE = 0.578+0.553 HE .

HW versus HE (with least squares fit)

45 T T
Y =0.578 + 0.553X ——

40 F * +

35

30 + 1

HW

4 6 8 10 12 14 16
HE

Figure 1.1. HE — HW scatter diagram with regression line (better education implies hig-
her wages)

Another variant to obtain the graph is as follows: choose ModellOrdinary Least Squares...|
select HW and choose it as Dependent variable, select HE and choose it as Independent variab-
les, click OK; in the model window, choose GraphslFitted, actual plotlAgainst HE.

The same result can be obtained from the script window: open the script window (to do this,
click on the second from the left icon on the bottom of the GRETL window),
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then copy and paste there the text that follows:
open mroz87
gnuplot HW HE —--output=display
or
open mroz87
ols HW 0 HE # create a regression model
series yh = $yhat # save predicted values

gnuplot HW yh HE —--with-lines=yh —--output=display

R  The figure in LN, p.2-1, was drawn with the following R script:

mroz87 = read.table(file.choose (), header=TRUE)
attach (mroz87)

educ=HE

wage=HW

plot (jitter (educ),wage, col=2)
points(3:17,tapply (wage, educ, mean),pch=15)
abline (lm(wage~educ))

To import mroz87 data, when using £ile.choose (), navigate to the ...\PEdata directory. 4

1.2 example. GRETL Open GRETL and import the file shampoo.txt: Filel Open datal Importl
text/CSV... OKI PEdata | select shampoo.txtl give the data a time series interpretation — it is a
monthly time series beginning at 1980:01 (click yes)l etc. To get an impression of the series,
select shampoo in GRETL window, right-click, and choose Time series plot:

Figure 1.2.  The sales (left) on average follow a parabola and we want to find its para-
meters; it seems that the log(sales) (right) may well be described as a straight line

1. We start with analysis in the script window

1-3



© R. Lapinskas, PE.I - Computer Labs - 2013
1. First Steps

# Fig. 2.2 in LN, left

gnuplot shampoo --time-series —--with-lines --output=display
genr time

series sg_time = time * time

ols shampoo 0 time # create linear model

series sh_lin = $yhat

ols shampoo 0 time sg_time # create quadratic model

series sh_sqg = $yhat

It is easy to fit in a similar manner a linear trend to log(shampoo): 1_shampoo=
log(bb) +cc*time+¢&, but it is more problematic to fit a non-linear exponential trend to
shampoo itself: shampoo= bb*exp(cc*time)+¢& (the usual problem is to initialize the

bb and cc parameters in the iterative procedure of nonlinear regression). We may take the
starting values from a similar linear model.

# create nonlinear exponential model
logs shampoo # creates log(shampoo)

ols 1_shampoo 0 time # create a linear model for 1_shampoo
genr bb = exp($coeff (0)) # zeroth iteration of bb

genr cc = $coeff (time) # zeroth iteration of cc

genr aa = 100 # we generalize the initial model by adding the intercept aa
nls shampoo = aa + bb*exp(cc*time) # create nonlinear model

params aa bb cc

end nls

series sh_exp = $yhat

gnuplot shampoo sh_lin sh_sg sh_exp ——-time-series —-with-lines ——

output=display
We shall forecast shampoo 12 month ahead with the exponential model:

# Fig. 2.2 in LN, right

addobs 12

smpl 1980:1 1983:12

fcast 1980:1 1983:12 sh_f_ exp

gnuplot shampoo sh_f_exp --time-series —--with-lines --output=display

2. Having exposed the ideas, we shall demonstrate how to implement the above procedu-
res through the pull-down menus. Import shampoo.txt anew and go to Addl Time trend, then
select t ime and go to Addl Squares of selected variables (we are preparing the ground for the
linear and quadratic models). To create these models, go to Modell Ordinary Least Squares...|
choose shampoo as Dependent variable and t ime as Independent variablelOK. In the model
window, go to Savel Fitted valuesl OK. Then repeat the procedure, adding sg_time to the
Independent variable box| OK and saving the fitted value as yhat2. We skip the nonlinear
exponential model and, in the main GRETL window, select shampoo, yhatl and yhat?2,
right-click on the selection and choose Time series plot (see Fig. 1.3, left).
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Figure 1.3.  Linear and quadratic models (left); the 12 months forecast of the quadratic
model (right)

To predict the quadratic model 12 months ahead, go to DatalAdd observations...[12I0K, then
in the model 2 window choose Analysis|Forecasts...IOK (see Fig. 1.3, right).

R

Now we shall do the same with R. Copy and paste the following into R‘s Filel New script
window (study each line!)

shamp = ts(scan(file.choose(),skip=1),freg=12,start=1980)
par (mfrow=c(1l,2))

plot (shamp,main="Three regression models")
tt=seq(1980,1983-1/12,by=1/12)
tt.new=seq(1980,1984-1/12,by=1/12)

lines (tt,predict (Im(shamp~tt)),col=2)
shamp.sg=1lm(shamp~tt+I (tt"2))

lines(tt,predict (shamp.sq),col=3)

## nonlinear model

ttt=1:36

ttt.new=1:48

shamp.exp=nls (shamp~aa + bb*exp(cc*ttt),start=1list (aa=100,bb=10,cc=0.07))
summary (shamp.exp)

lines (tt,predict (shamp.exp), col=4)

legend (1980,650,c("1in", "sg", "exp"), 1lty=1,col=2:4)

## 12-months—-ahead forecast

plot (shamp,x1im=c(1980,1984),ylim=c(100,1200),main="Two forecasts")
lines(tt.new, predict (shamp.sq, newdata=data.frame (tt=tt.new)),col=3)
lines (tt.new, predict (shamp.exp, newdata=data.frame (ttt=ttt.new)), col=4)
legend (1980,1150,c("sg", "exp"),1lty=1,col=3:4)
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Figure 1.4. Three shampoo regression models (linear, square and exponential) (left)
and two 12-months-ahead forecasts (using square and exponential models) (right)

1.3 example. R The data set ...\PEdata\whh.txt contains 1428 observations on weight (in
pounds), height (in inches) and sex (male=1 for males):

weight height male

147 68 0
195 74 1
165 66 1

Only intercept depends on sex Both intercept and slope depend on sex

250
250
|
250
|

200
1
200
|

200

weight
weight
weight

150
150
1
150
1

100
100
|

0 200 400 600 800 1000 1400 55 60 65 70 75 55 60 65 70 75

Index height height

Figure 1.5.  The green dashed line stands for the sample mean in the whole sample of weight while black
and red are for the female and male subsamples, respectively (left); the green dashed line is a regression line
in the whole height-weight scatter diagram whereas black and red in female and male subsamples, res-

pectively (center); the most accurate models allow both intercept and slope to depend on sex (right)

1-6



© R. Lapinskas, PE.I - Computer Labs - 2013
1. First Steps

We want to create a model for weight. The simplest model is weight = )+ ¢ where the
OLS estimation of /3, is just the sample mean of weight (the green dashed line in Fig.1.5,

left). Clearly, sex gives some information on weight, thus we can improve the model by add-
ingmale into it and considering weight = 3, + fimale + ¢ :

128.98 if male=0

weight = ]
171.24 if male =1

(black and red lines in Fig. 1.5, left). We get still better model if we start controlling height:
weight = [y + p height +& or weight = [, + B, male+ pyheight + & or even weight = 3, +
By male+ (B, + Pzmale)- height + ¢ (in the second model only the intercept differs for males
and females and in the third both intercept and slope differ for males and females). It can be
shown (using the AIC coefficient which will be discussed later) that the last model, namely

Im(formula = weight ~ male + height + I(male * height))

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) -95.8489 18.1114 -5.292 1.4e-07 ***
male -31.4831 25.2537 -1.247 0.2127
height 3.5081 0.2824 12.423 < 2e-1l6 **x*
I(male * height) 0.7420 0.3774 1.966 0.0494 *
or

—95.85+3.51 height  if male =0

weight = ) .
—127.33+4.25 height  if male =1

is the most accurate (see Fig.1.5, right). The model can be interpreted as follows: if the fe-
male‘s height increases by 1 inch, her weight on average increases by 3.51 pound and if the
male‘s height increases by 1 inch, his weight on average increases by 4.25 pound.

To perform the above mentioned calculation, we use the following script (the script will be-
come more transparent if you read and copy-+paste it in three portions):

whh=read.table(file.choose (), header=T) # go to whh.txt in ...\PEdata
head (whh)

attach (whh)

par (mfrow=c(1l,3))

plot (weight, pch=male+13,col=male+1)

abline (mean (weight), 0, lwd=4,col=3, 1lty=2)

legend (820,260,c("female", "male"), pch=male+13,col=male+1)
wh.modl=1m(weight~male)

summary (wh.modl)

abline(128.98,0,1wd=4)

abline(128.98+42.26,0, 1wd=4,col=2)

plot (height,weight,pch=male+13, col=male+l,main="0Only intercept depends on
sex")

wh.mod2=1m(weight~height)

summary (wh.mod2)

abline (wh.mod2, lwd=4, col=3, 1ty=2)
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wh.mod3=1m(weight~height+male)

summary (wh.mod3)

lines (height [male==0], predict (wh.mod3) [male==0],col=1, lwd=4)
lines (height [male==1],predict (wh.mod3) [male==1],col=2, lwd=4)

plot (height,weight, pch=male+13, col=male+l,main="Both intercept and slope
depend on sex")

wh.mod4=1m(weight~male+height+I (male*height))

summary (wh.mod4)

lines (height [male==0],predict (wh.mod4) [male==0],col=1, lwd=4)

lines (height [male==1], predict (wh.mod4) [male==1],col=2, lwd=4)

1.1 exercise. [l The file br2-dat.txt contains data on 1080 houses sold in Baton
Rouge, Louisiana, during mid-2005. The data include sale price, the house size in square feet,
its age, whether it has a pool or fireplace or is on the waterfront. Also included is an indicator
variable trad indicating whether the house style is traditional or not. Variable descriptions
are in the file br2-def.txt. Do the exercise in both GRETL and R.

(a) Plot house price against house size for houses with traditional style.

(b) For the traditional-style houses estimate the linear regression model price= f;+
B saft +¢ . Add the regresion line to the (a) graph.

(c) For the traditional-style houses estimate the quadratic regression models price= f,+

B sqft2+8 and price=fy+ B saft+/p, sqft2+8. Add the fitted curves price?

and price3 to the scatter diagram. Which of the three models seems to be the best?
(d) For the traditional-style houses estimate the log-linear regression model logprice =

Bo + Pisaft+¢. Create a new variable price4 equal to the exponent of the fitted values of
this model. Draw a scatter diagram together with price3 and priced.

1.2 exercise. The file table2.5.txt consists of 11 columns and 32 rows, it contains data cha-
racterizing the construction of atomic power plants in the USA:

cost cost of the construction

date date when the construction permission was issued
tl

t2

cap the power plant capacity

pr

ne

ct 1 if the cooling tower is present

bw

n

pt 1 if it the plant is the partial turn key one

Use GRETL to estimate the sample means, variances and the coefficient of correlation of
cost ir cap. Do variances and means differ in the two groups corresponding to ct=0 or =1?
— go to Tools| Test statistic calculator| 2 variances and fill the window as shown:
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=10l x|

mean |variance Iprcporﬁcn |2means 2 variances |2pmporﬁons |

¥ Use variable from dataset I cost{ct=0) j

variance of sample 1 |32780.03435

size of sample 1 I 19

¥ Use variable from dataset I cost{ct=1)| j

variance of sample 2 |22007.45435

size of sample 2 I 13
HO: Ratio of variances = 1

¥ show araph of sampling distribution

Help | Close | oK |

Is the distribution of cost normal in both groups? — extract the observation group with ct=0
through Samplel Restrict, based on criterion... | ct=0I select cost and right-click on itl select
Frequency distribution and check Test against normal distribution. Create two regression mo-
dels with all the data: cost=/f,+ f,cap+¢ and cost=f + f,cap+ f,ct+&. How do

you interpret the second model? Plot necessary graphs. Do the same with R.
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2. UNIVARIATE REGRESSION MODELS

Later in this chapter, we shall study the data set CPS1985.txt:

ID wage education experience age ethnicity region gender occupation sector union married
1 4.95 9 42 57 cauc other female worker manufacturing no yes
2 6.67 12 1 19 cauc other male worker manufacturing no no
3 4.00 12 4 22 cauc other male worker other no no
4 7.50 12 17 35 cauc other male worker other no yes
5 13.07 13 9 28 cauc other male worker other yes no
where

wage wage (in dollars per hour)

education number of years of education
experience number of years of potential work experience (age - education - 6)

age age in years

ethnicity "cauc" (— 1), "hispanic"(—> 3), or "other"(—>2)

region does the individual live in the South? (South —> 2, Other — 1)
gender gender (Female — 1, Male — 2)

occupation factor with levels "worker" (tradesperson or assembly line worker), ,technical" (technical or professional
worker), "services" (service worker), "office" (office and clerical worker), "sales" (sales worker), "manage-
ment" (management and administration)

sector "manufacturing" (manufacturing or mining), "construction", "other"
union does the individual work on a union job?
married is the individual married?

Note that the string (or nominal) variables when imported to GRETL are recoded to numbers
(for example, ethnicity takes on values cauc, hispanic, other, therefore they will be
recoded to numbers 1, 3, 2):

One or more non-numeric variables were found.
Gretl cannot handle such variables directly, so they
have been given numeric codes as follows.

String code table for variable 6 (ethnicity):

1 = 'cauc'
2 = 'other'
3 = 'hispanic'

etc. We want to understand how the variable wage relates to other variables and also to get
some numerical characteristics of the goodness-of-fit of a model.

There are several different ways to work in gretl: 1) through its built in
graphical user interface (GUI) and 2) command line interface (in this
mode you type in valid gretl commands either singly from the console
or in batches using scripts (the second icon from the left is the script'
window, the third one is consolez).

A “script” is a file containing a sequence of gretl commands.

2 Type commands and execute them one by one (by pressing the Enter key) interactively.

2-1
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This chapter deals with a univariate regression case — we analyse the dependence of wage on
only one variable, say, experience (that is, education, age and other variables will be
included into the error term & ):

wage = f(experience)+e.

The most simple, though not always the most appropriate candidate for a regression curve is a
straight line: y = f,(x) = B, + Bx (the coefficient [, is called an intercept while f, the slope

of the regression line); a bit more complicated model is given by the quadratic curve or parab-
ola: y=f,(x)=f,+ fx+ ,Bzxz. In what follows, we use the so-called ordinary least squares

(OLS) method to find the estimates of these coefficients. To find the estimates in GRETL,
after importing CPS1985.txt, we start with a linear model and go to ModellOrdinary Least

Squares...| move wage to Dependent variable box and experience to Independent varia-
bles boxIOK. We get the following Model 1:

Model 1: OLS, using observations 1-533
Dependent variable: wage

coefficient std. error t-ratio p-value
const 8,38474 0,389135 21,55 1,83e-074 **x*
experience 0,0362978 0,0179370 2,024 0,0435 ol

Mean dependent var 9,031426 S.D. dependent var 5,141105

Sum squared resid 13953, 66 S.E. of regression 5,126215
R-squared 0,007653 Adjusted R-squared 0,005784
F(l, 531) 4,095074 P-value (F) 0,043509
Log-likelihood -1626,410 Akaike criterion 3256,821
Schwarz criterion 3265,378 Hannan-Quinn 3260,169

Test for normality of residual -
Null hypothesis: error is normally distributed
Test statistic: Chi-square(2) = 223,98
with p-value = 2,30886e-049

In the table, the OLS estimate of the linear regression model wage = ,30 + ,31 experience

= 8.385 + 0.036-experience is presented (the numbers ,30 and ,313 are the estimates of
unknown coefficients f, and f,.) Other important numbers in the table are 1) the p - value
0.0435 which informs us that the hypothesis H,: f =0 must be rejected”, i.e., the term ex—

perience is significant in our model, i.e., we cannot remove exper ience from the mod-
el, 2) the coefficient of determination R—squared which is always between 0 and 1 (the
more the better), now it indicates that experience explains only 0.765% of wage variation
(this means that 99.235% of this variation remains unexplained — it is the first indication that
our model is not satisfactory, it lacks some important ingredients.)

’ What is the meaning of ﬁAl (=0.036)? Take any two strata (layers, slices) of workers; if the experience in the

first strata is 1 (year) higher, then the wage in this stratum will be on average 0.036 (dollars per hour) higher.
* Because it is less than 0.05.
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The estimates and p - values are estimated correctly only if a model satisfies certain condi-
tions. The most important are:

1) The spread (variance) of errors must be constant, i.e., vareg; = o’

2) The errors must be uncorrelated, i.e., cor(s;, & j) =0, and

3) The errors must have a normal distribution, i.e., & ~ N(0, 62)

Prior to testing these hypotheses, in order to get some intuition about the model, we shall plot
a scatter plot with a regression line. In the Model 1 window, go to Graphs * Fitted, actual plot
* Against experience:

Actual and fitted wage versus experience Actual and fitted wage versus experience

45 45
Jractua\ + ‘ ‘ ‘ ‘ ‘ Jractua\ +
fitted —— fitted ——
a0 f 4
35 35
301 1 30
+ + + +
sF + + o+ 1 BF H + + 4
) + ) +
g +oF At + Tt . t oy g s + Ty .\ o4
ot * A S + 1 o T S +
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+ + + + +
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4t + + T, 4 + ++
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; % +$ T = T ++¢i N
101 + ot
t o %f ¢++¢++++i T
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5t i +#+ n . ] 53 i + J%Jr + 4 4Tt .
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experience experience

Figure 2.1.  Linear (left) and quadratic (right) models. When a worker gets older (and his
experience increases), his wage finally begins to decrease (thus, economically speak-
ing, the parabolic model is more appropriate)

In Fig. 2.1, we can see that wage hardly depends on experience alone (the model claims
that when experience changes from 0 to 50 wage increases only from roughly 8 to 10.)
The distribution of residuals is not symmetric (why?), i.e., nonnormal’. Thus, we must either
look for another functional form® of the dependence or include new variables into the model.
The latter variant leads to multivariate regression and will be discussed later, now we replace
linear dependence by the parabolic one. In order to be able to compare graphs in the future, go
to SavelFitted valueslyhat1/0OK.

To create a quadratic model, we have to append the list of our variables with a square of
experience: in GRETL’s window select experience and go to AddISquares of selected

variables|OK (a new variable, sq_experience, will appear in GRETL’s window.) Now go

> The bottom line of Model 1 table shows that the p- value of the hypothesis H :errors are normal equals

2,30886e-049 (<0.05), that is we (reject or accept?) (which hypothesis?).
® Suitable candidate is a parabola.
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to ModellOrdinary least squares...Ifill Dependent variable box with wage and append Inde-
pendent variables box with sq_experiencelOK.

Table 2.1

Model 2: OLS, using observations 1-533
Dependent variable: wage

coefficient std. error t-ratio p-value
const 6,46409 0,568640 11,37 6,02e—-027 ***
experience 0,304855 0,0614651 4,960 9,52e-07 ***
sSg_experience -0,00608515 0,00133432 -4,560 6,35e-06 **x*
Mean dependent var 9,031426 S.D. dependent var 5,141105
Sum squared resid 13426, 77 S.E. of regression 5,033243
R-squared 0,045124 Adjusted R-squared 0,041520
F(2, 530) 12,52287 P-value (F) 4,85e-06
Log-likelihood -1616,152 Akaike criterion 3238,305
Schwarz criterion 3251,140 Hannan-Quinn 3243,328

Test for normality of residual -
Null hypothesis: error is normally distributed
Test statistic: Chi-square(2) = 219,189
with p-value = 2,53379e-048

Both variables (experience and sq_experience) in Model 2 are significant7. To
choose between two or more models with the same left-hand side variable, use the Akaike
and/or Schwarz criteria (choose the model with the smallest value of the criterion, thus, in our
case select Model 2.) Note that its R—squared is still very low, residuals are nonnormal,
thus the model is still unsatisfactory. We will improve it in the next chapter by adding new
variables.

2.1 exercise. Regress experience on age and analyse the model. How do you interpret the
coefficient ﬁl ? Add sg_age to the model and analyze it. Which of the two models is better?

2.1. The output of the ols procedure

We have already not once seen the output of the gretl’s ols (ordinary least squares) proce-
dure (c.f. Table 2.1). A detailed exposition of all the concepts is presented in the LN, here is a
short explanation of the most important parameters and their meaning.

e The method of (ordinary) least squares (OLS)

Let us assume that the data generating process (DGP) is described by a k — variate (in our case
k =1) regression, 1.e., the observations (Y;, X;,..., X};),k =L,...,N, are defined by the system
of equations

’ Note the rule — if the square term is significant, do not remove linear term.
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Y\ =h+B X+t B X 6

Yy =L+ BXin+t B Xy +éN

or, in a more compact form, Y = X/ + & where

n LX) oo Xpg Ao &
. = | B
Pl [ X=| = a=
Yy 1 Xy Xin ey
B

The values of b,,m=1,.,k, which minimize the residual sum of squares
RSS(by,by,....0, ) = Zfil X, —(by +b X; +...+kakl~))2 are called the ols estimator of
unknown parameters /3, and denoted by ﬁm or ﬁ,ﬁ“ ; the differences Y, —fi =Y, -
( ,30 + ﬁlX et ﬁk X ki) = &; are called the residuals of the model and the expression RSS =
RSS(,@O,,@I,...,,@,() = Z(Yi —I?i)z the Sum squared resid. It can be shown that

ps _ —~ g . . .
£ =(X'X)"'X'Y °, or, in a univariate case,

ﬁozY—ﬁly
s 20D -X) Y -DX Y X=X cov(X,Y)
3 (X -X)? X -X)? Sx;-X)*  varX

The meaning of S can be explained as follows: take two stratas of our population with

X =xand X =x+1; then the mean value of Y in the second strata will differ from the first
one by f (these words are often replaced by ,.if X increases by 1, Y will change by /£, ).

Note that is does not mean that if, for example, someone studies one more year, his/her wage
will automatically increase by /;; it only means that he/she will get to another strata where on

average the wage is higher by A, (in fact, we only know the approximation of f;, namely

B).
e Standard errors

The (unknown) variance of the error terms vareg; =0’ is estimated by &

RSS /(N -k)= Zéiz /(N—k)9 (the square root of this number is called” S.E. of re-

A

gression). The variance-covariance matrix of the random estimator £ equals

¥ The coefficients in Table 2.1 were estimated using this formula.
°TIn ,,good* models it ought to be a ,,small* number.
' Standard Error of regression.
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o -1 . . .
covf = 52 (X’X) ; the square roots of the numbers on the diagonal of this matrix are termed

as std.error in Table 2.1 and stand for the standard errors of the estimators of respective
coefficients, i.e., 4/var Am . The 95% confidence interval for £, is (ﬁm —24/var Am, ﬁm +

2 \7a\rﬁA’m ), thus if it covers, for example, 1, we do not reject the hypothesis H : §,, =1 (with

5% confidence level). Recall that in univariate case \;a\rﬁl = sg2 / Z (X;,-X )%

e t-ratio

t-ratio statististics (or t value in R) is used for testing the hypothesis H: S, =0
against the alternative H;: S, #0 (in other words, H, tests whether X, is significant). The

value of this statistics is calculated as ¢,, = ﬁm / \7a\rﬂAm (: 0,304855 /0,0614651=4,960) . If
the modulus of this number is greater than the (1-«/2) - quantile of the Student r.v. Ty_; ,
we reject H, at the a significance level. Note that this quantile is approximately equal to 2,
therefore if 17, > 2, we reject H, (X,, is significant). Similar, but more accurate way to test

H, is to use the p—value of this test.

e p-value

The last column of the output table contains the p-value (or Pr (> |t |) in R). The number
is calculated using the formula p-value = P(1Ty_; I1>1t,1). If the p—value<a (usually,

a =0.01,0.05 or, sometimes, 0.1), then respective variable is significant and we should not
remove it from the model of DGP.

e The coefficient of determination (R-squared)

It can be easily shown that the total sample variation or the total sum of squares
TSS = Z(Yi —7)2 can be decomposed into the sum of RSS and explained sum of squares

A =2
ESS = Z(Yi —Y) : TSS = RSS + ESS . The coefficient of determination or R? is the the pro-

portion of variation in Y explained by X within the regression model: R*=ESS/TSS =
1-RSS/TSS . It is easy to verify that R’ =max, , 5 corz(Y,bO +h X +...+b X)) =

cor* (Y, /80 + ﬁle +..+ ﬁ’kX x) > 1.e., OLS finds a linear combination of Xes which correlates
with Y best. For ,,good* models R? is close to 1 (for example, if R’ = 0.51, we say that the
model explains 51% of response variability). If one has two different models for Y with the
same number of explanatory variables, the model with higher R? has better predictive proper-

ties. However, R? always increases when we augment the model with new variables, therefore
to compare nested models by their coefficients of determination is incorrect (in such a situa-
tion, one has to use the Akaike or similar information criteria, see below).

The above formula for the coefficient of determination applies only for the models containing
the intercept f,. However, if the DGP is described by Y, = B, X; +...+ B, X}; + &;, then the
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traditional definition of RZis inadequate (R2 can take negative values). In such a case, the
coefficient of determination should be estimated through'' the formula R? = ZYZZ / ZYiz
(generally, R? is higher then the standard R? ). However, to compare these two coefficients in

order to opt for the ,,right model is not correct (these coefficients are not comparable). The
usual recommendation is as follows: keep the intercept in the model if 1) it is significant, and

2)the S.E. of regression &? (of the model with the intercept) is less than é2.

e Adjusted R-squared

This coefficient is estimated by the formula

2 RSSI(N-k-D) (1R N-1
TSS /(N —1) N—k-1

which penalizes R? for the inclusion of additional parameters, other things equal . More popu-
lar are informational criteria (see below).

e Akaike (information) criterion

One of the variants to define the criterion is

AICzlogRTSSwLZk—N

Although the Akaike criterion is designed to favor parsimony, arguably it does not go far
enough in that direction. For instance, if we have two nested models with k—1 and k parame-
ters respectively, and if the null hypothesis that parameter k equals O is true, in large samples
the AIC will nonetheless tend to select the less parsimonious model about 16 percent of the
time. Whatever the problems are, if you have two models with the same Y on the lhs, choose
the one with smaller AIC.

e Schwarz (Bayesian information) criterion

An alternative to the AIC which avoids the problem of “too small penalty” is the Schwarz
Bayesian information criterion (BIC). The BIC can be written as

BIC = log@+£10gN .
N N

Now the penalty for adding extra parameters grows with the sample size. This ensures that,
asymptotically, one will not select a larger model over a correctly specified parsimonious
model. Again, choose the model with smaller BIC.

'R uses the relevant formula to estimate the coefficients.
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2.2 exercise. You have the results of a simple linear regression based on N=52 observations
(states of the USA).

(a) The estimated error variance 6‘52 =2.04672 . What is the RSS?

(b) The estimated variance of ,31 is 0.00098. What is the standard error of ,31? What is the
value of Y (X;—X)*?

(c) Suppose the dependent variable Y, = the state’s mean income (in thousands of dollars) of
males who are 18 years of age or older and X, the percentage of males 18 years or older who
are high school graduates. If ,5’1 = (.18, interpret this result.

(d) Suppose X =69.139 and Y =15.187, what is the estimate of the intercept parameter?

(e) Given the results in (b) and (d), what is Z X i2 ?

(f) For the state of Arkansas the value of Y;=12.274 and the value of X,=58.3. Compute the
least squares residual for Arkansas (hint: use the information in parts (c) and (d)).

2.3 exercise. The file stockton4.dat.txt contains data on 1500 houses sold in Stockton, CA
during 1996-1998. Variable descriptions are in the file stockton4.def.txt.

(a) Plot house selling price against house living area for all houses in the sample.

(b) Estimate the regression model sprice = 3, + f, livarea + ¢ for all the houses in the sample.

Interpret the estimates. Draw the fitted line.

(c) Estimate two quadratic models sprice= f,+ f livarea® +¢ and sprice = 3y +
By livarea + f3, livarea® + ¢ for all the houses in the sample. Which of the three models do you

prefer (use AIC and BIC)? What is the marginal effect (i.e., d sprice/d livarea) of an addi-
tional 100 square feet of living area for a home with 1500 square feet of living area for all of
the three models?

(d) In the same graph, plot the fitted lines from the linear and chosen quadratic models. Which
seems to fit the data better? Compare the sum of squared residuals (RSS) for the two models.
Which RSS is smaller? Which AIC is smaller?

(e) Estimate the regression model in (c) using only houses that are on large lots. Repeat the
estimation for houses that are not on large lots. Interpret the estimates. How do the estimates
compare?

(f) Plot house selling price against age using only houses that are on large lots. Estimate the
linear model sprice = 3, + 3, age + ¢ . Interpret the estimated coefficients. Repeat this exercise

using the log-linear model log(sprice) = 3, + B, age+ & . Based on the plots and visual fit of

the estimated regression lines, which of these two models would you prefer? Explain.
(g) Estimate a linear regression sprice = [, + 3 lglot + ¢ where the indicator Iglot identifies

houses on larger lots. Interpret these results.

2.4 exercise. With R How much does education affect wage rates? We shall analyze the
CPS1985.1xt file.

(a) Obtain the summary statistics and histograms for the variables wage and educ. Discuss the
data characteristics.

(b) Estimate the linear regression wage = [, + 3, educ + & and discuss the results.
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(c) Calculate the least squares residuals and plot them against educ. Are any patterns evident?
If assumptions U1-U3 hold, should any patterns be evident in the least squares residuals?

(d) Estimate separate regressions for males, females, and three ethnic groups. Compare the
results.

(e) Estimate the quadratic regression wage = 3, + B, educ + f3, educ® + ¢ and discuss the re-

sults. Estimate the marginal effect of another year of education on wage for a person with 12
years of education, and for a person with 14 years of education. Compare these values to the
estimated marginal effect of education from the linear regression in part (b).

(f) Plot the fitted linear model from part (b) and the fitted values from the quadratic model
from part (e) in the same graph with the data on wage and educ. Which model appears to fit
the data better?

(g) Construct a histogram of log(wage) . Compare the shape of this histogram to that for wage
from part (a). Which appears more symmetric and bell-shaped?

(h) Estimate the log-linear regression log(wage)= £, + B, educ+ & . Estimate the marginal

effect of another year of education on wage, i.e., d@/d educ:d(exp(,@o + ﬁleduc))/

d educ for a person with 12 years of education, and for a person with 14 years of education.

Compare these values to the estimated marginal effects of education from the linear regression
in part (b) and the quadratic equation in part (e).

2.2. Choosing a Functional Form

For a curvilinear relationship like that in Fig. 2.2, the marginal effect of a change in the ex-
planatory variable is measured by the slope of the tangent to the curve at a particular point.

The marginal effect of a change in X is greater at the point (X;,Y;)than it is at the point
(X,.Y,). As X increases, the value of Y increases, but the slope is becoming smaller. This is

the meaning of ‘‘increasing at a decreasing rate.”’ In the economic context of the food ex-
penditure model, the marginal propensity to spend on food is greater at lower incomes, and as
income increases the marginal propensity to spend on food declines.

Slope at
point ¥z, X
Slope at } -
point ¥y. 1 . _____-——-"'""-_-_-T-__F

e I
|
- |
= | !
yd I |
S/ | |
| |
| |
} |
. !

] I X

Figure 2.2. A nonlinear relationship between food expenditure and income.

By transforming the variables ¥ and X we can represent many curved, nonlinear relatiohips
and still use the linear regression model.
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(Juadratic equations

Cubic equations
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Log-log models
In{¥) = By + Balnix)
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Figure 2.3.  Alternative “linear” regression curves

Note that, say, log-log model logY = 3, + S log X is linear in (logX,logY) coordinate sys-
tem (and, therefore, we can apply OLS) whereas in ( X,Y ) coordinate system it represents a
nonlinear relationship (see Fig. 2.3). This model is a constant elasticity'* model while the line-

ar one is the constant slope model.

Name Function Slope = dwidx Elasti city
Linear v =By + Bax B2 B2~
Quadratic v =By + o 2B, (2p22)
Cubic b =By + P 3 (3par) S
Log-Log (¥} = B + Belnix) B:::—: Bz .
Log-Linear Inf(y) = Ba + Pax P [z
or, a 1 unit change in x leads to (approx mately) a 100 B2% change in y
Linear-Log ¥ o= [y + B:Inix) Bz% B-z%

or, a 1% change in x leads to (approximately) a Ba/1 00 unit change in y

'2 Recall that the elasticity of ¥ with respect to X is defined as dY / dX - X /Y (percentage response in Y to a

1% change in X ). Thus, whatever is X , its 1% increase now leads to always the same S, % increase in Y .
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2.1 example. (i) Suppose that the estimated constant elasticity demand curve is given by

logQ =10g200—-0.5log P or, what is the same, by Q =200P™%° . What is the price elasticity

of demand? Answer. It equals -0.5 everywhere along the demand curve (draw the curve). (ii)
Suppose an estimated linear demand curve is given by the formula Q =400—-10P . What is the

price elasticity of demand at P=30? At P=10? Answer. EQ(P) =(-10)-P/(400—
10P) lp_3p=-3 (I-3I>1, thus demand is elastic) but at P =10 itis ... Plot elasticity between 0
and 30.

2.2 example. Consider an annual time series Y, evolving over time so that it grows annually
at rate g: Y, =(1+ g)Y,_; (this might roughly describe the growth of a country’s population,
GDP, or price level). The definition implies that ¥, = (1+ g)'¥, =¥, €'°€1*¢)" and this is

called a constant growth model. Note that this model is equivalent to the log-linear model
log(Y;) = log(Yy)+log(l+g)t (~log(¥y)+ gt when g is ,small“). In practical situations, we

add a disturbance term ¢, and consider a regression model log(Y,) = log(¥,)) + gt + ¢, with the
objective of estimating the growth rate g .

g = 0.05, YO=1 Log - linear model
LD —]
o
N —
h B v ]
8 - < @
>~ _ >
S o A
o
q‘ —
o [
I I I I I I I I I I I I
0 20 40 60 80 100 0 20 40 60 80 100
time time

Figure 2.4.  Constant growth model

2.5 exercise. With GRETL The data file jones.txt contains yearly U.S. GDP, 1880-1987,
named GDP . Using different models, estimate the constant growth rate g .

a) Plot three series, GDF,,1og(GDP),, and Alog(GDP), =log(GDP), —log(GDP),_; .

b) Since log(Y,) =log(Y,) + gt, estimate B, in log GDF, = 3, + pjt + &, (recall the meaning of
B, : it is the percentage change of GDP in one year)

c) Since AlogGDF, = g, estimate f3, in the model Alog GDF, = 3, + ¢, (recall the meaning
of f:itis the percentage change of GDP in one year).
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d) Since GDP, =Y, e"%!*8)" ' ostimate the nonlinear model GDP, = e’ +&, and set

g= eP-1.

e) Compare all three estimates of g.

f) Plot and compare the residuals of the three models.

2) In 1929, the U.S. witnessed the Great depression. Ask the 1929 econometrist to forecast
GDP till 1987 and compare the forecast with the real data. Use the log-linear'® model. <4<

2.6 exercise. With R GDP per capita (GDP/pop) is often considered an indicator of a count-
ry's standard of living (for example, China is now (2011 estimate) 2nd in the world by its
GDP, but only 91st by its GDP per capita). Create one of the model of the previous exercise
for GDP per capita. 44

XIX a. vokieCiy statistikas Ernst’as Engel’is nustaté, kad “kuo skurdesné (belgy darbininky)
Seima, tuo didesné jos iSlaidy dalis skiriama maistui”. Aisku, kad namy tkio iSlaidos kokiai
nors prekei priklauso ne tik nuo Seimos pajamy, bet ir nuo kainos (ne tik pacios prekes, bet ir
jos pakaitalo — taigi tai daugelio kintamyjy regresijos uzdavinys). Antra vertus, jei duomenys
surinkti vienu metu, kainos visiems namy tkiams bus tos pacios ir galésime nagrinéti, pvz.,
tokj dviejy kintamyjy modelj: g; = S, + S, log(m;) + &; (logaritma renkames tod¢l, kad jis pa-
prastai atitinka ne tik realius duomenis, bet ir Engel’io désnj — pajamoms (arba bendroms
namy tkio iSlaidoms) m didéjant, tiriamos prekés vartojimas g auga vis léciau).

1955 m. Prais’as ir Houthakker’as tyré brity namy tkiy duomenis ir sudaré tokj darbininky
Seimy mésos paklausos modelj: §'" =-40.8+16.3log(m,) (taigi pajamoms padidéjus 1%, is-

tod¢él modelivosime modelio kreive - sukurkime cross-sectional duomeny rinkinj su 150
stebiniy:

nulldata 150

series m = index

series gl = -40.8 + 16.3*1log(m)
gnuplot gl m --output=display

Sio modelio elastingumas priklauso nuo m ir lygus B /ql. Ji apskaiCiuosime trijuose

taSkuose: m = 40, 62.2 ir 100 (tai mazdaug 1-asis, 2-asis ir 3-iasis kvartiliai (kodél?) — pri-
siminkite kvartiliy apibréZimus). Komandiniame (script) lange surinke

scalar gll = 16.3/(-40.8+16.3*10g(40))
scalar gl2 = 16.3/(-40.8+16.3*10g(62.2))
scalar gl3 = 16.3/(-40.8+16.3*10g(100))

pamatysite atsakymus 0.8433, 0.6145 ir 0.4757, taigi sutinkamai su Engel’io désniu mésa yra
pirmo batinumo'* preke (beje, augant pajamoms elastingumas maiéjals).

Tyrimo autoriai pateikia dar vieng modelj, butent §* =41.0-801-(1/m,).

" Once you found log GDP, = ,30 + ,élt , to forecast GDPF, use the formula GDF, = exp (10g GDP, + 682 / 2) .

' Nes visi elastingumai yra moduliu maZesni u 1.
'3 Originaliame darbe nurodoma, kad pastovaus elastingumo (t.y. log-log) modelyje elastingumas lygus 0.69.
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2.7 exercise. Apskaiciuokite Sio (atvirkstinio) modelio elastingumus tuose paciuose trijuose
taskuose.

2.8 exercise. Duomeny rinkinyje houthakl.txt yra dvi sekos: consump (=¢g) (namy ukyje

sunaudotos elektros energijos kiekis, kWh) ir income (=m ) (namy tkio pajamos per metus,
GBP). Sudarykite tris modelius :

log-log log(q,) = B, + B, log(m,) + &,
lin-log q; =B, + plog(m) +¢,
atvirkStini g, =B, +4,-(1/m) +¢,.

ISbrézkite duomeny sklaidos diagramg ir visas tris regresijos kreives. Kuris i§ modeliy geriau-
sias? ApskaiCiuokite visy modeliy elastingumus taskuose, artimuose trims m kvartiliams.
Nuoroda. Kvartilius apskaiciuoti galima su tokiu GRETLo skriptu :

scalar gl
scalar g2
scalar g3

round (quantile (income, .25))
round (quantile (income, .50))
round (quantile (income, .75))

2.9 exercise. In GRETL, import the data set data8-2 from Filel Open datal Sample file...| Ra-
manathan — it contains

exptrav travel expenditures in 51 U.S. state in billions of dollars
income personal income in billion of dollars
pop population in millions

Create four models

modl exptrav = 3, + f income + &

mod2 exptrav = [, + B log(income) + &
mod3 log(exptrav) = By + f, income + &
mod4 log(exptrav) = B, + B log(income) + &

Draw an income-exptravel scatter diagram and append it with the four fitted regression cur-
ves. Calculate all four coefficients of determination and compare them. Are the residuals of
the best model normal? Repeat the same calculation with R. Hint. In 3 and 4 cases, use the

formula R(23) = corr (exptravel, exp(yhat3+ sigma3 ™2/ 2))2 .

2.3. Testing the hypothesis H,: 3, = 3°

The standard OLS estimation output reports a t—ratio for testing the null hypothesis that
the true regression coefficient is zero: Hyy : 5, =0 (see, for example, p.2-2):

2-13



© R. Lapinskas, PE.I - Computer Labs
2. Univariate Regression Models

Dependent variable: wage

coefficient std. error t-ratio p-value
const 8,38474 0,389135 21,55 1,83e-074 **x*
experience 0,0362978 0,0179370 2,024 0,0435 *x

where t-ratio=ty_) = (3, —0)/+/varf3, . However, if we want to test Hy: 3, = B
(here ﬁ,(,)l is a number of interest), the statistics must be redefined: 7y_ ) =

( ﬁm - ﬁ’,?z)/ \7a\rﬁA'm . Again, following the rule of thumb, if |7y_,) > 2, we reject Hy,.

These ,,nonstandard* tests are often applied in the theory of elasticity. The essential idea is
that elasticity measures how sensitive is consumption to prices. If prices matter very little,
changes in price only will have small impacts on our willingness to buy or sell. For example,

the price elasticity of demand (in qd = By + B,p) is computed as the percentage change in the
quantity demanded divided by the percentage change in price:

d d d
d g (p+AP)=q" (D)) q"(P) A )44
Elast(qd)(p):—dq %z( ) -24 /q
dp q Aplp Aplp
Generally, the elasticity depends (just as a derivative) on p but some curves are constant elas-
ticity curves (specifically, whatever is x, the elasticity of y with respect to x in

logy=pfy+plogx<y= e xP s always the same, namely, f). If the elasticity numbers

exceed one, we say that demand and/or supply is elastic. If the numbers are less than one, we
say that demand or supply is inelastic. If elasticity equals one, we say that demand or supply is
unit elastic. Note that price elasticity of demand is always negative (whereas the price elastici-
ty of supply is always positive) and in fact the above definitions apply to the moduli of elasti-
city.

2.3 example. We shall consider four annual time series, 1923-1939, in Filel Open datal Sa-
mple file...| Gretll theil (or in Theil.txt):

year year

consume volume of textile consumption per capita (base 1925=100)
income real Income per capita (base 1925=100)

relprice relative price of textiles (base 1925=100)
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Elast(qs)=1.4, Elast(qd)=-0.8 Demand graph in logarithms

18

16

14

1.0

08

T T T T T T T
1 2 3 4 5 0.0 0.5 1.0

P log(p)

T T T T T T T
4.0 4.1 4.2 4.3 4.4 4.5 4.6

log(rel_price)

Figure 2.5.  Constant elasticity demand and supply curves (left), constant demand line in
logarithms (center), and the Log (relprice) and log (consume) scatter diagram (right)

The output of the model'® log(consume,) = S, + f3, log(income, ) + 3, log(relprice,) + &, is as

follows:

mod=1m(log(consume)~log(income)+log(relprice))

summary (mod)

Coefficients:

Estimate Std. Error t value Pr(>]|t])
(Intercept) 3.16355 0.70480 4.489 0.00051
log(income) 1.14316 0.15600 7.328 3.74e-06
log(relprice) -0.82884 0.03611 -22.952 1.65e-12

* k k

* k k

* kK

The estimates of both coefficients are close (in modulus) to 1, but are the coefficients in DGP
equal to 1? We shall test the hypotheses H: 5 =1 and H: 3, =—1in R first. One can test

H: B =1 in two different ways.

1) The ¢ statistics #;7_3 =(1.14316—1)/0.15600 = 0.9176923 which is considerably less
than 2, therefore there is no ground to reject Hy : 5 =1 (more specifically, the p—va-
lue of this test with the one-sided alternative H;: 3, >1 equals 1-pt (0.9176923,

2)

17-3) (=0.1871597 >0.05) ).

Another possibility to test H: f =1 with the two-sided alternative H: 3 #1 is to
use the F test (see LN, Sec. 4.6) — the unrestricted model is Y = B, + X+ /X, +¢

while the restricted Y =pf,+1-X;+/5,X,+¢,

(RSSg —RSSyg)/1
RSSy R/ (17-(2+1)

library(car)
linearHypothesis (mod, "log(income)=1")

Hypothesis:
log(income) = 1
Model 1: restricted model

' This is a two-variate model but the syntax is essentially the same.
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Model 2: log(consume) ~ log(income) + log(relprice)
Res.Df RSS Df Sum of Sqg F Pr(>F)

1 15 0.014432

2 14 0.013613 1 0.00081884 0.8421 0.3743

Note that both tests give the same answer (since 1? = f,0.91769"2 = 0.8421) and also
the one-sided p —value in the 7 —test (=0.187...) should be multiplied by 2 to get the
p —value in the two-sided F —test (=0.3743)

2.10 exercise. Test the hypothesis Hy: 5, =-1. <4<

To repeat the analysis with GRETL, create the same log-log model as above and in the model
window go to Tests| Linear restrictions, type in b [2]=1| OK. The output (of the F —test)
coincides with that of R:

Restriction:
b[l_income] =1
Test statistic: F (1, 14) = 0.842112, with p-value = 0.374332

2.11 exercise. Zinoma Cobb’o ir Douglas’o (netiesiné) gamybos funkcija suriSa produkcijos
apimtj (Y) su gamybos veiksniais, pvz., darbu (L) ir kapitalu (K):

Y =al’K’ exp(e)

(§is modelis néra jprastinis regresinis modelis ¥ = aI”’K” + ¢, tatiau artimas jam). I§logarit-
mave §] (netiesinj!) reiskinj, gautume tokj tiesinj log-log model; :

log(Y) = B, + B/ log(L) + B, log(K) + & .

Tokio tipo reiSkiniai ekonomikoje sutinkami labai daznai. Pvz., lentelé TABLEO9.10.txt turi 25
jraSus (eilutes) ir 5 (bevardzius) stulpelius, kuriuose pateikti Quantity Indexes of Capital (K),
Labor (L), Energy (E), Other Intermediate Products (M), Gross Output (Y) for U.S. Manufac-
turing. AiSku, kad tai daugelio kintamyjy regresijos uzdavinys, mes kol kas sudarysime pap-
rastesn] vienin] modelj. Importuokite nurodytg lentele ir sudarykite keturis modelius

logY = fy+ plogK +¢
logY =y + plogL+¢
logY = fy+ plogE+¢
logY = Sy + B logM +¢

Kuris modelis yra tiksliausias (atsako kintamojo logY apraSymo tikslumo prasme)? Kuriame
i§ Siy modeliy prognozinio kintamojo elastingumas yra didZiausias? Koks Siame modelyje
hipotezés H: B =1 likimas? Kg galite pasakyti apie L elastinguma modelyje logY = 3, +
BilogK + pylog L+ fBilog E+ B, logM +¢? 44
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2.4 example. In LN, p. 3-26, we have examined the data set containing the percent of the
total US population that lives on farms (in GRETL go to Filel Open datal Sample file...| Ra-
manathan| data6-6. We shall create a few more models of the time series (fp=) farmpop
now. The graph of the variable resembles descending exponent or power function (see Fig.2.6,

blue line), therefore we shall analyse two models (first add logarithms to your list of variab-
les):

Mod.1: log fp, = By + Pyyear + &, = ]/‘Et = exp(,ﬁo + ,31 year)  (exponential)

Mod.2: log fp, = By + B log year + ¢, = J/CB; = exp(ﬁo)yearﬁl (power)

Model 1: OLS, using observations 1948-1991 (T = 44)
Dependent wvariable: 1_fp

coefficient std. error t-ratio p-value
const 107.158 1.61218 66.47 3.48e-044 ***
year -0.0535770 0.000818557 -65.45 6.61le—-044 **xx*
R-squared 0.990291 Adjusted R-squared 0.990060
Log-likelihood 56.26349 Akaike criterion -108.5270
Schwarz criterion -104.9586 Hannan-Quinn -107.2037
rho 0.753045 Durbin-Watson 0.553432

U‘p (right) —
fp (left)

125

Figure 2.6.  The graphs of £p (blue, left axis) and 1_fp (red, right axis)

The Durbin-Watson test informs that the errors are autocorrelated, therefore we can use the
HAC standard errors (in the model window check the Robust standard errors box):

Dependent variable: 1_fp
HAC standard errors, bandwidth 2 (Bartlett kernel)

coefficient std. error t-ratio p-value
const 107.158 2.46916 43.40 1.60e-036 **x*
year -0.0535770 0.00125881 -42.56 3.57e-036 ***

We got different std.errors now, but they have no significant effect on p —values.
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The graph of the forecast depends on the scaling of y axis: it will be a straight line in year —
1_fp coordinates and exponent in year — fp coordinates. Note that we must use the

following correction for the latter'’ forecast: ﬁ?t = exp(ﬁo + ﬁl year + sﬁ /2). The gretl script

18 below:

ols 1_fp 0 year

scalar ss = $sigma

series yhat = S$yhat

series uhat = S$Suhat

series yhat_cor = exp(yhat+ss”2/2)

gnuplot fp vhat_cor uhat —--output=display —--time-series —--with-lines

0.2 18

T T T T
I_fp (left) —— fp (left) ——
yhat1 (left) —— yhat_cor (left) ——
t1 (right) —— uhat (right) ——
1 0.15 16\

251

101 14

7 0.05 12r

051

L L L L L L L L L 0.25 0 L L L L L L L L
1950 1955 1960 1965 1970 1975 1980 1985 1990 1950 1955 1960 1965 1970 1975 1980 1985

Figure 2.7.  Forecast for 1_ fp (left) and corrected forecast for 1p (right) (note the Y
axes scales)

a) Draw the same (as in Fig.2.7) graphs from the pull-down menus.
b) Estimate the derivative and elasticity of £p in the year 1980.
c) Repeat the same analysis with the power model.

A few comments on the power model

Dependent variable: 1_farmpop
HAC standard errors, bandwidth 2 (Bartlett kernel)

coefficient std. error t-ratio p-value
const 802.161 18.2434 43.97 9.37e-037 **x*
1_year -105.533 2.40637 -43.86 1.04e-036 **x*

' The correction is used when the model is for log(Y) , but we want to describe Y.
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Recal that the meaning of the cofficient A, in this model is elasticity: 1% change in X leads

to an (approximately) S % change in Y . This claim is true when f; is not very big (roughly,

<5), but now (when ,@1 =—-105.5) it is senseless. The true effect of year on farmpop equals

farmpopnew B farmpopold — exp(/é())(l'()]‘ : year)ﬁ] - eXp(,éO)yearﬁ] — 1 01—105533 _1 — _0 65
farmpop,;, exp( ,5’0 ) yearﬂ !

which means that 1% increase in year leads to 65% decrease in the percentage of the farm
population (for example, in in the time period between 1970 and 1989.7 (the 20 years or 1%
increase) the model predicts the decrease from 4.7 to 1.645 what is close to the true value of
1.9).

d) Forecast fp for the comming 10 years with the power model. <4<

2.12 exercise. The data set newbroiler.txt contains 52 annual observations, 1950-2001:

a per capita consumption of boneless chicken, pounds
v per capita real disposable income, 1996 = 100

P real price (index) of fresh chicken

pb real price (index) of beef

pcorn real price (index) of feed corn

pf real price (index) of broiler feed

gprod estimate of aggregate production of boneless chicken

lexpts log of estimate of exports of boneless chicken
popgro population growth rate

Draw a (p,q) and (log p,log g) scatter diagrams
Create two demand models: g = £+ p+¢ and logg= S, + flogp+¢

. Plot their residuals. Test for normality.

1

2

3. What is the elasticity of both models at the pr i ce median point?

4

5. Compare the coefficients of determination of the two models (for the second model es-

timate the coefficient by the formula R?= (cor(q, 51))2 where g = exp(IEg\q)e&z/ 2).

Which model do you prefer?

7. Using the 52 annual observations, 1950-2001, estimate the reciprocal model
q=pBy+ P/ p)+e. Plot the fitted value of g versus p. How well does the estimat-
ed relation fit the data?

8. Using the estimated relation in part (7), compute the elasticity of g with respect to p

=

when the real price is its median, $1.31, and quantity ¢ is taken to be the correspond-

ing value on the fitted curve. Compare this estimated elasticity to the estimate found in
part (3) with the log-log functional form.
9. Estimate the poultry demand using the linear-log functional form g = S, + B logp+¢.

Plot the fitted values of g versus p . How well does the estimated relation fit the data?
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10. Using the estimated relation in part (9), compute the elasticity of g with respect to p

when the real price is its median, $1.31. Compare this estimated elasticity to the esti-
mate from the log-log model and from the reciprocal model in part (7).

11. Evaluate the suitability of the log-log, linear-log, and reciprocal models for fitting the
poultry consumption data. Which of them would you select as best, and why?

2.13 exercise. (Monte Carlo exercises). Assume that X, X;, X,,... are independent identically
distributed random variables (iidrv‘s). The Law of Large Numbers (LLN) claims that
(Xy+..+Xy)/N—>EX and, as a consequence, (ly.,+..+1x .,)/N—>Ely,, =
P(X >a). In the case where P(X > a) is difficult to estimate, one can generate “many’’ cop-
ies of X and to count how many times X; >a — the average number of “successes” will be
close to P(X >a) (this is called a Monte Carlo method (MCM) or MC simulations).

Estimation of 7

We begin with explaining how one can use MCM to estimate the number 7 (=3.14159...).
Generate a sequence of two dimensional random vectors ¢;,,,... having a uniform distribu-
tion in the square S with vertices at (-1,-1), (1,-1), (1,1), and (-1,1) (one copy of such a vector
is generated with runif (2, -1, 1)). Recall that in the case of uniform distribution, the pro-
bality P(a € A)=L(A)/ L(S)=L(A)/4 where L(A) is the Lebesque measure of A, i.e., just
its area. This implies that P(a¢ € C) =7 /4 (here C is a unit circle in plane). If the number of
MC experiments is ,,big* (=10000, 100000 etc), the relative frequency of experiments which
led to «; € C is approximately equal to 7 /4. The following code in R allows to approxi-

mately estimate 7 :

xx <- c(-1,1,1,-1,-1)
Yy <- c(illill 1/ 1/71)

plot (xx,vy,type="1", main="500 points") # Draw a square S

X <— cos(seq(0,2*pi, length=100))

y <— sin(seq(0,2*pi, length=100)) # Circumference in polar coordinates
polygon(x,y,col=3) # Colour the circle

points (runif (500,-1,1),runif (500,-1,1),pch="*") # see Fig. 2.8, left
# 4

set.seed(10)

xxXx <— runif (100000,-1,1) # We perform 100000 MC experiments, that is
yyy <— runif (100000,-1,1) # throw 100000 points into S

s <— numeric(500)

print (s) # Vector of 500 =zeros

# Now loop: estimate relative frequency using

# the batches of 200*1 points

for(i in 1:500) {s[i] <-
4xsum(ifelse(xxx[1:(200*1)]"2+yyy[1l:(200*1)]"2<=1,1,0))/(200*1i)}
print (s) # A vector of relative frequances times 4 (R TT)
plot (1:500,s,type="1")

abline (pi, 0)

s[500] # The final estimate

[1] 8.14252
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Figure 2.8.  The first 500 points (left); relative frequency approaches 7 (right)

We repeated the experiment of throwing the point 100000 times, but the accuracy is still not
very high. This is common for the MCM, but the method makes sense when the direct calcula-
tion of the probability in question is complicated. First 2000 digits of 7 can be
found in library (UsingR) ;pi2000.

Testing H: B, = ,BIO

Assume that a researcher has a sample (Y}, X;),...,(Yy, Xy ), she expects that respective DGP
is Y = By + B, X +¢ and also that U2 and U3 holds. She uses OLS and calculates AIOLS =0.15.

Is it compatible with an inside information that f; =0.5? She knows that too large a deviation
of ,HA’loLS from 0.5 is a sign of the failure of H: B, =0.5; how large is “too large”? To make

it clear, we shall pick a particular model by taking A, =1, f; =0.5, 0'82 =1 and try to answer

the questions whether 1) AIOLS is a “good” estimator of S, (for example, is it unbiased, i.e.,

E( ,B?LS | X)=0.5) and 2) what deviations | ﬁloLS —0.51 do not contradict H?

To answer the 1% question, we shall simulate our sample “many times” and calculate
( B 4.+ B )/ NN -ifitis ,very close* to 0.5, then the OLS procedure is generally accep-
NN

table. We start with generating a conditioning random vector X = (X{,...,X ). This can be

done in many diverse ways and we begin with a rather complicated process18

2
2

c o,

1-¢"\1-¢?

c =3, $=0.7. This fixes the joint distribution of (Y, X ) from which a large number of sam-

X;=c+¢X;+u;, i=1,.,N, where {y;} is iild N(0,1) and X, ~ N

'8 This a stationary AR(1) process (thatis, EX, =c/(1—¢),var X, =1/(1- ¢2) ; see PE.II, Lecture Notes, 2.8).
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ples will be drawn. To code the simulation, note that

X, =c+dlc+dX, 5 +u )+, =..=¢' Xg+(+P+...+ ¢ e+, +du,_y +...+¢'uy).

The simplest and fastest way to simulate many samples is to use the matrix algebra:

—

X = X+ d + A u
(Nx1) (Nx1) (Nx1) (NxN)(N x1)

1 00..0

¢ ¢ P 10..0 t

d= JA=| g $1..0] "2

<y
Il

where 7 =

i A+d+..+¢" e

N=16 # sample size

betal=1

betal=0.5

sigma=1

cc=3

phi=0.7

set.seed (1)

#4###

X=numeric (N)

X0=rnorm(1l,mean=cc/ (1-phi), sd=1/sqgrt (l-phi*phi)) # starting value of X
rr=phi” (1:N)

dd=cc* (1-phi” (2: (N+1)))/ (1-phi)

AA=matrix (0, N,N)

coll=phi”~ (0: (N-1))

for(i in 1:N) AA[i:N,i]=coll[l:(N-(i-1))] # create matrix A
X=rr*X0 + dd + AA%*%rnorm(N) # create a sample of X
plot (X, type="1");abline(cc/ (1-phi),0,col=2)

In the first variant of simulation, we shall keep X = (Xi,...,Xy) fixed and change only the
errors & :

NN=1000

beta=numeric (NN)

for(i in 1:NN)

{

Y=betalO+betal*X+rnorm(N)| # the errors satisfy U2, U3
beta[i]=coef (Im(Y~X)) [2]

}

mean (beta) # =0.502 -> OLS is unbiased

Thus, if H, is true, ,31 fluctuates around 0.5. To answer the 2™ question, we have to estimate

how improbable is the event ﬁl <0.15 under the given condition X.

sum(ifelse (beta<=0.15,1,0)) /NN # relative frequency of ﬁISOJS
[1] 0.089 # empirical p-value
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In statistics, 0.05 is the standard probability of impossible or improbable event, therefore
0.089 means that such a deviation from 0.5 can be explained just by random fluctuations of
¢'s (but not because H|, is false). Note that in LN, 3.7, we have already mentioned that

_ A -~ A . ﬁAl _0.5 . . . .
T = ( ) —0.5)/ \varf, = —s.e.ﬁA’l has the Student T,_, distribution. Since

> pt((0.15-0.5)/sd(beta),N-2)
[1] 0.099 # one-sided theoretical p-value

our simulation “proves” the above claim.

In the second variant of simulation, we shall again keep X =(X{,...,Xy) fixed, but now

change the _ of the errors & :

NN=1000

beta=numeric (NN)

set.seed(5)

for(i in 1:NN)

{

Y=betaO+betal*X+EUNEE (N, ~sqrt (3),sqrt(3)) # UAPEOEM distribution with sd=1
beta[i]=coef (Im(Y~X)) [2]

}

mean (beta) # 0.494

sum(ifelse (beta<=0.15,1,0)) /NN # empirical rel. frequency = [0.103
pt((0.15-0.5) /sd(beta) ,N-2) # probability = 0.102

This proves that the distribution of T is not very sensitive to the distribution of ¢.

So far, X was fixed throughout the loop for ¥ . The third variant of simulation calculates the
unconditional distribution of the 7 —ratio (in each replication, we generate a - X).

X=numeric (N)
NN=10000
beta=numeric (NN)
set.seed(2)
for(i in 1:NN)

{

Y=betalO+betal*X+rnorm(N)
beta[i]=coef (Im(Y~X)) [2]
}

mean (beta) # 0.497
sum(ifelse (beta<=0.15,1,0)) /NN # empirical rel. frequency = 0.04
pt((0.15-0.5) /sd(beta) ,N-2) # probability =0.05

Again, MC modeling gives results close to theorethical. Thus, when necessary, we can replays
theoretical considerations by empirical modeling. On the other hand, if you have a valid for-
mula, there is no need for MC experimenting.
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The fourth variant, instead of generating X with stationary AR(1), uses a simple procedure X
= rnorm(N) or X = runif(N,-sqgrt(3),sqgrt(3)). Repeat the previous variants
in this new setting. What about the two-sided alternatives? Also, investigate the conditional

case where only one value of X , say, the last one, is fixed. Use the Kolmogorov-Smirnov test
(ks.test) to verify that ¢ —ratio has the T, _, distribution. <4<

2.4. Codes for the Ch.3 of the Lecture Notes

e Figures 3.4 and 3.5

To illustrate the properties of unbiasedness, we return to our DGP Y =-2+3X +¢. Clearly,
the estimate ,5’1 depends on sample. In Fig. 3.4 of LN, one can see four different (out of 5000
generated) samples and four different estimates of regression line (etc...)

# 4 regression lines
set.seed(11)

par (mfrow=c(2,2))

for(i in 1:4)

{

X=rnorm (20, sd=5)
Y=—2+4+3*X+rnorm (20, sd=6)
plot (X,Y)

abline (-2, 3)

abline (lm(Y~X),col=2, 1ty=2)
}

# sample mean
set.seed(11)
betal=numeric (5000)
for(i in 1:5000)

{

X=rnorm (20, sd=5)
Y=—2+4+3*X+rnorm (20, sd=6)
mod=1m(Y~X)
betal[i]=modScoef[2]

}

mean (betal)

# sample variance
set.seed(11)
betal=numeric (5000)
for(i in 1:5000)

{

X=rnorm (1000, sd=5)
Y=-2+3*X+rnorm (1000, sd=6)
mod=1m(Y~X)
betal[i]=modS$coef[2]
}

var (betal) #=0.00145

# 3 histograms

par (mfrow=c(1,3))
for(j in 1:3)
{
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set.seed(11)
betal=numeric (5000)
for(i in 1:5000)

{

X=rnorm(10"j, sd=5)
Y=-2+3*X+rnorm(10"j, sd=6)
mod=1m(Y~X)
betal[i]=modScoef[2]
}

hist (betal)

}

e Figure 3.17

library(car)

data (USPop)

head (USPop)

#attach (USPop)

mod.exp=nls (population~a+_) *exp (-*year) ’

start=1ist (a=0, PEHOPE=IS) , data=USPop[1:15,])

# the iterative ©procedure in nls converges better if the parameters are
# of

summary (mod.exp)

mod.logist=nls (population~a/ (l+exp (b* (year-1916))),

start=1ist (a=100,b=0),data=USPop[1l:15,])

# convergence is better when the mean of explanatory variable is close to 0
summary (mod.logist)

par (mfrow=c(1l,2))

plot (year,population, type="1",main="Exponential",ylim=c(0,300))
points(year,predict (mod.exp, newdata=data.frame (year=seq(1790,2000,by=10))),
col=2)

plot (year,population, type="1",main="Logistic")

points (year,predict (mod.logist, newdata=data.frame (year=seq(1790,2000,
by=10))),col=2)
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3. MULTIVARIATE REGRESSION MODELS

3.1. Simple model

3.1 example. The data set set andy.txt contains 75 observations in different cities of three va-
riables:

sales Monthly hamburger sales revenue ($1000s)
price A price index for all products sold in a given month (in dollars)
advert Expenditure on advertising ($1000s)

In a two-variables case, a scatter diagram is very informative about the relationship between
Y and X . However, in multivariate case, there is no useful analogue to the diagram. Some
information (in R) is provided by the command plot (andy) (see Fig.3.1, left) or still better
by (see Fig.3.1, right)

pairs (andy, upper.panel=panel.smooth,diag.panel=panel.hist,

lower .panel=panel.cor) # consult ?pairs
50 55 6.0 6.5
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Figure 3.1. The rhs plot suggests linear dependence of sales on price and parabolic on
advert (the function panel . smooth uses the loess procedure, see LN, p.2-6)

We shall analyze the model

sales = [y + Pjadvert + [, price + &

where ¢ may include weather, the behavior of competitors, a new Surgeon General‘s report
on the deadly effects of fat intake, and so on. We begin with a simple, univariate model. The
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graph suggests that sales do not individually depend on advert. Indeed,

Model 2: OLS, using observations 1-75
Dependent variable: sales

coefficient std. error t-ratio p-value
const 74.1797 1.79898 41.23 2.56e-052 ***
advert 1.73262 0.890324 1.946 0.0555 *
Log-likelihood -244.2731 RAkaike criterion 492.5463
Schwarz criterion 497.1813 Hannan-Quinn 494.3970

However, if we create a full model,

Model 3: OLS, using observations 1-75
Dependent variable: sales

coefficient std. error t-ratio p-value
const 118.914 6.35164 18.72 2.21e-029 ***
advert 1.86258 0.683195 2.726 0.0080 *xx
price -7.90785 1.09599 -7.215 4.42e-010 #**x*
Log-likelihood -223.8695 Akaike criterion 453.7390
Schwarz criterion 460.6915 Hannan-Quinn 456.5151

Test for normality of residual -
Null hypothesis: error is normally distributed
Test statistic: Chi-square(2) = 0.989504
with p-value = 0.609722

advert becomes significant, Akaike‘s criterion smaller, and errors normal’ (as a general no-
te, if you omit a relevant variable in the model, namely price in the second model, the coefti-
cients in the simplified model become biased; thus it is recommended to begin with the most
general model). The estimate 1.86258 of the coefficient at advert means that if advert
increases by 1 unit, sales increase by 1.86258 units (what is the meaning of -7.907857).

Remark. A word of caution is in order about interpreting regression results. The negative sign
attached to price implies that reducing the price will increase sales revenue. If taken literal-
ly, why should we not keep reducing the price to zero? Obviously that would not keep increas-
ing total revenue. This makes the following important point: estimated regression models de-
scribe the relationship between the economic variables for values similar to those found in the
sample data. Extrapolating the results to extreme values is generally not a good idea. Predict-
ing the value of the dependent variable for values of the explanatory variables far from the
sample values invites disaster. 4«

We can also begin with a still more general model*

sales = B, + Piadvert + ﬂzaa’vert2 + By price+ B, price2 + Bsadvert * price+ &

" In the model window, go to Tests| Normality of residual.
? First you have to create three new variables through the Add menu.
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(this is a model with the interaction term advert*price).

Model 4: OLS, using observations 1-75
Dependent variable: sales

coefficient std. error t-ratio p-value
const 238.297 83.8885 2.841 0.0059 x*xx*
price -54.7116 29.3081 -1.867 0.0662 *
advert 17.0995 7.58396 2.255 0.0273 **
sq_advert -3.07490 0.951730 -3.231 0.0019 x*xx*
sqg_price 4.24943 2.55016 1.666 0.1002
ad_pr -0.696829 1.18378 -0.5886 0.5580
R-squared 0.530341 Adjusted R-squared 0.496308
Log-likelihood -217.8292 Akaike criterion 447.6584
Schwarz criterion 461.5634 Hannan-Quinn 453.2105

Note that despite the fact that some coefficients of Model 4 are insignificant and the number
of variables is greater, its Akaike criterion is smaller then that of Model 3 (thus Model 4 is
preferable); on the other hand, the more strict Schwarz criterion suggests Model 3. We can
remove three insignificant variables manually, variable-by-variable, but it is also possible to
automate the procedure: in Model 4 window, go to Tests| Omit variables| and check the
»dequential elimination® of variables ...“ box:

Model 5: OLS, using observations 1-75
Dependent variable: sales

coefficient std. error t-ratio p-value
const 248.839 81.5712 3.051 0.0032 x*xx*
price -57.0629 28.8988 -1.975 0.0523 ~*
advert 13.1624 3.55823 3.699 0.0004 x*xx*
sq_advert -3.08965 0.946949 -3.263 0.0017 ***
sqg_price 4.33638 2.53397 1.711 0.0915 ~*
R-squared 0.527983 Adjusted R-squared 0.501010
Log-likelihood -218.0171 RAkaike criterion 446.0341
Schwarz criterion 457.6216 Hannan-Quinn 450.6609

This model is better then Model 4 (in both Akaike and Schwarz sense), one can still improve
it by omitting sq_pr ice but it will change the model only marginally.

The graph on the right (see Fig.3.2) shows that there exists a critical ammount of expenditure
on advertising where sales starts to diminish. To find the point, differentiate the model*

“sales = 249 - 57.1*price + 13.2*advert - 3.09*sqg_advert + 4.34*sqg_price
(81.6) (28.9) (3.56) (0.947) (2.53)

n = 75, R-squared = 0.528 (standard errors in parentheses)

3 Recall that the automated sequential elimination procedure is risky. It does not apply to our case but always
keep in your mind the rule: if sq_x is significant, never remove the linear term x.
*To get this expression of the model, in the model window go to Filel View as equation.
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—

. O sales ) .
in respect of advert: ———=13.2-3.09-2-advert =0; thus the optimal expenditure on
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advertising equals 2.14.
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Figure 3.2. yhat5 is for the fitted values in Model 5 (watch x axes!); the parabolic dependence of
yhat?5 on, say, advert in the right graph of the panel is not very parabolic because yhat5 de-
pends also on price; note that the blue “parabolas* differ (the left parabola is almost a straight
line and the branches of the right one go downwards; why?)

Let us return to the simplified Model 3:

“sales = 119 - 7.91*price + l.86*advert
(6.35) (1.10) (0.683)

One hypothesis of interest is whether an increase in advertising expenditure will bring an in-
crease in sales revenue that is sufficient to cover the increased cost of advertising. Since such
an increase will be achieved if S, >1, we set up the hypotheses” Hy:py<land H;: 5, >1.

Restriction:
bladvert] =1
Test statistic: F (1, 72) = 1.59409, with p-value = 0.210817

The p — value of this F —test can also be obtained by calculating the probability P(I Trs 5 1>

1.8626 -1

0.6832 j =1.263=0.2108. Note that the same result can be achieved through

ols sales 0 price advert
restrict

bladvert] =1
end restrict

5 To test them, in the model window go to Tests| Linear restrictions| b [advert] = 1 or
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In fact, we are interested in one-sided p — value: P(75, >1.263) =0.105(=0.2108/2) which

is >0.05, therefore we have no ground to reject H,,: despite the fact that B, =1.86, there is
insufficient evidence in our sample to conclude that advertising will be cost effective. The
same conclusion can be made using more adequate Model 5: the derivative 13.2 -
3.09*2*advert depends on advert and is often less than (rather than greater than) one.

Andy‘s marketing adviser claims that dropping the price by just 15 cents will be more effec-
tive for increasing sales revenue than increasing advertising expenditure by $500. To test the
claim, we begin with the simple Model 3 where this proposition is equivalent to

H : sales(price —0.15, advert) — sales(price, advert +0.5) =0 ©)

what is the same as H: S, -(=0.15)— 3, -0.5 > O with alternative H;:...<0. Note that her

proposal is based on the estimates, i.e., on the inequality -7.91%(-0.15) - 1.86*0.5 = 0.26 > 0.
To make sure that it holds in general, we have to test (*) with, say, 5% significance.

ols sales 0 price advert
restrict

-0.15*b[price] - 0.5*bladvert] = 0
end restrict

Test statistic: F (1, 72) = 0.461561, with p-value = 0.499074
Since 0.499/2=0.25>0.05, we have no ground to reject H,.

3.1 exercise. Test similar hypothesis for Model 5. Now the difference in (*) also depends on
the values of price and advert, therefore test the hypothesis at the medians of these two
variables.

3.2 example. Data set Bears.csv contains 143 observations on 9 variables. The set originates
from the study on wild bears aimed to help hunters to estimate the weight of a bear based on
other measurements (this would be used because in the forest it is easier to measure, say, the
length of a bear than to weigh it). Wild bears were anesthetized, and their bodies were meas-
ured and weighed. The nine variables are

Age is in months

Month is the month of measurement

Sex is coded with 1 = male and 2= female
HeadL is head length (inches)

HeadW is width of head (inches)

NeckG Girth (distance around) the neck, in inches

Length is length of body (inches)
ChestG Girth (distance around) the chest, in inches
Weight is measured in pounds

It will be convenient in the future if we sort all the data by ChestG: go to Datal Sort data...
and select sort key ChestG.
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The correlation matrix shows (click Ctrl+A, right click and choose Correlation matrix) that
Weight correlates best with ChestG, therefore we shall start with Weight vs ChestG re-

gression model.

Correlation Coefficients,

Age Month
1.0000 0.0219
1.0000

NeckG Length
0.7338 0.6906
0.1212 0.0819
-0.3476 -0.2568
0.8624 0.8952
0.8054 0.7363
1.0000 0.8730
1.0000

Weight versus ChestG (with loess fit)

0.

Sex
1188

-0.0885

T T T
loess fit, d = 1,4 = 0.5 —

500
450
400
350

300

Weight

250

200

150

Figure 3.3.

The command

gnuplot Weight ChestG --
output=display —-loess-
fit

displays the nonparametric lo-
ess regression curve (see Fig.
3.3, left, and LN, p.2-5). The
same picture with some more
flexible options can be pro-

1.

0000

ChestG

0.
0.
.2600
.8543
.7560
.9399
.8887
.0000

= O OO OO

7342
1284

F
“ gretl: loess

[ TR % I

using the observations 1 - 143
(missing values were skipped)

HeadL HeadwW
0.6869 0.6692 Age
0.0572 0.0114 Month
-0.2834 -0.2957 Sex
1.0000 0.7436 HeadL
1.0000 Headw
Weight
0.7740 Age
0.0859 Month
-0.2972 Sex
0.8333 HeadL
0.7556 HeadW
0.9433 NeckG
0.8746 Length
0.9660 ChestG
1.0000 Weight
r“ gretl: Loess E@lﬂ‘
Loess
Age Dependent variable
Month Weight
HeadL [] Set as default
Hieadi Independent variable
MNeckG
Length ChestG
ChestG
Weight Polynomial order 1 =
Bandwidth 050
[] Use robust weights
Help l ’ Clear l ’ Cancel l ’ oK

Ches=stG

15
15
23
23

BeDaLr@®n %

Model estimation range:

The loess fit (left) and respective box (right)

g BT 2

Weight fitted 2
24 18
26 18
8 51

65 51 o
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duced through the menu bars: go to Modell Robust estimationl Loess...| OK (see Fig. 3.3,
right) (to save the fitted values, click on the plus sign as shown above). The table consisting
of the ChestG and fitted columns can already be used for estimating weight in the forest.

The loess curve resembles a broken or segmented line, therefore we can also use OLS and try
to describe the model via

Weioht ﬁ() + ﬂzChe.TtG +& for ChestG <37
eight = _
¢ (By+ B+ (B + B3)ChestG + ¢ for ChestG >37

= (By + B big)+ (B, + P big) ChestG + € =
= By + By big + B,ChestG + [, bigChG + ¢

The new variables big and the interaction term bigChG = big*ChestG are defined here as

series big = ChestG>37
series bigChG = big*ChestG

(thus Weight is described by one line untill Chest G<37 and another one for bigger values).

Model 1: OLS, using observations 1-143
Dependent variable: Weight

coefficient std. error t-ratio p-value
const -159.819 18.3052 -8.731 7.13e—-015 ***
big -290.817 33.5913 -8.658 1.08e-014 **~*
ChestG 9.11035 0.585834 15.55 3.20e-032 ***
bigChG 7.68684 0.853276 9.009 1.45e-015 ***
Log-likelihood -648.8385 Akaike criterion 1305.677
Schwarz criterion 1317.528 Hannan-Quinn 1310.493

The premium values S and S5 are quite significant, thus it is sensible to use this model. Af-

ter saving fitted values as ols_fit, we can draw Fig. 3.4 (both model give almost the same
predicted values therefore we can use any of them).

Similar results can be obtained with R (use the function 1oess or the segmented function
from the “segmented” package). Repeat the OLS variant with R using the dummy variable
big.

3.2 exercise. Use the same data, begin with a full model (i.e., the one with all the original data
Age, Month etc) and end with the “best” model (when in the full model window, go to Testsl
Omit variables and eliminate the least significant variables one by one; as an alternative,
check the “Sequential elimination ...” button).
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600 T
ols_fit
Weight X
loess_fit
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Figure 3.4. Red (OLS) and green (loess) predictions of Weight almost coincide.

3.3 exercise. Import the time series in shipm.txt which contains value of shipments, in mil-
lions of dollars, monthly from January, 1967 to December, 1974 (this represents manufactur-
ers' receipts, billings, or the value of products shipped, less dicounts, and allowances, and ex-
cluding freight charges and excise taxes; shipments by foreign subsidiaries are excluded, but
shipments to a foreign subsidiary by a domestic firm are included). Find its trend as a broken
line and extend the trend 12 months ahead. Isn’t the model for logarithms better? (keep in
mind possible heteroskedasticity and normality of residuals). <4<

3.4 exercise. Is it possible to predict graduation rates grad from freshman test scores sat?
Based on the average SAT score of entering freshmen at a university, can we predict the per-
centage of those freshmen who will get a degree there within 6 years? We use a random sam-
ple of 20 universities from the 248 national universities listed in the 2005 edition of Ameri-
ca’s Best Colleges, published by U.S.News & World Report (see the file univ1.txt).

1. Draw a sat-grad scatter diagram.

2. Create a linear model grad = f, + fisat +sand add a regression line to the
graph.

3. What is the meaning of f;?

4. Are the residuals normal?

5. Transform PrivState variable into a dummy one and include it into a mod-

el. What can you tell about the differences between the models?
6. Draw a graph presented in Fig. 3.3; why the black line is higher?
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7. A 100 (1—-a)% prediction interval for a future ¥ observation to be made when
X=X"is Bo+BX t1gpr s I+ N+(X =X)2 13 (X; - X)? . Esti-

mate the interval for the state universities if sat=1200.

100
I

grad

sat

Figure 3.5. sat-grad scatter diagram for private (black) and state (red) universities
together with two regression lines for both groups.

3.2. Multicollinearity

Consider the problem faced by the marketing executives at Big Andy’s Burger Barn when
they try to estimate the increase in sales revenue attributable to advertising that appears in
newspapers and the increase in sales revenue attributable to coupon advertising. Suppose that
it has been common practice to coordinate these two advertising devices, so that at the same
time that advertising appears in the newspapers there are flyers distributed containing coupons
for price reductions on hamburgers. If variables measuring the expenditures on these two
forms of advertising appear on the right-hand side of a sales revenue equation such as in Mod-
el 3, then the data on these two variables will show a systematic, positive relationship. Alt-
hough it is clear that total advertising expenditure increases sales revenue, however, because
the two types of advertising expenditure move together (i.e., they are highly correlated or col-
linear), it may be difficult to sort out their separate effects on sales revenue.

3.3 example. 1970 m. JAV Energijos departamentas atliko tyrima, susijusj su naftos produkty
skirstymu visoms 50 valstijy pagal produkty ankstesnj naudojima, gyventojy skaiCiy, autoke-
liy ilgj ir pan. Duomeny rinkinyjs gas10.txt yra pateikta dalis surinktos informacijos. Cia

PCON naftos produkty poreikis valstijoje (trilijonais BTU)
POP gyventojy skaicius
REG registruoty automobiliy skaicius (tukstanciais)

39
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TAX benzino akcizo mokestis (centais uz galong)
UHM greitkeliy ilgis (myliomis)

IS ekonominiy samprotavimy aisku, kad naftos produkty poreikio funkcija turéty elgtis taip:

PCON = f(POP,REG,UMH, TAX)
+ + o+ -

t.y., kai valstijos POP auga, PCON taip pat turéty augti (taigi regresijos koeficientas prie POP
turéty biiti + ir t.t.). Antra vertus, POP, REG ir UHM yra tikriausiai smarkiai koreliuoti (t.y., ir
multikolinearts). IS tikryjy, taip ir yra:

Correlation Coefficients, using the observations 1 - 50
% critical value (two-tailed) = 0.2787 for n = 50
POP REG UHM
1.0000 0.9806 0.9645 POP
1.0000 0.9786 REG

1.0000 UHM

Analize¢ pradékime paprastu modeliu

Model 1 - Dependent variable: PCON

coefficient std. error t-ratio p-value
const 21.6762 58.2181 0.3723 0.7113
POP 0.125892 0.00873175 14.42 4.57e-019 **x*
R-squared 0.812405 Adjusted R-squared 0.808497
Log-likelihood -354.5496 RAkaike criterion 713.0993
Schwarz criterion 716.9233 Hannan-Quinn 714.5555

Kiek jtarimy kelia nereik§mingas laisvasis narys, taciau vietoje to, kad gilintumémés | mode-
lio be laisvojo nario analize¢, i modelj i§ karto jjunkime (mazai su POP koreliuotg) mokesciy
TAX narj:

Model 2 - Dependent variable: PCON

coefficient std. error t-ratio p-value
const 617.318 199.837 3.089 0.0034 A
POP 0.119839 0.00827744 14.48 6.05e-019 **x*
TAX -56.2393 18.1762 -3.094 0.0033 KA
R-squared 0.844151 Adjusted R-squared 0.837519
Log-likelihood -349.9148 RAkaike criterion 705.8296
Schwarz criterion 711.5657 Hannan-Quinn 708.0139

Naujas modelis yra geresnis tiek Akaike’s, tieck Schwarz’o prasmémis, o jo koeficienty Zenklai
yra tokie, kokiy tik¢jomés. Pabandykime dar pagerinti §§ modelj, j ji jjungdami visus kinta-
muosius:

3-10



© R. Lapinskas, PE.I - Computer Labs
3. Multivariate Regression Models

Model 3 - Dependent variable: PCON

coefficient std. error t-ratio p-value

const 387.631 146.200 2.651 0.0110 *x

POP -0.00663039 0.0294278 -0.2253 0.8228

REG -0.0524422 0.0579811 -0.9045 0.3706

TAX -36.3691 13.3000 -2.735 0.0089 xEx

UHM 61.0537 10.4475 5.844 5.32e-07 ***
R-squared 0.924275 Adjusted R-squared 0.917544
Log-likelihood -331.8702 RAkaike criterion 673.7405
Schwarz criterion 683.3006 Hannan-Quinn 677.3810

Jo R-squared dar padid¢jo, taCiau, modeli papildZius naujais kintamaisiais, taip biina
visuomet. Svarbiau yra tai, kad padidéjo Adjusted R-squared, o Akaike’s ir Schwarz’o
statistikos sumaz¢jo, taigi formaliai Zitrint paskutinis modelis yra ,,geriausias”. Antra vertus,
koeficienty Zenklai dabar ,,neteisingi”, o anks¢iau buves reikSmingu POP tapo nereikSmingu.
Visa tai aiSkiis multikolinearumo poZymiai, o tuo jsitikinti galima taip:

1. apskaiCiuosime Sio modelio koeficienty jvertiniy dispersijos daugiklius:
Variance Inflation Factors

Minimum possible value = 1.0
Values > 10.0 may indicate a collinearity problem

POP 26.379
TAX 1.117
REG 43.937
UHM 25.255

(modelio lange nueikite j Tests| Collinearity; kadangi ,,didumo* kintamyjy VIF‘ai dideli, tai
kintamyjy nereikSmingumas gali biiti tariamas);

2. valstijos didumg nusakantys keli kolineartis kintamieji individualiai yra ‘nereikSmingi”,
taciau jy bendras poveikis tikrai néra nulinis — jungting hipotez¢ H,: 5 =0,5,=0,8,=0
tikriname taip: Model 3 lange nuvairuokite | Tests| Linear restrictions ir jrasykite

b[POP]=0
b[REG]=0
b[UHM] =0

paspaude OK, pamatysite atsakyma:

Test statistic: F(3, 45) = 153.549, with p-value = 1.19407e-023
taigi H|, reikia neabejotinai atmesti.
A variant: go to Tests| Omit variables and choose POP, REG, and UHM.

Su R tg patj gautume su tokiu skriptu:

gaslO=read.table(file.choose (), header=T)
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mod3=1m (PCON~POP+REG+TAX+UHM, data=gasl10)
mod3.be=1m (PCON~TAX, data=gasl10)
anova (mod3, mod3.be)

Analysis of Variance Table

Model 1: PCON ~ POP + REG + TAX + UHM
Model 2: PCON ~ TAX

Res.Df RSS Df Sum of Sqg F Pr (>F)
1 45
2 48 -3 —-17451353 153.55 < 2.2e-16 **x*

(priminsime, kad Sis testas atlickamas taikant F —testg, t.y., lyginant ribotojo ir neribotojo
modeliy RS us, 7r. LN, 4.7 skyrelj).

Tolimesnis miusy elgesys priklauso nuo tyrimo tikslo. Jei analizés tikslas btity prognozuoti
naftos poreikj valstijoje, tai paskutinis modelis visai tinkamas. Antra vertus, jei tyrimo tikslas
bty kiekvienos kintamyjy grupés (viena grupé¢ susijusi su valstijos didumu — jg sudaro POP,
UHM ir REG, o kitg sudaro TAX) jtakos nustatymas, tai §ig analize kol kas geriausiai atlieka
Modelis 2 su ,,diduma* aprasan¢iu POP (Modelis 3 su visais ,,didumg‘ aprasanciais kintamai-
siais dél multikolinearumo yra blogas). Sia analize patikslintume, jei j modelj jtrauktume ne
individualius ,,didumo* kintamuosius, o juy pagrindines komponentes [CM2, 244 psl.] (angl.
principal components). GRETL’o lange nueikite j Viewl Principles components ir pasirinkite
POP, REG ir UHM:

Principal Components Analysis

Eigenanalysis of the Correlation Matrix

Component Eigenvalue Proportion Cumulative
1 2.9491 0.9830 0.9830
2 0.0356 0.0119 0.9949
3 0.0153 0.0051 1.0000

Eigenvectors (component loadings)

PC1 PC2 PC3
POP 0.577 0.684 0.448
REG 0.579 0.044 -0.814
UHM 0.576 -0.729 0.370

Kitaip sakant, pirmoji pagrindiné¢ komponent¢ PC1 =0.577POP+0.579REG+0.576UHM yra
sukaupusi 98,3% informacijos apie visg trijy kintamyjy sistema, tod¢l ji geras jungtinis didu-
mo koeficientas.

Model 4 - Dependent variable: PCON

coefficient std. error t-ratio p-value
const 1095.74 158.520 6.912 1.11e-08  #**x*
TAX -48.7474 15.3711 -3.171 0.0027 *hx
PC1 351.299 19.7814 17.76 1.76e-022 **x*

® I§saugoti §iuos naujus kintamuosius galima komponenéiy lange paspaudus < . komandinis variantas yra
toks: pca POP REG UHM --save-all
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R-squared 0.889642 Adjusted R-squared 0.884946
Log-likelihood -341.2857 Akaike criterion 688.5714
Schwarz criterion 694.3075 Hannan-Quinn 690.7557

Sis modelis panasus j Modelj 2, taiau pagal visus kriterijus ,,geresnis“ uZ jj. Taigi renkamés
$1 model;j ir darome iSvada, kad valstijos ,,didumui‘ padidé¢jus 1, naftos produkty poreikis pa-
didéja 351.299 vienetais, o benzino mokescCius padidinus 1, poreikis sumazéja 48.747 viene-

tais. <4<

3.5 exercise. The file cars.txt contains observations on the following variables for 392 cars:

MPG miles per gallon

CYL number of cylinders

ENG engine displacement in cubic inches
WGT vehicle weight in pounds

Suppose we are interested in estimating the effect of CYL, ENG, and WGT on MPG. All the ex-
planatory variables are related to the power and size of the car. Although there are exceptions,
overall we would expect the values for CYL, ENG, and WGT to be large for large cars and
small for small cars. They are variables that are likely to be highly correlated and whose sepa-
rate effect on MPG may be difficult to estimate.

1. What about the correlation between explanatory variables?

2. Estimate the regression of MPG on CYL (Model 1). What sign do you expect at CYL?

3. Draw a scatter diagram of MPG vs CYL together with the regression line. Is the straight line
a good approximation to your data?

4. Estimate the regression model of MPG on all the explanatory variables (Model 2). Is it a
better model? Do you see any signs of collinearity? Individually, CYL and ENG are insig-
nificant. Are they jointly insignificant?

5. CYL is in fact a group name but not a continuous variable. To convert it to a set of dummy
variables, first make it discrete (select it, right-click on it, choose Edit attributes and check
the “Treat this variable as discrete” box) and then go to Addl Dummies for selected discrete
variables| OK.

6. Create a regression of MPG on DCYL_2,...,.DCYL_5 (Model 3). Why we do not include
DCYL_1 into the model? Is Model 3 better than Model 1?

7. Find two principal components of ENG and WGT. Estimate the regression model of MPG on
DCYL_2,...,DCYL_5 and PC1 (Model 4). Is it better than other models?

8. What is the meaning of all the coefficients in Model 4? Derive out of this model a formula
of MPG for the cars with 3 cylinders.

9. Repeat the analysis with R. To recreate Model 3, use mod=1m (MPG~factor (CYL),
data=CARS) . To calculate AIC, use AIC (mod) . To find principal components, use

aaa=prcomp (~ ENG+WGT, data = CARS, scale = TRUE)

PCl=aaas$x[,1] <4<

3.6 exercise. Use the data in hsb.txt for this exercise.
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1. Estimate the principle components of the system of five variables RDG, WRTG, MATH,

SCI, and CIV. Use the first one, i.e., PC1, as the indicator of student’s achievment.

2. Estimate a regression model relating PC1 to all explanatory variables (first, transform

qualitative variables to dummy variables).

3. Go to Tests| Omit variables and check the “Sequential elimination ...” box. Comment the

results.

3.7 exercise. _ Is it true that the same regression model describes college

grade point averages for male and female college athlets? Use the data in GPA3.txt, where

term fall = 1, spring = 2

sat SAT score

tothrs total hours prior to term
cumgpa cumulative GPA
season =1 if in season

frstsem =1 if student's 1st semester
crsgpa weighted course GPA
verbmath verbal SAT to math SAT ratio
trmgpa term GPA

hssize size high school graduating class
hsrank rank in h.s. class

id student identifier

spring =1 if spring term

female =1 if female

black =1 if black

white =1 if white

ctrmgpa  change in trmgpa
ctothrs change in total hours
ccrsgpa  change in crsgpa
ccrspop  change in crspop
cseason  change in season
hsperc 100*(rank/hssize)
football =1 if football player

Consider two models:
cumgpa = [, + pysat + Brhsperc + fxtothrs + &
and
cumgpa = [ + 0y female + fsat + 0, female - sat +

Bohsperc + 6, female - hsperc + Sstothrs + 05 female - tothrs + &
The null hypothesis that cumgpa follows the same model for males and females is stated as
HO :50 20,51 20,52 20,53 =0.

1. Create both models.
2. What is the meaning of the 6 coefficients?
3. Test the null hypothesis with both gretl and R. Comment.
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4. In many cases, it is more interesting to allow for an intercept difference between the
groups and then to test for the equality of the slopes. In other words, test

H05120,52:O,53:0

3.8 exercise. The data set aa is given as

aa = structure(list(xl = ¢(0.4, 2.8, 4, 6, 1.1, 2.6, 7.1, 5.3, 9.7, 3.1,
9.9, 5.3, 6.7, 4.3, 6.1, 9, 4.2, 4.5, 5.2, 4.3), x2 = c(19.7, 19.1, 18.2,
5.2, 4.3, 9.3, 3.6, 14.8, 11.9, 9.3, 2.8, 9.9, 15.4, 2.7, 10.6, 16.6, 11.4,
18.8, 15.6, 17.9), vy = ¢(19.7, 19.3, 18.6, 7.9, 4.4, 9.6, 8, 15.7, 15.4,
9.8, 10.3, 11.2, 16.8, 5.1, 12.2, 18.9, 12.2, 19.3, 16.5, 18.4)), .Names =
c("x1", "x2", "y"), class = "data.frame", row.names = c(NA, -20L))

Try to best describe v in terms of x1 and x2. Hint: ||| |l <<

3.3. Heteroskedasticity

If the homoskedasticity assumption varg; = o’ (more precisely, assumption var(g | X) = 02)
fails, we say that errors (or the regression model) are heteroskedastic. Heteroskedasticity does

not cause bias or inconsistency in the ﬁ,,‘f“ . However, without the homoskedasticity assump-

tion ﬁ,,‘f“ are no longer the best, the OLS estimators of the var 3, are biased, and the usual

OLS ¢- statistics do not have Student‘s distribution even in large samples. Similarly, F statis-
tic no longer has Fisher‘s distribution, and the LM statistic no longer has an asymptotic ;(2

distribution. Thus, we have to take into account the fact that var ¢g; 7:[ o’

To analyze the model for heteroskedasticity
e create OLS model and visually examine its residuals for heteroskedasticity or/and ap-
ply Breusch-Pagan test or/and White test
correct the model with weights: use the WLS or gls procedures
alternatively, use the White correction (robust standard errors)

3.9 exercise. The file data8-2.txt contains aggregate personal income and expenditures on
domestic travel (1993) for the U.S. states and Washington, D.C. (51 observation):

exptrav travel expenditures in billions of dollars
income personal income in billions of dollars
pop population in millions

Consider the following Engel curve relation:

exptrav = [, + fjincome + & *)

We might expect that the variances of the errors of the OLS model (*) are heteroskedastic and
increase together with population (a sensible specification is therefore o; = o pop;). We use
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the Harvey-Godfrey procedure to test this claim: create an auxiliary regression

log &% = oy +oqpop +u; in order to test the hypothesis H:oq =0 (i.e., the errors of (*) are
homoskedastic with respect to pop), estimate its LM statistics (= 5S1* Rgux) and calculate res-
pective p—value P( ;(12 >LM).

ols exptrav 0 income

Model 1: OLS, using observations 1-51
Dependent variable: exptrav

coefficient std. error t-ratio p-value
const 0.498120 0.535515 0.9302 0.3568
income 0.0555731 0.00329311 16.88 4.70e-022 ***
series logres = log(Suhat”2)

ols logres 0 pop

pvalue X 1 $nobs*S$Srsg

Chi-square(l): area to the right of 10.0207 = 0.00154792
(to the left: 0.998452)

We see that the p —value is much less than 0.05, therefore we divide each term of (¥*) by pop
and hopefully obtain a homoskedastic model

exptray 1 income *
pirav _ o 1 p e (%)
pop pop pop

which can be estimated by OLS (broadly speaking, if population has a role in a model, it is
generally a good practise to express the model in per-capita terms). Recall that to apply the
OLS to (**) means to find b, and b; such that the expression

. 2
z[exptmvi _( By 1 by income; B _ Z 1 . ( by +by income, )2

pop; pop; pop; pop;

attains its minimum. Note that rhs expression stands for the WLS with (1/ pop)2 as weight.

series pcexp = exptrav/pop

series pcincm = income/pop

series invpop = 1/pop

ols pcexp invpop pcincm # OLS with no intercept

Model 3: OLS, using observations 1-51
Dependent variable: pcexp

coefficient std. error t-ratio p-value
invpop 0.736824 0.332260 2.218 0.0312 W
pcincm 0.0585518 0.0122610 4.775 1.66e-05 **x*

It should be pointed out that while OLS is applied to the transformed equation, the interpreta-
tion of the coefficients is for the original equation. Thus, the estimated coefficient of 1 /pop
is that of the intercept term, and the estimated coefficient 0.0586 of income/pop is that of
the marginal propensity to spend on travel with respect to income.
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The OLS model 3 is equivalent to the WLS model 4:

series wtvar = 1/ (pop”2) # create weights
wls wtvar exptrav const income # WLS with ww as weights

Model 4: WLS, using observations 1-51
Dependent variable: exptrav
Variable used as weight: wtvar

coefficient std. error t-ratio p-value
const 0.736824 0.332260 2.218 0.0312 W
income 0.0585518 0.0122610 4.775 1.66e-05 ***

To finalize our analysis — Model 1 suggests that once income increases by 1 (billion), the
exptrav will increase on average by 0.056 (billions). Do not forget that this number is only
an estimate of marginal propensity, the true value of it is somewhere in the interval (0.056-
2%#0.003,0.056+2*0.003). Similarly, Model 3 suggests the interval (0.059-2%0.012,0.059+
2*0.012) (surprisingly, now the standard deviation is even bigger, but these values are only

estimates). Both methods give slightly different estimates of £, but you should keep in your

mind that two unbiased estimates do not necessarily coincide. The final point — if you correct
standard deviations in Model 1 taking heteroskedasticity-robust standard errors with

ols exptrav const income --robust

you get (0.056-2%0.005,0.056+2*005), thus the advice in LN to “take care of heteroskedastici-
ty only in severe cases* seems quite reasonable. 4«4

3.4 example. The below-presented code generates a sample of 50 elements described by the
equation Y, =0+0%i+¢; where ¢, ~N (0,i%). Since the errors are heteroskedastic, we esti-
mate [, and f; twice, with OLS and WLS. To verify the claim that OLS is not efficient (i.e.,
there exists a method, namely WLS, with a smaller variance of estimators), we repeat the pro-
cedure 500 times and calculate sample variances of ﬁAIOLS and AIW LS _ indeed, the weighted

least squares estimate of S (=0) (see Fig.3.3) has a smaller variance.
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var(beta.hetero)=0.09 var(beta.weighted)=0.03
R - ] 8 ]
5 o g o
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beta.hetero beta.weighted

Figure 3.6. ,élWLS has smaller spread of values around S, =0

N=50

y=numeric (N)
beta.hetero=numeric (500)
beta.weighted=numeric(500)
ii=1:N

for(j in 1:500)

{

set.seed(7J)

y=rnorm(N, sd=1:N)
mod.hetero=1lm(y~ii)
beta.hetero[j]=mod.heteroScoef [2]

mod.weighted=1lm(y~ii,weights=1/(1i1i"2))
beta.weighted[j]=mod.weightedScoef[2]
}

cat ("var (beta.heterosk)=",var (beta.hetero), "\n")

cat ("var (beta.weigted)=",var (beta.weighted), "\n")
par (mfrow=c(1,2))

hist (beta.hetero,main="var (beta.hetero)=0.09")

hist (beta.weighted, main="var (beta.weighted)=0.03")
windows () # open a new window

par (mfrow=c(1l,1))

plot(ii,y) # y is from 500 loop

abline (0,0);abline(0,1.5,1ty=2);abline(0,-1.5,1lty=2)

3.10 exercise. In the above 3.4 example, we have proved that

AWLS WLS
1

var <var ﬁA’IOLS. Examine whether it implies that in any of 500 pairs (ﬁA’l —0) is less

than (,5’10LS -0).

3.11 exercise. Redo 3.8 exercise from the menu lines. Redo the exercise with R. Add some
graphs to your report (for example, draw the scatter diagram of the residuals of the OLS mod-
el (*) vs pop and another scatter diagram of the residuals of the OLS model (**) vs pop; ex-
plain the difference). <4<
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The GLS procedure discussed in the previous example consists of dividing each variable (inc-
luding the constant term) by o; and then applying OLS to the resulting transformed model.
As the structure of the heteroskedasticity is generally unknown, a researcher must first obtain
estimates of o; by some means and then use the WLS procedure (it is called the feasible or

estimable GLS, FGLS or EGLS). The natural method of estimating the error variance is to
exploit the information contained in the auxiliary equation:

1) Regress Y against a constant term and X|,..., X; and obtain the residuals ¢; = éiOLS .

2) Regress eiz or le; |, or log el-z against a constant and Wj,...,W, (this is called an auxiliary
regression) where W's are all or some X's, together with some (significant) squares and

cross products and also some relevant outside variables. The FGLS uses the fitted value él-z as

an estimate of O'iz ,i.e., wrvar, =1/ éiz as weights. A problem with the first two variants is that

there is no guarantee that the predicted variances will be positive for all i. If any of them is
negative, we cannot take the square root. If this situation arises for some observations, then we

can use the original eiz and take their positive square roots.

The FGLS estimates obtained in this way are consistent, as are OLS estimates. However, unli-
ke OLS, the estimated variances of the estimates are consistent here, too. It should be noted

that conventional methods of calculating R? are not valid (compute it as the square of the
correlation between observed and fitted values of the original dependent variable).

3.5 example. The file data8-3.txt contains four columns of data for the U.S. states and
Washington, D.C., for 1993:

exphlth aggregate expenditures on health care in billions of dollars
income aggregate personal income

pop population in millions

seniors percent 65 and over

The same data is present in GRETL, Filel Open datal Sample file...| Ramanathan| data8-3. We
have seen that population often induces heteroskedasticity and therefore expressing variables
as per-capita, by dividing by population, is a useful way of reducing that effect:

hith ]
P _ Bo+ b meome , Poseniors + ¢ .
pop pop

We use GRETLI Filel Script files| Practice file...| ps8-8:

open data8-3

genr y=exphlth/pop

genr x=income/pop

# estimate model by OLS and save absolute residuals, squared residuals,
# and their logs

ols y const x seniors

genr absuhat=abs (Suhat)
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genr usg=Suhat*$uhat

genr lnusg=1ln(usq)

# generate square and cross product variables; the flag -o generates cross
# product

square x seniors -o

# Testing and estimation for the Glesjer approach

ols absuhat const x seniors sg_x sg_seniors

# estimate residual s.d. from the auxiliary regression

genr sigmahat=absuhat-S$Suhat

# compute LM test statistic and its p-value

genr LMl=$nrsqg

pvalue X 4 LMl

# print sigmahat and note that only one estimate is negative
print sigmahat

# replace negative value with original sigmahat and get weights
genr dl=(sigmahat>0.0)

genr sigma2=(dl*sigmahat)+((1-dl) *absuhat)

genr wtl=1/(sigma2”"2)

# Estimate model by FGLS which is the same as WLS

wls wtl y const x seniors

# Testing and estimation for the Breusch-Pagan approach

ols usg const x seniors sg_x sg_seniors

# estimate residual s.d. from the auxiliary regression

genr usghatl=usg-Suhat

# compute LM test statistic and its p-value

genr LM2=$nrsqg

pvalue X 4 LM2

# print usghat and note that several estimates are negative
print usghatl

# replace negative values with original usghat and get weights
genr d2=(usghatl1>0.0)

genr usghat2=(d2*usghatl)+((1-d2) *usq)

genr wt2=1/usghat2

# Estimate model by FGLS which is the same as WLS

wls wt2 y const x seniors

# Testing and estimation for White's procedure

ols usqg const x seniors sg_x sg_seniors x_seniors

genr usghat3=usg-Suhat

# compute LM test statistic and its p-value

genr LM3=S$nrsqg

pvalue X 5 LM3

# print usghat and note that several estimates are negative
print usghat3

# replace negative values with original usghat and get weights
genr d3=(usghat3>0.0)

genr usghat4=(d3*usghat3)+((1-d3) *usq)

genr wt3=1/usghat4

# Estimate model by FGLS which is the same as WLS

wls wt3 y const x seniors

# Test using the Harvey-Godfrey approach

ols lnusqg const x seniors sg_x sg_seniors

# compute LM test statistic and its p-value

genr LM4=S$nrsqg

# since the p-value is high, we do not reject homoscedasticity
pvalue X 4 LM4

# Because the coefficients for x and x-squared are significant, another LM
# test is done with just these

ols lnusqg const x sg_x

genr lnusghat=lnusg-Suhat

# compute LM test statistic and its p-value

genr LM5=$nrsqg
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pvalue X 2 LM5

# since the p-value is acceptable, we reject homoscedasticity and
# procede with WLS estimation

genr usghatb5=exp (lnusghat)

genr wt4=1/usghat5

wls wtd y const x seniors

WLS, using observations 1-51
Dependent variable: y
Variable used as weight: wt4

coefficient std. error t-ratio p-value
const 0.0237519 0.437873 0.05424 0.9570
X 0.0947065 0.0174083 5.440 1.77e-06 ***
seniors 0.0743781 0.0166254 4.474 4.71e-05 **x*

A simplified version of the above script (it carries out only the log eiz case) can be performed

with the hsk command:

hsk y 0 x seniors

Heteroskedasticity—-corrected, using observations 1-51
Dependent variable: y

coefficient std. error t-ratio p-value
const 0.0338012 0.384074 0.08801 0.9302
X 0.0986142 0.0167724 5.880 3.83e-07 **x*
seniors 0.0677264 0.0114200 5.931 3.20e-07 ***

Both WLS regression results are very close. 4«4

3.12 exercise. Repeat the WLS analysis without the DC observation (verify that this obser-
vation is an “outlier” in a sense). Compare it with the OLS regression. Do the same from the
menu-driven windows. Do the same analysis with R.

3.13 exercise. The data set data7-11 (go to GRETLI Open datal Sample file...| Ramanathanl|
data7-11) contains the following variables:
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price czale price (3000s, Range 110 - 590)

age age of house in years (Range 1 - 80])

aircon = 1 if house has central air, 0 otherwise

baths number of bath rooms (Rangel - 5)

bedrms number of bed rooms (Range 2 - 5)

cond condition of house from poor (1) to excellent (6]
COrner =1 if the house is a corner lot, 0 otherwise

culd =1 if the house iz in a cul-de-sac, 0 otherwise
dish =1 if the house has a built-in dishwasher, 0 otherwize
fence =1 if the house has a fence, 0 otherwise

firepl number of fireplaces (Range - 2)

floors number of floors (Range 1 - 2)

garage number of car spaces in garage (Range 0 - 3]

irreg =1 if lot is irregular in shape, 0 octherwise

lajolla =1 if the house is located in La Jolla, 0 otherwise
Indry =1 if the house has a laundry area, 0 otherwise
patic number of patios (Range 0 - 2)

pool =1 if the house has a swimming pocl, 0 otherwise
Fooms number of rooms excluding bedrms and baths (Range 1 - 5)
sprink =1 if there is a sprinkler system, 0 otherwise

sqft living area in square feet (Range 950 - 3775)

WiEw =1 if the house has a view, 0 otherwise

yard yard size in square feet (Range 1530 - 36304)

1.  Consider the following model for real estate values:

price = By + pisqft + Py yard + B3 pool + &

1a. You suspect that the error term & might be heteroskedastic and that the variance of ¢ is
proportional to sgft. Describe step-by-step how you should use the WLS procedure to take
care of the problem. Be sure to state the transformation you need to and the regression to be
run. Write down the assumptions on ¢ and the properties of the WLS estimates. Carefully
explain why your properties hold.

1b. Suppose you did not know the nature of heteroskedasticity and want to use the White test
for it. Describe carefully all the steps needed to perform the test.

1c. Use data7-11 to estimate the above model. Repeat this process after adding more variables
to the model.

2. Consider the model
price = By + Pysqft + B3 log(sqft) + pyyard + Pslog(yard) + &

2a. You suspect that the marginal effect of sgft (yard) on price decreases as sgft (respec-
tively, yard) increases. If these hypotheses were true, what signs would you expect for f;
and fs? Justify your answer.

2b. You know from past studies that the variance of & is proportional to to the size of the
sqft. Describe step-by-step how you would apply the WLS prosedure that makes use of this
information. Be sure to state what variables to generate and what regressions to run.
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2c¢. In what way is the WLS procedure better than the OLS procedure?

2d. In the basic model, suppose the nature of heteroskedasticity is unknown. Describe the
steps to be taken to perform the Harvey-Godfrey test for the model. To do this, first write the
auxiliary equation for the error variance and state the null hypothesis of no heteroskedasticity.
Then describe the regressions to run, how you will compute the test statistic, and what its dis-
tribution and d.f. are.

2e. Use the data of data7-11 to estimate the model in 2. and implement the WLS and FGLS
procedures discussed above. Repeat this process after adding more variables to the model.

3.14 exercise. [ The data file cps4_small.txt contains 1000 observations on the
following variables:

wage earnings per hour

educ years of education

exper post education years experience
hrswk usual hours worked per week
married = 1 if married

female 1 if female

metro = 1 if lives in metropolitan area
midwest =1 if lives in midwest

south =1 if lives in south

west =1 if lives in west

black 1 if black

asian = 1 if asian

Note on educ variable. CPS reports educational attainment by category. For the purpose of
illustrations, we assign the following numerical values for educ:

00. Less than 1st grade

03. 1st,2nd,3rd,or 4th grade

03. 5th or 6th grade

08. 7th and 8th grade

09. 9th grade

10. 10th grade

11. 11th grade

12. 12th grade no diploma

12. High school graduate - high school diploma or equivalent
13. Some college but no degree

14. Associate degree in college - occupation/vocation program
14. Associate degree in college - academic program

16. Bachelor's degree (for example: BA,AB,BS)

18. Master's degree (for example:MA,MS,MENG,MED,MSW, MBA)

21. Professional school degree (for example: MD,DDS,DVM, LLEB,JD)
21. Doctorate degree (for example: PHD,EDD)

1a. Using the data in cps4_small.txt estimate the following wage equation with OLS and het-
eroskedasticity-robust standard errors:

log(wage) = 3, + Beduc + Brexper + ﬂ3exper2 + B, exper *educ + &

Report the results.
1b. Add married to the equation and re-estimate. Holding educ and exper constant, do
married workers get higher wages? Using a 1% significance level, test a null hypothesis that
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wages of married workers are less than or equal to those of unmarried workers against the al-
ternative that wages of married workers are higher.

1c. Plot the residuals from part 1a against the two values of married. Is there evidence of
heteroskedasticity?

1d. Estimate the model in part la twice — once using observations on only married workers
and once using observations on only unmarried workers. Use a two variances test (see
GRETLI Tools| Test statistic calculator| 2 variances) to test whether the error variances for
married and unmarried workers are different.

le. Find GLS of the model in part 1a. Compare the estimates and standard errors with those
obtained in part 1a.

1f. Find two 95% interval estimates for the marginal effect 0 E'log(wage)/ 0 educ for a worker

with 25 years of experience. (Hint: the interval equals ﬁ1+ ,@exper

+ 2\/ Var( [31 + [3'4exper) | exper=25)- To find the matrix var B, use the line

ols 1_wage 0 educ exper sqg_exper exp_ed —--vCv

>k sk s st sk st sk sk sk s sk s st sk sk sk sk steosk sk sk kosk

2a. Consider the same data set and the same wage equation. Plot the OLS residuals against
educ and against exper. What do they suggest?

2b. Test for heteroskedasticity using a Breusch-Pagan test where the variance depends on
educ, exper and married. What do you conclude at a 5% significance level?

2c. Estimate a variance function that includes educ, exper, and married and use it to es-
timate the standard deviation for each observation.

2d. Find GLS estimates of the wage equation. Compare the estimates and standard errors with
those obtained from OLS estimation with heteroskedasticity-robust standard errors.

2e. Find two 95% interval estimates for the marginal effect 0Elog(wage)/ 0exper for a work-
er with 20 years of experience. Use OLS with heteroskedasticity-robust standard errors for
one interval and the results from 2d for the other. Comment on any differences.

3.15 exercise. White's test is a special case of the Breusch-Pagan test using a particular choi-
ce of auxiliary regressors. In R, the Breusch-Pagan test is available in bptest () from the
Imtest package or ncvTest () from the car package. A worked example on how to perform
the White test with bptest is provided in help (CigarettesB, package=AER), based
on an example from Baltagi's "Econometrics" textbook:

library (AER); ?CigarettesB

data (CigarettesB, package = "AER")
cig_1m2 <- Im(packs ~ price + income, data = CigarettesB)
bptest (cig_lm2, ~income*price+I (income”2)+I(price”2),data= CigarettesB)

studentized Breusch-Pagan test
data: cig_1lm2
BP = 15.6564, df = 5, p-value = 0.007897

Note that the term income*price in the formula is the same as income+price+
I (income*price). Now, since White’s test rejects the homoskedasticity hypothesis, we
have to correct standard errors etc. Here is the R’s function that returns regression results us-
ing White's standard errors (analyze the text!):
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summaryw <- function (model)

{

s <— summary (model)

X <- model.matrix (model)

u2 <— residuals (model) "2

XDX <- 0

## here one needs essentially to calculate X'DX. But due to the fact that D
## is huge (NxN), it is better to do it with a cycle.
for( i in l:nrow( X)) {

XDX <— XDX + u2[i]*X[i,]1%*%t( X[1i,]1)

}

XX1 <— solve( t( X)%$*%X)

varcovar <— XX1 %*% XDX %*% XX1

stdh <- sqrt(diag(varcovar))

t <- modelS$coefficients/stdh

p <- 2*pnorm(-abs(t))

results <- cbind(modelS$Scoefficients, stdh, t, p)
dimnames (results) <- dimnames( sScoefficients)
results

}

Compare the usual summary and the new summaryw:

> summary (cig_lm2)

Coefficients:

Estimate Std. Error t value Pr(>]|t])
(Intercept) 4.2997 0.9089 4.730 2.43e-05 ***
price -1.3383 0.3246 -4.123 0.000168 **x=*
income 0.1724 0.1968 0.876 0.385818

> summaryw(cig_1lm2)

Estimate Std. Error t value Pr(>|t])
(Intercept) 4.299662 1.0589100 4.0604599 4.897616e-05
price -1.338335 0.3319823 -4.0313441 5.545877e-05
income 0.172386 0.2287646 0.7535518 4.511184e-01

The difference in standard errors and the p —values is not very significant.

The exercice assignment itself is as follows: export CigarettesB as a text file (use

library (MASS); write.matrix(CigarettesB,”cig.txt”)) and repeat the
calculations with GRETL. <<«

3.4. Serial Correlation (or Autocorrelation)

So far we have considered the case where (part of the) condition M3, namely,
cov(g,, &) =FEg,e, =0 for all t# s, holds. What if this condition fails? The general case

cov(g,, &)= f(t,s) 1is unfeasible; the commonly used simplification assumes that &, =
pé;_ +u, (here u, is white noise (WN), i.e., it satisfies M3) or &, = pj&,_ +...+ p,&_, +u,
(the first process &,,t=2,...,T , is termed AR(1) and the second AR(r)).
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If the OLS procedure is used to estimate the unknown coefficients S, ,m=0,...,k,in

ROLS
B

., are still unbiased and consistent;

Y, =B+ B X+t B Xy, + &, then the estimates
however, they are no longer efficient.

The estimated variances of ,BOLS

- will be biased and inconsistent, hence the tests of hypothe-

ses are invalid.

3.6 example. This example contains two codes — the first is performed in GRETL and the
second in R.

GRETL

The below-presented GRETL code generates a series of 60 elements described by the equation
Y=(By+pit+e =)0+1%t+¢g,, & =(pg_1+u, =)09¢&_1+u,, t=2,.,60,5=0Y =1,

where u ~ WN(O, 22) .

nulldata 60 # create an empty session file of length 60

set seed 10000 # where to begin our random series

setobs 1 1 —--time-series # supply a time series structure to session:
# start=1, freg=1

series u = 2*normal () # create a normal series with sd=2

series eps = 0

eps = 0.9%eps(-1) + u # create AR(1l) series of disturbances

series y = index + eps # create a series

ols y 0 index # OLS model

Model 1: OLS, using observations 1-60
Dependent variable: y

coefficient std. error t-ratio p-value
const -1.63939 0.710466 -2.307 0.0246 W
index 0.948428 0.0202564 46.82 8.89e-048 **x*
rho 0.673803 Durbin-Watson 0.647530
series epshat = $uhat # create residuals
gnuplot epshat —--time-series —--with-lines —--output=display

The residuals (see Fig 3.6, left) show some persistence which is a clear sign that they do not
make a WN. The DW statistics is far from 2, which once again indicates that residuals are,
probably, an AR(1) process (that is, we have to correct the model for serial correlation). Re-

call that 1) the estimate ﬁIOLS is not efficient (it may depart from its true value of 1 “too

much”) and 2) its s€d.error is calculated incorrectly (in fact, it is not 0.0203). To correct
the estimates for serial correlation, we can use either the CORC or the Hildreth-Lu procedures
(see below).
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The main difference between the OLS model and the one which takes into consideration the
autoregressive structure of errors is forecasting. The original model can be rewritten as the
dynamic’ model with “good” errors:

Y= po(=p)+pip+ [(d=p)t+pY  +u,.

epshat

Figure 3.7.  Residuals of the OLS model (left); 12-months-ahead forecast of ¥, with the
OLS (blue) and corrected models (green)

This new model can be estimated with OLS and the fitted model is clearly not of the form

Yt =7y + 7t . To forecast both the OLS and corrected model for 12 moments ahead, we con-
tinue with the following code:

dataset addobs 12 # we extend the time limits 12 months ahead
fcast y_OLS # y_OLS is the 72 time moments forecast
smpl 1 60 # return to original sample

arma 1 0 ; y index # the model assumes that errors are AR(1l)
smpl full # go to extended sample

fcast y_arma

gnuplot y y_OLS y_arma —--time-series --with-lines --output=display
# see Fig. 3.4, right

Here, instead of the CORC method, we have used its more contemporary variant, namely, the

FGLS inplemented in the arma function (see below).

3.16 exercise. Perform this example from the menu lines. 44

Recall that the OLS procedure has some drawbacks. To correct the estimates for serial correla-
tion, we can use either the CORC or the Hildreth-Lu procedures. In the first case, go to Modell
Time series| Cochrane-Orecutt...:

7 Dynamic* means that the rhs of the model contains lag or lags of Y. To forecasts Y, such a model uses not

only the present time information, but also the information contained in the past.
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Performing iterative calculation of rho...

ITER RHO ESS
1 0.71468 203.634
2 0.71484 203.634
Model 3: Cochrane-Orcutt, using observations 2-50 (T = 49)

Dependent variable: y
rho = 0.714845

coefficient std. error t-ratio p-value
index 0.897247 0.0324263 27.67 3.72e-031 ***

Statistics based on the rho-differenced data:

[..]
rho -0.140911 Durbin-Watson 2.265139

The last line reports that DW statistics of i, is quite close to 2, thus the model with AR(1)

residuals ¢, is satisfactory and we can rely onits std.error.

ARIMA

index Dependent variable

In fact, the CORC procedure is interesting only | ,
for historical reasons — nowadays, the maximum | eps
likelihood method is preferred and it is imple- | *

¥

H

[ Set as default

. , . X epshat :
mented in arima function: go to Modell Time b pdea ki
seriesl ARIMA.... and fill in the boxes as shown Bp || ind=
on the right.

Function evaluations: 19 AR order: |1 = [ or specific lags
Evaluations of gradient: 5 -

Difference: 0
Model 4: ARMAX, using observations 1-50 MA order: |0 =[] or specific lags

Estimated using Kalman filter (exact ML)
Dependent variable: y
Standard errors based on Hessian

coefficient std. error z p-value
phi_1 0.701244 0.0966655 7.254 4.04e-013 #**x*
index 0.897466 0.0304986 29.43 2.52e-190 ***

Thus, the model Y, = S+ &, which takes into account the first order serial correlation of re-

Y, =0.8971+s¢,
siduals &, is given by (0.03) where the number in parenthesis is the standard er-
g =0.70¢,_; +u,

ror.
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Now we shall perform another exercise — we compare the OLS and arima estimates of f.
To generate 500 sequences of Y's, we use the following R’s code:

N=60 # the length of Y
y=numeric (N)

eps=numeric (N)

beta.OLS=numeric (500)

beta.arima=numeric (500)

index=1:N # index stands for t
for(j in 1:500)

{

set.seed (7)

for(i in 2:N) eps[i] = 0.9*%eps[i-1]+rnorm(1l,sd=2) # create AR(1l) residuals
y=index+eps

beta.OLS[]j] = 1lm(y~index) $coef[2]

library (forecast)

beta.arima[j] = Arima(y, order = c(l1, 0, 0),

xreg=index-25, include.mean=T) $coef [3] # it is adviced to make mean (xreg) =0

}

cat ("mean (beta.OLS)=",mean (beta.OLS), "\n")

cat ("mean (beta.arima)=",mean (beta.arima), "\n")
cat ("var (beta.OLS)=",var (beta.OLS), "\n")

cat ("var (beta.arima)=", var (beta.arima), "\n")

par (mfrow=c(1l,3))

hist (beta.OLS,main="var (beta.0OLS)=0.013")

hist (beta.arima,main="var (beta.arima)=0.009")
plot(y,type="1",main="The last realization of y")
Arima(y, order = c(l, 0, 0),xreg=index-25,include.mean=T)

mean (beta.OLS)= 0.9996

mean (beta.arima)= 0.9997
var (beta.OLS)= 0.0090
var (beta.arima)= 0.0060
var(beta.OLS)=0.009 var(beta.arima)=0.006 The last realization of y
] o ] Q
o [ o
S _ & |
2 | g | }
8 - N " |
5 i 5 87 I
g o7 S o ] > |
g g © <]
[T g . [T g | o |
& ] - o
o - o - o -
I T T T T T 1 I T T T 1 T T T T T T T
0.7 0.8 09 1.0 11 12 1.3 08 09 10 1.1 1.2 0 10 20 30 40 50 60
beta.OLS beta.arima Index

Figure 3.8.  Typical trajectory of ¥, with serially correlated errors (right)

We see that var°™ > var5"™@  The output of the arima function is given by

arima(y, order = c(1, 0, 0),xreg=index-25, include.mean=T)
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arl intercept index - 25
0.819 25.395 0.967
8.8, 0.069 1.404

0.068
Forecasts from ARIMA(1,0,0) with non-zero mean

Thus, the 500" model is

Y, =25.395+0.819 (t —25) +¢,
& =0.819¢,_ +u,, u~WN /

To predict the model 12 steps
ahead, use the following lines:

80

60

40
|

windows ()

mod.serial = Arima(y,

order = c(1, 0, 0),
xreg=index-25,
include.mean=T)

plot (forecast (mod.serial, h=
12,xreg=(60:72)-25)) o
lines(1:60,

fitted (mod.serial), col=2) 0 10 20 30 40 50 60 70

20

To analyze the model for serial correlation
e create OLS model and visually examine its residuals for persistency or/and apply DW
test or/and Breusch-Godfrey test
e correct the model with FGLS: use the CORC or arima or gls procedures
alternatively, use the HAC estimators

3.17 exercise. The data file morta.txt consists of 508 lines (observations) and three columns
(these are weekly averages of respective variables):

mort daily mortality in Los Angeles County
temp temperature
part particulate pollution

morta=read.table(file.choose (), header=TRUE) # go to morta.txt
head (morta)

matplot (morta, type="1",1lty=1,col=1:3) # plot all the series
windows () # open new graph window
plot (morta) # scatter diagrams; note that mort

# decreases with time
tt=1:dim(morta) [1]
attach (morta)
templ=temp - mean (temp) # adjust temperature for its mean to
# avoid scaling problems
temp2=templ”2
modl=1lm(mort~tt)
summary (modl) ; AIC (modl)
mod2=1m(mort~tt+templ)
summary (mod2) ; AIC (mod2)
mod3=1lm(mort~tt+templ+temp2)
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summary (mod3) ; AIC (mod3)
mod4=1m(mort~tt+templ+temp2+part)# the scatter diagram suggests to
summary (mod4) # include temp2 (why?)
Coefficients:

Estimate Std. Error t value Pr(>]|t])

(Intercept) 81.592238 1.102148 74.03 < 2e-16 ***
tt -0.026844 0.001942 -13.82 < 2e-16 ***
templ -0.472469 0.031622 -14.94 < 2e-16 ***
temp?2 0.022588 0.002827 9198910 26.e ISR ek
part 0.255350 0.018857 13.54 < 2e-16 ***

AIC(mod4) # the OLS model mod4 is the best according to its AIC

plot (mod4S$res, type="1");abline(0,0) # some signs of inertia

library (lmtest) # most tests on linear models are in the lmtest
# package

dwtest (mod4)

DW = 1.31 # residuals are not WN; maybe, AR(1l) or AR(2)

bgtest (mod4) # testing for AR(1)

Breusch-Godfrey test for serial correlation of order up to 1
data: mod4

LM test = 63.4323, df = 1, p-value = _

bgtest (mod4, order=2) # testing for AR(2); both tests _

Breusch-Godfrey test for serial correlation of order up to 2
data: mod4

LM test = 127.086, df = 2, p-value EICHEEENG

We omit accurate proof of the fact that mod4’s residuals make AR(2); the relevant FGLS
model is obtained with

mod.arima = arima (mort, order=c(2,0,0),xreg=cbind(tt, templ, temp2, part))
mod.arima

# Always follow the rule: if the top term in polinomial regression is sig-—
# nificant, do not remove _term

Coefficients:
arl ar2 intercept tt temp2 part
0.3848 0.4326 87.6338 -0.0292 0.0154 0.1545
s.e. 0.0436 0.0400 2.7848 0.0081 0.0020 0.0272
AIC=3114.07

The corrected model has a smaller AIC and quite different® coefficients (when compared with
mod4).

plot (mort[400:508],type="1",ylab="origial and fitted", lwd=2)
lines(fitted (mod4) [400:508],col=2)

lines(fitted (mod.arima) [400:508],col=3)

legend (80,105, c("mort", "mort.4", "mort.arima"), lty=1,col=1:3)

¥ Just because two estimates have the same expected values does not mean that they will be identical.
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— mort
— mort4
— mortarima|

100
|

origial and fitted
90
|

80

Index

Figure 3.9. mod.arima is a better fit than mod . 4

Another approach is to take, instead of arima, a more universal approach and use the FGLS
method implemented as the g1s function in the nlme package.

library(nlme)
mod.gls <- gls(mort~tt+templ+temp2+part, cor = corARMA (p=2))
summary (mod.gls)

AIC BIC logLik
3140.488 3174.253 -1562.244

Correlation Structure: ARMA (2,0)

Formula: ~1
Parameter estimate(s):
Phil Phi2

0.3939043 0.4381177

Coefficients:

Value Std.Error t-value p-value
(Intercept) 87.86181 2.9143056 30.148454 0.0000
tt -0.02918 0.0088414 -3.300541 0.0010
templ -0.00970 0.0432201 -0.224484 0.8225
temp?2 0.01537 0.0020206 7.606690 0.0000
part 0.15014 0.0249122 6.026867 0.0000

Note that mod2 . gls, described by

mort, = (fy + Byt + Potempl, + p5 temp2, + B, part, + &, =)
87.86—0.037-0.01templ, +0.02temp2, +0.15 part, + &,

& = (P16 + Pr&io Uty =)
0.397¢,_; +0.438¢,_, +u,
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is almost identical to the mod . arima.

Some caution is needed when interpreting the model: mod2 . gls can be expressed as

mort; =(1=p; = p) fo+ (P +2p) 1+ B —p = po)t +
Potempl, + (B p)templ,_y +(fppy)templ,_; +
Pitemp2, +(Bypp) temp2, | +(fB30,) temp2, 5 +
Bapart, +(Pypy) part,_; +(Bypy) part,_» +u,

thus, say, f,(=0.14) means that if the pollution part, increases by 1 and other variables re-
main the same (this is the ceteris paribus condition), then mort, increases by 0.15 (the words
ceteris paribus have different meaning in the first equation of the system above and in the lat-
est model where we can also speak about the isolated effect of part,_; (or even part,_,) on

mort, ).

Note that in any case we cannot extend mort forecast into future; we could do this only if we
knew future temp and part. <4<«

3.18 exercise. Redo this example with GRETL. <4<«

There are a number of reasons why GLS should not be applied every time that the Durbin-
Watson test indicates the likelihood of serial correlation in the residuals of an equation. When
autocorrelation is detected, the cause may be an omitted variable or a poor choice of function-
al form (for example, the use of X instead of log X ). In case of uncorrelated omitted varia-
bles or improper functional form, it can be shown that OLS is superior to GLS for estimating
an incorrectly specified equation. The Newey-West technique directly adjusts the standard

errors to take account of serial correlationwithout changing the ﬁs themselves in any way.

3.19 exercise. [ Consider the annual consumption of chicken in the United
States, 1951-1994 (the data is placed in chick6.txt):

Y per capita chicken consumption (in pounds)

PC the price of chicken (in cents per pound)

PB the price of beef (in cents per pound)

YD US per capita disposable income (in hundreds of dollars)

1. Create the OLS model Y = f, + JiPC+ S,PB+ YD + ¢ .

2. What conclusion can you do about serial correlation on the basis of the DW statistics?
3. Assume that your residuals follow AR(1). Use any two of the FGLS procedures to reesti
mate the above model.

4. Plot in one graph Y, YOLS and YOI | Comment.

3.20 exercise. _ The R package car contains a data set Hartnagel.
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. Comment on the data.

. Plot the all-pairs scatter diagrams.

. Create the OLS model fconvict ~ tfr + partic + degrees + mconvict.

. Plot fconvict together with the fitted value. Plot the residuals. Estimate DW statistics.
Do the residuals make a white noise?

5. Assume that residuals follow an AR(2) process and create any relevant FGLS model. Plot

in one graph fconvict and its OLS and FGLS estimates. <4<

A WD =

3.5. Regression Model Specification tests

The RESET (Regression Specification Error Test) test is a popular diagnostic for correctness
of functional form. The basic assumption is that under the alternative the model can be written

in the form Y = X - ﬁ +7-7+¢& where 7 is generated by taking the second or third powers

either of the fitted response, the regressor variables, or the first principal component of X . A
standard F —test (or its LM version) is then applied to determine whether these additional va-
riables have significant influence. In R, we can use the resettest function from the Imtest
package or durbinWatsonTest in car package where it is implemented through a bootst-
rap approach. We shall redo here the 4.6 example from the Lecture Notes.

3.7 example. Consider the hprice.txt dataset with 88 observations. In LN, 4.3 example, we
found that the model price = B, + fB,bdrms + p,lotsize + fB3sqrft + £ is heteroskedastic which

was, probably, detected because of the misspecification of the model (the model, probably,
lacks quadratic terms).

head (hprice)

price assess bdrms lotsize sqrft colonial lprice lassess llotsize lsqgrft
1 300.000 349.1 4 6126 2438 1 5.703783 5.855359 8.720297 7.798934
2 370.000 351.5 3 9903 2076 1 5.913503 5.862210 9.200593 7.638198
3 191.000 217.7 3 5200 1374 0 5.252274 5.383118 8.556414 7.225482
4 195.000 231.8 3 4600 1448 1 5.273000 5.445875 8.433811 7.277938
5 373.000 319.1 4 6095 2514 1 5.921578 5.765504 8.715224 7.829630
6 466.275 414.5 5 8566 2754 1 6.144775 6.027073 9.055556 7.920810
attach (hprice)
modl=1m(price~bdrms+lotsize+sqrft+colonial)
summary (modl)
library (MASS)
library (help=MASS)
?stepAIC
mod2=stepAIC (modl) #in a stepwise manner we are looking for min-AIC model
summary (mod2)
Coefficients:

Estimate Std. Error t value Pr(>]|t])

(Intercept) -2.177e+01 2.948e+01 -0.739 0.46221
bdrms 1.385e+01 9.010e+00 1.537 0.12795
lotsize 2.068e-03 6.421e-04 3.220 0.00182 *~*
sqgrft 1.228e-01 1.324e-02 9.275 1.66e-14 **x*
Multiple R-squared: 0.6724, Adjusted R-squared: 0.6607
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plot (data.frame (mod2Sres”2,bdrms, lotsize, sqrft))

# we want to remove two observations with biggest mod2S$res”2
N=2 # detect 2 biggest elements
tail (order (mod2Sres”™2), N) # their numbers are 42,76
hprice2=hprice[-c(42,76),]

detach (hprice)

attach (hprice?2)

mod3=1m(price~bdrms+lotsize+sqrft+colonial)

summary (mod3)

mod4=stepAIC (mod3)

summary (mod4) # another three variables

Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) -0.8850279 21.7761655 -0.041 0.96768

lotsize 0.0017888 0.0005504 3.250 0.00168 **

sqgrft 0.1273091 0.0098452 12.931 < 2e-16 ***
colonial 24.4281525 11.8917003 2.054 0.04314 ~*
Multiple R-squared: 0.7085, Adjusted R-squared: 0.6979

plot (data.frame (mod4$res”2, lotsize, sqrft,colonial))
library (lmtest)

?resettest

resettest (mod4) # do we need square terms?

RESET = 3.7725, dfl = 2, df2 = 80, p-value = 0.02719 # we need square terms

mod3sg=1lm(price~ (bdrms+lotsize+sqrft+colonial) "2+I (bdrms”2)+I(lotsize”2)+
I(sqgrft"2))

summary (mod3sq)

mod4sg=stepAIC (mod3sq)

summary (mod4sq) # model with smallest AIC
resettest (mod4sq) # no need for new square terms
shapiro.test (mod4dsgSres) # errors are normal, mod4sg is the best model

3.21 exercise. Create the model Iprice = 3, + Bibdrms + B,colonial + Bsllotsize + Bylsqrft +

¢, test with resettest, simplify, if necessary, and test for heteroskedasticity and normality
of errors.

3.22 exercise. Analyze the following three examples:

X <— c(1:30)
yl <= 1 + x + x*2 + rnorm(30)
y2 <- 1 + x + rnorm(30)

resettest(yl ~ x , power=2, type="regressor")
resettest(y2 ~ x , power=2, type="regressor")
?growthofmoney

modelHetzel <- TG1.TGO ~ AGO.TGO

Im(modelHetzel, data=growthofmoney)

dwtest (modelHetzel, data=growthofmoney)

resettest (modelHetzel, data=growthofmoney)

resettest (modelHetzel, power=2, type="regressor", data=growthofmoney)
resettest (modelHetzel, type="princomp", data=growthofmoney)
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Principal component analysis (PCA) has a number of different interpretations. The simplest is
a projection method finding projections of maximal variability. That is, it seeks linear combi-
nations of the columns of the design matrix X with maximal (or minimal) variance. The first &
principal components span a subspace containing the ‘best’ k dimensional view of the K-
dimensional, K >k, data. It best approximates the original points in the sense of minimizing
the sum of squared distances from the points to their projections. The first few principal com-
ponents are often useful to reveal structure in the data.

?princomp

data(stackloss)

?stackloss

summary (1lm.stack <- 1lm(stack.loss ~ .,data=stackloss)) # model with all
# variables

(pc.cl <- princomp(stackloss))

names (pc.cl)

pc.clS$load

pc.clS$Sload[, 1]

summary (pc.cl)

predict (pc.cl)

# now the model with only the first principal component - it is even better

summary (lm.princ <- lm(stack.loss~predict(pc.cl)[,2],data=stackloss)

3.6. Instrumental Variables

If any X, in the linear regression model Y = B, + X, +...+ B, X, + & correlates with ¢,

ie., cov(X, &)= EX, & #0, then all the OLS estimators ,BiOLS are biased and inconsistent.
When faced with such a situation, we must consider alternative estimation procedures.

3.8 example. We shall repeat 4.7 example from Lecture Notes with R.

library (Ecdat)

data (Mroz)

head (Mroz)

modOLS=1m(log (hearnw) ~educw+experience+I (experience”2),data=Mroz,
subset=work=="no")

summary (modOLS)

Coefficients:

Estimate Std. Error t value Pr(>]|t])
(Intercept) -0.5220406 0.1986321 -2.628 0.00890 **
educw 0.1074896 0.0141465 7.598 1.94e-13 ***
experience 0.0415665 0.0131752 3,155 0,00172 ==
I (experience”2) -0.0008112 0.0003932 -2.063 0.03974 *

We shall use instrumental variables to correctly estimate the influence of educw on
log (hearnw). A mother’s education educwm does not belong to the daughter’s wage
equation, and it is reasonable to propose that more educated mothers are more likely to have
more educated daughters.
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Stage 1.

attach (Mroz)

Mroz.no=Mroz [work=="no", ]

mod.sl = Im(educw~experience+I (experience”2)+educwm,data=Mroz.no)

summary (mod.sl)

Coefficients:
Estimate Std. Error t wvalue Pr(>]|t])
(Intercept) 9.775103 0.423889 23.061 <2e=16 =
experience 0.048862 0.041669 1.173 0.242
I (experience”2) -0.001281 0.001245 -1.029 0.304
educwm 0.267691 0.031130 8.599 <2e-16 **=*
Stage 2.
mod.s2 = 1lm(log(hearnw)~mod.sl$fit+experience+I (experience”2),data=Mroz.no)

summary (mod.s2)

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 0.1981861 0.4933427 0.402 0.68809
mod.slSfit 0.0492630 0.0390562 1.261 0.20788
experience 0.0448558 0.0141644 3.167 0.00165 **
I (experience”2) -0.0009221 0.0004240 -2.175 0.03019 *

Note that the coefficient 0.049 is in fact the IV coefficient for educw (not mod.sl1S$fit).
Also, both stages can be performed in one step with the i vreg function:

library (AER)

mod2SLS = ivreg(log(hearnw) ~ educw + experience +

I (experience”2) | experience + I(experience”2) + educwm, data = Mroz.no)
summary (mod2SLS)

Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) 0.1981861 0.4728772 0.419 0.67535
educw 0.0492630 0.0374360 1.316 0.18891
experience 0.0448558 0.0135768 3.304 0.00103 **
I (experience”2) -0.0009221 0.0004064 -2.269 0.02377 * <4<

3.9 example. _ We are interested in the demand elasticity of cigarettes.
One tool in the quest for reducing illnesses and deaths from smoking — and the costs, or ex-
ternalities, imposed by those illnesses on the rest of society — is to tax cigarettes so heavily
that current smokers cut back and potential new smokers are discouraged from taking up the
habit. But precisely how big a tax hike is needed to make a dent in cigarette consumption?
For example, what would the after tax sales pricc of cigarettes need to be to achieve a 20%
reduction in cigarette consumption?

The answer to this question depends on the elasticity of demand for cigarettes. If the elasticity
is -1, then the 20% target in consumption can be achieved by a 20% increase in price. If the
elasticity is -0.5, then the price must rise 40% to decrease consumption by 20%. Of course, we
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do not know what the demand elasticity of cigarettes is in the abstract: we must estimate it
from data on prices and sales. But, because of the interactions between supply and demand,
the elasticity of demand for cigarettes cannot be estimated consistently by an OL S regression
of log quantity on log price, i.e., the variable log(price) is endogeneous in log(packs) =

By + Pilog(price)+e.

We therefore use 2SLS to estimate the elasticity of demand for cigarettes using annual data
for the 48 continental U.S. states for 1985-1995 (see CigarettesSW in package AER):

state Factor indicating state.
year Factor indicating year
cpi Consumer price index
population State population.
packs Number of packs per capita.
income State personal income (total, nominal)
tax Average state, federal and average local excise taxes for fiscal year
price Average price during fiscal year, including sales tax
taxs Average excise taxes for fiscal year, including sales tax

state year cpi population packs income tax price taxs
1 AL 1985 1.076 3973000 116.48628 46014968 32.50000 102.18167 33.34834
2 AR 1985 1.076 2327000 128.53459 26210736 37.00000 101.47500 37.00000
3 AZ 1985 1.076 3184000 104.52261 43956936 31.00000 108.57875 36.17042
47 WV 1985 1.076 1907000 112.84740 20852964 33.00000 108.91125 38.18625
48 WY 1985 1.076 500000 129.39999 7116756 24.00000 93.46667 24.00000
49 AL 1995 1.524 4262731 101.08543 83903280 40.50000 158.37134 41.90467
50 AR 1995 1.524 2480121 111.04297 45995496 55.50000 175.54251 63.85917
51 AZ 1995 1.524 4306908 71.95417 88870496 65.33333 198.60750 74.79082
95 WV 1995 1.524 1820560 115.56883 32611268 41.00000 166.51718 50.42550
96 WY 1995 1.524 478447 112.23814 10293195 36.00000 158.54166 36.00000

The data set consists of annual data for 48 continental U.S. states for the years 1985 and 1995.
Quantity consumed is measured by annual per capita cigarette sales in packs per fiscal year as
derived from state tax collection data. The price is the real (that is, inflation-adjusted) aver-
age retail cigarette price per pack during the fiscal year, including taxes. income is real per
capita income. The general sales tax is the average tax, in cents per pack, due to the broad-
based state sales tax applied to all consumption goods. The cigarette-specific tax, taxs, is the
tax applied to cigarettes only. All prices, income, and taxes used in the regression in this ex-
ample are deflated by the Consumer Price Index and thus are in constant (real) dollars.

The instrumental variable tdiff (see below) is the portion of the tax on cigarettes arising
from the general sales tax, measured in dollars per pack (in real dollars, deflated by the Con-
sumer Price Index). Cigarette consumption, packs, is the number of packs of cigarettes sold
per capita in the state, and the price is the average real price per pack of cigarettes includ-
ing all taxes.

Before using TSLS it is essential to ask whether the two conditions for instrument tdiff

validity hold. First consider instrument relevance. Because a high sales tax increases the total
sales price, the sales tax per pack plausibly satisfies the condition for instrument relevance.
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Next consider instrument exogeneity. For the sales tax to be exogenous, it must be uncorrelat-
ed with the error in the demand equation; that is, the sales tax must affect the demand for cig-
arettes only indirectly through the price.This seems plausible: general sales tax rates vary
from state to state, but they do so mainly because different states choose different mixes of
sales, income, property, and other taxes to finance public undertakings. Those choices about
public finance are driven by political considerations, not by factors related to the demand for
cigarettes.

library (AER)

data ("CigarettesSW")

CigarettesSWSrprice = with(CigarettesSW, price/cpi) # real price
CigarettesSWSrincome = with(CigarettesSw,

income/population/cpi) # real income per
# capita
CigarettesSWsStdiff = with(CigarettesSW, (taxs - tax)/cpi) # IV tdiff

cl995 = subset (CigarettesSW, year == "1995")

## convenience function: HC1l covariances

## vcovHC is a heteroskedasticity-consistent estimation of the covariance
## matrix of the coefficient estimates in regression models

## HC1l is a refinement of the White estimator

hcl = function(x) vcovHC(x, type = "HC1")

fm_ivreg <- ivreg(log(packs) ~ log(rprice) | Ediff], data = cl1995)
coeftest (fm_ivreg, wvcov = hcl)

Estimate Std. Error t value Pr(>|t])
(Intercept) 9.71988 1.52832 6.3598 8.346e-08 ***
log(rprice) -1.08359 0.31892 -3.3977 0.001411 **

This 2SLS cigarette demand model with heteroskedasticity-robust standard errors (we use in-
strument €difE for endogenous log (rprice)) is surprisingly elastic: an increase in the
price of 1% reduces consumption by 1.08%. But do not take this estimate too seriously — there
still might be omitted variables that are correlated with the sales tax per pack. A leading can-
didate is income (it is an exogenous variable, therefore we include it into the list of V).

fm_ivreg2 <- ivreg(log(packs) ~ log(rprice) + log(rincome) | log(rincome) +
tdiff, data = c¢1995)
coeftest (fm_ivreg2, wvcov = hcl)

Estimate Std. Error t value Pr(>|t])

(Intercept)  9.43066 1.25939 7.4883 1.935e-09 ***
log(rprice) [HEEEEINC.37230 -3.0711 0.003611 **
log(rincome) 0.21452 0.31175 0.6881 0.494917

Here the dependent variable is 1og (packs), the endogenous regressor is 1og (rprice),
the included exogenous variable is log(rincome), and the instrument is
log (rincome) (now the elasticity equals to -).

This regression uses a single instrument rincome but, in fact, another candidate instrument
is available, the cigarette specific taxes (they increase the price of cigarettes paid by the con-
sumer, so it meets the condition for instrument relevance; if it is uncorrelated with the error
term, it is an exogenous instrument).

fm_ivreg3 <- ivreg(log(packs) ~ log(rprice) + log(rincome) | log(rincome) +
tdiff + I(tax/cpi), data = c1995)
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coeftest (fm_ivreg3, vcov = hcl)

Estimate Std. Error t wvalue Pr(>]|t])

(Intercept) 9.89496 0.95922 10.3157 1.947e-13 ***
log(rprice) -1.27742 0.24961 -5.1177 6.211e-06 ***
log(rincome) 0.28040 0.25389 1.1044 0.2753

Now the elasticity has risen to 1.28 and the standard errors have diminished by one third, thus
the model is quite satisfactory. Note that we will not pursue the matter of the validity of the
intruments, GRETL seems to be more adjusted to such an analysis. 44

3.23 exercise. Repeat the modelling with GRETL. Import the data set cigarett.gta as a
STATA file.

3.24 exercise. The 500 values of x,y,z,and z, in ivreg2.txt were generated artificially. The

variable y = £y + fix+&=3+1-x+¢. Do this exercise with GRETL and/or R.

(a) The explanatory variable x follows a normal distribution with mean zero and variance
0')% =2. The random error ¢ is normally distributed with mean zero and variance 0'3 =1. The
covariance between x and ¢ is 0.9. Using the algebraic definition of correlation, determine the
correlation between x and & .

(b) Given the values of y and x, and the values of £, =3 and f, =1, solve for the values of
the random disturbances ¢. Find the sample correlation between x and ¢ and compare it to
your answer in (a).

(¢) In the same graph, plot the value of y against x, and the regression function
E(ylx)=3+1-x. Note that the data do not fall randomly about the regression function.

(d) Estimate the regression model y = ), + fjx+& by OLS using a sample consisting of the

first N = 10 observations on y and x. Repeat using N = 20, N = 100, and N = 500. What do
you observe about the least squares estimates? Are they getting closer to the true values as the
sample size increases, or not? If not, why not?

(e) The variables z; and z, were constructed to have normal distributions with means zero

and variances one, and to be correlated with x but uncorrelated with ¢. Using the full set of
500 observations, find the sample correlations between z;,z,,x,and ¢. Will z; and z, make

good instrumental variables? Why? Is one better than the other? Why?
(f) Estimate the model y = f, + f,x+ ¢ by instrumental variables using a sample consisting of
the first N = 10 observations and the instrument z;. Repeat using N = 20; N = 100, and N =

500. What do you observe about the [Vestimates? Are they getting closer to the true values as
the sample size increases, or not? If not, why not?
(g) Estimate the model y = f, + Bjx+¢ by instrumental variables using a sample consisting

of the first N = 10 observations and the instrument z, . Repeat using N = 20; N = 100, and N =

500. What do you observe about the [Vestimates? Are they getting closer to the true values as
the sample size increases, or not? If not, why not? Comparing the results using z; alone to

those using z, alone, which instrument leads to more precise estimation? Explain.
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(h) Estimate the model y = f,+ S x+¢ by instrumental variables using a sample consisting
of the first N = 10 observations and the instruments z; and z,. Repeat using N = 20, N = 100,
and N = 500. What do you observe about the IV estimates? Are they getting closer to the true

values as the sample size increases, or not? If not, why not? Is estimation more precise using
two instruments than one, as in parts (f) and (g)?

3.25 exercise. During the 1880s, a cartel known as the Joint Executive Committee (JEC) con-
trolled the rail transport of grain from the Midwest to eastern cities in the United States.The
cartel preceded the Sherman Antitrust Act of 1890 and it legally operated to increase the price
of grain above what would have been the competitive price. From time to time, cheating by
members of the cartel brought about a temporary collapse of the collusive price-setting
agreement. In this exercise, you will use variations in supply associated with the cartel's col-
lapses to estimate the elasticity of demand for rail transport of grain.

The data is presented in the JEC.dta file in Stata format (import it with GRETL), its descrip-
tion is given below. Suppose that the demand curve for rail transport of grain is specified as

. 12
log(Q;) = By + By 1og(P) + Byice; + Zj:l ﬂzﬂ-seasj’,- +&

where Q; is the total tonnage of grain shipped in week i, B, is the price of shipping a ton of
grain by rail, ice; is a binary variable that is equal to 1 if the Great Lakes are not navigable

because of ice, and seas is a binary variable that captures seasonal variation in demand.
ice is included because grain could also be transported by ship when the Great Lakes were
navigable.

Variable Definitions

Variable Definition
week Week of observation: =1 if 1880.01.01-1880.01.07,=2 if 1880.01.08-
1880.01.14,...=328 for final week
price weekly index of price of shipping a ton of grain by rail
ice 1 if Great Lakes are impassible because of ice, 0 otherwise
cartel 1 if railroad cartel is operative, 0 otherwise
quantity total tonnage of grain shipped in the week

seasl-seasl3 | thirteen “month” binary variables. To match the weekly data, the calendar
has been divided into 13 periods, each approximately 4 weeks long. Thus
seas1=1 if date is January 1 through 28, =0 otherwise

seas2=1 if date is January 29 through February 25, =0 otherwise

seas13=1 if date is December 4 through December 31, =0 otherwise

a. Estimate the demand equation by OLS. What is the estimated value of the demand elastici-
ty and its standard error?

b. Explain why the interaction of supply and demand could make the OLS estimator of the
elasticity biased.

c. Consider using the variable cartel as instrumental variable for log(P). Use economic

reasoning to argue whether cartel plausibly satisfies the two conditions for a valid instru-
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ment.

d. Estimate the first-stage regression. Is cartel a weak® instrument?

e. Estimate the demand equation by instrumental variable regression. What is the estimated
demand elasticity and its standard error?

f. Does the evidence suggest that the cartel was charging the profit-maximizing monopoly
price? Explain. (Hint: What should a monopolist do if the price elasticity is less than 1?)

3.10 example. We repeat example from Lecture Notes, p. 4-49, and correct it by introducing
IV.

library (MASS); set.seed(2);N=100;ro0=0.7

par (mfrow=c(1l,2))

### OLS

Sigma=matrix(c(372,3*1*ro,1*3*r0,1"2),2,2);Sigma
Xeps=mvrnorm(N,c(0,0), Sigma)

X=Xeps[,1]; eps=Xeps[,2] # Endogenous X correlates with eps
Y=2+0.3*X+eps # DGP

plot (X,Y)

mod=1m (Y~X) ; summary (mod)

abline(2,0.3); abline(mod, lty=2)

legend (-6.5,6,c("true","OLS estimate"),lty=c(1,2))

### IV

set.seed(2)

roXeps=ro

roXZ=0.6

_ # Instrumental variable Z correlates with X, but - with eps
Sigma2=matrix(c(3A2,3*l*roXZ,_,l*3*roXZ,1A2,1*O.5*roXeps,
_,O.5*1*roXeps, 0.5%2),3,3);Sigma2
ZXeps=mvrnorm(N,c(0,0,0),SigmaZ2)
Z2=7ZXeps|[,1l];X=ZXeps [, 2] ;eps=ZXeps|[, 3]

cor.test (Z,eps)

cor.test (X, eps)

cor.test (Z,X)

### 2SLS

### Step 1

mod2=1m(X~7)

Xfit=fitted (mod2)

Y=2+0.3*X+eps; plot(X,Y)

mod=1m (Y~X) ; summary (mod)
abline(2,0.3); abline(mod, lty=2)

### Step 2
modIV=1Im(Y~Xfit) ;abline (modIV,col=2)
legend(-2.2,3.6, c("true","OLS estimate","IV estimate"), 1lty = c¢(1,2,1),

col = c¢(1,1,2))

# in a synonymous manner:
library (AER)

modIV.2 <- ivreg(Y ~ X | Z2)
summary (modIV.2)

% Instruments that explain little of the variation in endogenous X are called weak instruments. If the instruments
are weak, then the normal distribution provides a poor approximation to the sampling distribution of the 2SLS
estimator and 2SLS is no longer reliable. One way to check for weak instruments when there is a single endoge-
nous regressor is to compute the F — statistic testing the hypothesis that the coefficients of the instruments are all
zero in the first stage regression of 2SLS. You do not need to worry about the weakness of the instruments if the
first stage F — statistic exceeds 10.
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Figure 3.10. OLS estimate and IV estimate of the regression line

3.26 exercise. The data set in prodfun.txt contains log-levels of output (LNY), capital
(LNK), and labor (LNL) for two different industrial sectors (SECTOR = 4 or 9) across 83
firms from a developing country (India). Each observation describes the output and inputs of a
single firm, thus this is a cross-section dataset. Assume that each sector’s output can be de-

scribed by the Cobb-Douglas production function, i.e., either Yi(4) =C (4)K,-a4Liﬂ 4 eXP(gl'(4)) or
Y = O™ 1/ exp(s”) . By taking logarithms,

A.

Estimate the unknown parameters for each sector using multiple regression models with
observations on log(Y;), log(K;), and log(L;).

. Evaluate the goodness of fit of each sector’s fitted production function. Be sure to com-

ment on whether the behavior of the fitted residuals indicates any concerns about the va-
lidity of the Cobb-Douglas production function.

Test for constant returns to scale (that is, H:a+ £ =1) in each of the estimated produc-
tion functions. What is the meaning of this property?

Test the null hypothesis that the production functions are identical across the two sectors,
that is, test Hy:C® =C®, a4 = a9, #4= 9 . (Hint: dummify SECTOR and create the OLS
model log(Y)=c+alog(K)+ flog(L)+ & with all the observations, use the GRETL‘s chow

function or the Tests section of the OLS regression window with the dummy variable DSEC-
TOR_1). Be sure to state explicitly how the Chow test works.

To do the same in R, use the following script (analyze and run it):

prodfun=read.table(file.choose (), header=TRUE)
head (prodfun)

attach (prodfun)

plot (prodfun, pPch=SECTOR+6,col=SECTOR-3)
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mod4=1m (LNY~LNK+LNL, subset=SECTOR==4)
summary (mod4)

mod9=1m (LNY~LNK+LNL, subset=SECTOR==9)
summary (mod9)

mod=1m (LNY~LNK+LNL)
summary (mod) # mod is a model for pooled observations

mod.int=Im(LNY~fS+LNK*fS+LNL*fS,data=prodfun)
summary (mod.int) # mod.int is a model with interactions

# mod.int is the same as:

fS=as.numeric (factor (SECTOR) ) -1 # dummify SECTOR
f£s

summary (1lm (LNY~£S+LNK+I (LNK*£S) +LNL+TI (LNL*fS)))

anova (mod, mod.int)
# chow test - tests whether all interaction variables are insignificant
# p-value is 0.0268, the same as in GRETL (reject HO)
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4. Discrete Response Models

Let Y takes on only two values: 1 (=succes) and 0 (=failure). We want to create a model
PY =D)=F(fy+ /X +..+ B X})

where F is any distribution function (usually it is either logistic distribution function A (logit
regression) or normal d.f. @ (probit regression)). We use the maximum likelihood method to
estimate the coefficients.

We begin by reproducing Fig. 5.1 from LN where the model
P(coke =1) = 3, + p pratio

and its extensions are estimated.

4.1 example. The R code for Figure 5.1 in LN:

ccoke=read.table(file.choose (), header=T) # navigate to coke.txt
head (ccoke)

COKE=ccoke[order (ccoke$pratio), ] # sort lines by pratio
head (COKE)

attach (COKE)

par (mfrow=c(1l,2))

# compare logit and probit

xx=seq(-2,2,by=0.01)

plot (xx,pnorm(xx),type="1",ylab="F", xlab="x", lwd=2,
main="Logistic and normal cdf's")

lines (xx,exp(xx)/ (exp(xx)+1),col=2, lwd=2)
abline(0.5,0,1lty=2)

legend (-1.8,0.9,c("normal", "logistic"),1lty=1,col=1:2,1lwd=2)

# other coke models
plot (jitter (pratio,amount=0.2), jitter (coke, amount=0.05),ylab="coke",
xlab="pratio",main="Binary response variable")

# linear
COKE.lm=1m(coke~pratio)
abline (COKE.1lm, lwd=2, col=3) # green line

# nls, no weights

COKE.nlsl=nls(coke ~ exp(a + b*pratio)/(l+exp(a+b*pratio)),
start = list(a =1, b = -1))

summary (COKE.nlsl)

lines(pratio,predict (COKE.nlsl), lwd=2)

# nls, with weights

Cpred=predict (COKE.nlsl)

www=1/ (Cpred* (1-Cpred) )

COKE.nls2=nls(coke ~ exp(a + b*pratio)/(l+exp(a+b*pratio)), weight=www,
start = list(a =1, b = -1))
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summary (COKE.nls2)
lines(pratio, predict (COKE.nls2),lwd=2,1ty=2)

# logit

xxx=seq (min (pratio)-0.2,max (pratio)+0.15,by=0.01)

COKE.logit=glm(coke~pratio, family=binomial (1link="1logit"),data = COKE)

summary (COKE. logit)

new=data.frame (pratio=xxx)

lines (xxx,predict (COKE.logit, type="response", newdata=new), lwd=2, col=2)

abline (1,0, col=1)

abline (0,0, col=1)

abline(0.5,0,1ty=2) # 0.5 threshold line

ppp = tapply(pratio, coke,mean) # mean value of pratio in two
# coke groups (red squares)

points (pppl(2],1,pch=15,col=2, cex=2)

points (pppll]l, 0,pch=15,col=2, cex=2)

yyy=exp (2.5251-2.7108*xxx)

lines (xxx,yyy/ (yyy+1),col=3)

legend(1.7,0.93,c("linear", "nls","nls-w","logit"),
col=c(3,1,1,2),1lty=c(1,1,2,1),1lwd=2)

A simplified GRETL version of the above code is given below:

dataset sortby pratio # sort by pratio
series coke_j = coke + 0.02*normal () # jitter
series pratio_j = pratio + 0.05*normal () # jitter

gnuplot coke_j pratio_j —--output=display # scatter diagram

# linear probability model

ols coke 0 pratio

series cokeOLS = S$yhat

gnuplot coke_3j cokeOLS pratio —--output=display --with-lines=cokeOLS

# logit model

logit coke 0 pratio

series cokeLOGIT = S$yhat

gnuplot coke_j cokeLOGIT pratio —--output=display —--with-lines=cokeLOGIT

OLS, using observations 1-1140
Dependent variable: coke

coefficient std. error t-ratio p-value
const 1.02035 0.0519576 19.64 3.58e-074 ***
pratio -0.557783 0.0487203 -11.45 8.41e-029 **x*
Log-likelihood -758.9132 Akaike criterion 1521.826
Schwarz criterion 1531.904 Hannan-Quinn 1525.632

khkkhkhkhkkhkkhkhkhkkhkhhkhkkhkrkhkkhkhhkhkkhxkkk*x*k

Logit, using observations 1-1140
Dependent variable: coke
Standard errors based on Hessian

coefficient std. error z slope
const 2.52508 0.271574 9.298
pratio -2.71081 0.266631 -10.17 -0.666411
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McFadden R-squared 0.082656 Adjusted R-squared 0.080105
Log-likelihood -719.0694 Akaike criterion 1442.139
Schwarz criterion 1452.216 Hannan-Quinn 1445.945

Number of cases 'correctly predicted’ 755 (66.2%)
f(beta'x) at mean of independent wvars 0.246
Likelihood ratio test: Chi-square(l) = 129.582 [0.0000]

Predicted

0 1

Actual 0 508 122
1 263 247

T T T
cokej +
cokeLOGIT ——

i §§§i % iﬁ%ﬁ%#%ﬁ i

T
cokej +
cokeOLS ——

i ﬁ%%i %%f iﬁéﬁéﬁ aEE % R

o

L
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Figure 4.1.  Linear probability model (left) and logit model (right)

4.1 exercise. Repeat the example through GUI.

4.2 example. Iiduodami paskolas bankai visuomet rizikuoja. Siame pavyzdyje bandysime
istirti nuo ko priklauso paskolos negrazinimo (kredito defolto) tikimybé. Dalis mums reikalin-
gy duomeny yra R duomeny rinkinyje credit (Zr. paketa Fahrmeir). Deja, ten yra ne visi
mums reikalingi stulpeliai, tod¢l duomenis, surinktus viename piety Vokietijos banke, teks

importuoti i$ originaliojo rinkinio kredit.txt (kintamyjy aprasas yra faile kredit.var.html).

credit=read.table(file.choose (), header=TRUE) # 1000 eiluciy,
head (credit)

21 stulpelis

kredit laufkont laufzeit moral verw hoehe sparkont beszeit rate famges buerge

1 1 1 18 4 2 1049 1 2 4
2 1 1 9 4 0 2799 1 3 2
3 1 2 12 2 9 841 2 4 2
4 1 1 12 4 0 2122 1 3 3
5 1 1 12 4 0 2171 1 3 4
6 1 1 10 4 0 2241 1 2 1
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wohnzeit verm alter weitkred wohn bishkred beruf pers telef gastarb

1 4 2 21 3 1 1 3 1 1 1
2 2 1 36 3 1 2 3 2 1 1
3 4 1 23 3 1 1 2 1 1 1
4 2 1 39 3 1 2 2 2 1 2
5 4 2 38 1 2 2 2 1 1 2
6 3 1 48 3 1 2 2 2 1 2

Mums ripimas binarinis atsako kintamasis yra kredito defoltas y (=1-kredit):jis =0, jei
paskola buvo grazinta laiku, ir =1, jei klientas paskolos negrazino).

attach(credit)
y=1-kredit
table (y)

M
0 1

700 300 # 700 grazino, 300 negrazino

Pradésime paprastu logitiniu modeliu, aprasanciu defolto priklausomybe nuo amziaus (vok.
alter). Lygties1 E(ylalter)=P(y=1|alter)=exp(c(l)+c(2)alter)/ (1+
exp(cl)+c(2)alter) koeficientus apskai¢iuosime su glm funkcija:

c.log = glm(y ~ alter, family=binomial (link="logit"),data=credit)
summary (c.log)

Coefficients:

Estimate Std. Error z value Pr(>]|z])
(Intercept) -0.198456 0.233333 -0.851 0.3950 # =c (1)
alter -0.018512 0.006449 -2.870 0.0041 ** # =c(2)

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1221.7 on 999 degrees of freedom
Residual deviance: 1213.1 on 998 degrees of freedom
AIC: 1217.1

Number of Fisher Scoring iterations: 4

Kadangi alter koeficientas yra neigiamas, o rysio (logitiné) funkcija ir jos atvirk3tiné” mo-
notoniSkai did¢ja, todel didé¢jant amZiui defolto tikimybé mazéja (Zr. 4.2 pav.). Kair¢je Sio
paveikslo puséje iSbréztos dvi stulpelinés diagramos — ¢ia geltona spalva Zymime defolty daz-
nius, o raudona — grazinty kredity daZnius. Matyti, kad defolto tikimybe (ji lygi geltono stul-
pelio auk$&io santykiui su abiejy stulpeliy auk$¢iy suma) su amZiumi maZéja. Sis mazéjimas
gal ir néra labai akivaizdus, taCiau logitinés regresijos kreivé deSinéje patvirtina miisy teiginj.

par (mfrow=c(1l,2))
barplot (table(y,alter),xlab="alter",col=c(2,7))

! Ja ekvivalenciai galima uZraSyti taip: logit (P(y =1|alter))=c(l)+c(2)alter.
? Lygties definéje uzrasyta logisting skirstinio funkcija.
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plot (alter,predict(c.log,type="response"),ylab="P(y=1|alter)")
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19 26 33 40 47 54 61 68 20 30 40 50 60 70
alter alter

Figure 4.2. GraZinty ir negrazinty kredity daZniai (atitinkamai raudoni ir geltoni stulpeliai) (kairéje) ir
logitinés regresijos kreivé (deSinéje) - darome iSvada, kad defolto tikimybé su amZiumi mazéja

Modelio c. 1og lenteléje matyti, kad koeficientas prie alter yra reikSmingas (jo p reikSmé
0.0041). Bendresnis budas patikrinti alter reikSminguma yra palyginti §§ modelj su kitu,
sudarytu tik i§ konstantos. Tam GLM modeliuose paprastai vartojamas liekany kvadraty su-
mos analogas, vadinamoji (normuotoji) deviacija (angl. (scaled) deviance). Jei turime du jdé-
tuosius modelius, tai jy deviacijy skirtumas yra dydis, ekvivalentus tikétinumo funkcijy santy-

kiui. Sis skirtumas turi y” skirstinj su laisvés laipsniy skai¢iumi, lygiu kintamyjy skaiciaus
Siuose modeliuose skirtumui.

anova (c.log)

Analysis of Deviance Table

Model: binomial, link: logit

Response: y

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev
NULL 999 1221.73
alter 1 8.61 998 1213.11
l-pchisg(8.61,1)

[1] 0.003343223 # <0.05

Taigi modelis su alter yra akivaizdZiai pranaSesnis uZ modelj vien i§ konstantos.

Modeliai su skirtingomis rySio funkcijomis negali biiti tiesiogiai palyginti dél skirtingy maste-
liy (pvz., standartinés logistinés skirstinio funkcijos dispersija lygi 7°/3, o normaliosios — I;
modelius galésime palyginti, jei vieng kurig nors rysio funkcijg atitinkamai normuosime). 11.8
pav. i§brézta standartiné logistiné kreivé (atvirkstiné logitinio rysio funkcija) ir ®(x;0,7°/3)
grafikas (abi kreivés sunkiai atskiriamos).

45
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Figure 4.3.  Logistin¢ ir dvi normaliosios (su dispersijomis 713 ir 1) skirstinio funkcijos

Taigi, norint palyginti logitinj ir probitinj modelius, pastarojo koeficientus reikia padauginti i$
7 /-3 . Zemiau pateiktoje lentel¢je matyti, kad koeficientai prie alter mazai skiriasi (o prie
laisvojo nario — abu nereikSmingi).

c.pro= glm(y ~ alter, family=binomial (link="probit"),data=credit)

c.pro.orig c.pro.rescaled c.log.orig
(Intercept) -0.14245301 -0.25838117 -0.19845642
alter -0.01085904 -0.01969613 -0.01851229

Ar galima patikslinti aptarta modelj, jtraukiant netiesinius alter narius? Cia galimi du i§
principo skirtingi budai: i) 1 model;j jtraukti auksStesnius (pvz., kvadratinj) alter narius arba
i1) alter suskaidyti j grupes. Pradésime Kvadratiniu modeliu.

c.log2 = glm(y~alter+I(alter®2), family=binomial (1link="1logit"),data=credit)
summary (c.log2)

Coefficients:
Estimate Std. Error z value Pr(>]|z])

(Intercept) 1.2430239 0.6913629 1.798 0.07219 .
alter -0.0965881 0.0358010 -2.698 0.00698 **
I(alter”"2) 0.0009556 0.0004280 2.233 0.02555 *
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1221.7 on 999 degrees of freedom
Residual deviance: 1208.3 on 997 degrees of freedom

AIC: 1214.3

Number of Fisher Scoring iterations: 4

anova(c.log,c.log2) # Lyginame tiesini ir kvadratini modelius
Analysis of Deviance Table

Model 1: y ~ alter
Model 2: y ~ alter + I(alter”"2)
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Resid. Df Resid. Dev Df Deviance
1 998 1213.1
2 997 1208.3 1 4.8

l-pchisqg(4.8,1)
[1] 0.02845974  #<0.05

Taigi tiesinis modelis atmetamas su mazdaug 3% reikSmingumu.

Dabar iSbandysime kubinj modelj.

c.log3=glm(y~alter+I (alter”2)+I(alter”3),family=binomial (1ink="1logit"),
data=credit)
summary (c.log3)

Coefficients:

Estimate Std. Error z value Pr(>]|z])
(Intercept) 4.092e+00 2.145e+00 1.908 0.0564
alter -3.240e-01 1.664e-01 -1.947 0.0515
I(alter”2) 6.583e-03 4.056e-03 1.623 0.1046
I(alter”3) -4.326e-05 3.115e-05 -1.389 0.1649

(Dispersion parameter for binomial family taken to be 1)
Null deviance: 1221.7 on 999 degrees of freedom
Residual deviance: 1206.3 on 996 degrees of freedom

AIC: 1214.3

Number of Fisher Scoring iterations: 4

anova(c.log2,c.log3) # Lyginame kvadratinj ir kubinj modelius
Analysis of Deviance Table
Model 1: y ~ alter + I(alter”"2)
Model 2: y ~ alter + I(alter”2) + I(alter”3)
Resid. Df Resid. Dev Df Deviance
1 997 1208.3
2 996 1206.3 1 2.0

l-pchisg(2,1)
[1] 0.1572992  #>0,05

Matome, kad kubinis modelis nepagerina modelio tikslumo (Zr. taip pat AIC koeficientus),
todél sustosime prie kvadratinio. Atkreipsime démesj, kad $j kartg defolto tikimybé jau néra
monotoniska alter funkcija (Zr. 4.4 pav., kairéje), kas visai nattiralu.

plot (alter,predict(c.log2, type="response"),ylab="P(y=1lalter)")
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Figure 4.4. Dviejy modeliy — c.log?2 ir c. cut (Zr. Zemiau) atsaky grafikai

Kitas budas jtraukti netiesiSkuma yra suskaidyti alter j grupes. Pasirinksime tokias grupes:
(18, 23], (23,28]....,(68,75] (visos jos, i8skyrus paskuting, vienodo ilgio). Pirmas intervalas bus
bazinis, todél vertinsime tik likusiy deSimties intervaly koeficientus.

alter.cut=cut (alter,c(seq(l8,68,by=5),75))
c.cut=glm(y~alter.cut, family=binomial (1link="1logit"),data=credit)
summary (c.cut)

Coefficients:

Estimate Std. Error z value Pr(>]|z])
(Intercept) -0.4055 0.1992 -2.035 0.041809 *
alter.cut (23,28] -0.2029 0.2429 -0.836 0.403381
alter.cut (28,33] -0.3292 0.2545 -1.294 0.195828
alter.cut(33,38] -0.9144 0.2755 =3.319 0.000903 **=*
alter.cut(38,43] -0.5447 0.2958 -1.842 0.065544
alter.cut (43,48] -0.6763 0.3265 -2.071 0.038340
alter.cut (48,53] -0.8076 0.3970 -2.034 0.041943
alter.cut (53,58] -0.5108 0.4239 -1.205 0.228168
alter.cut (58,63] -0.4055 0.4693 -0.864 0.387595
alter.cut(63,68] -0.7577 0.5497 -1.378 0.168100
alter.cut(68,75] -1.3863 1.0983 -1.262 0.206886

(Dispersion parameter for binomial family taken to be 1)
Null deviance: 1221.7 on 999 degrees of freedom
Residual deviance: 1203.2 on 989 degrees of freedom

AIC: 1225.2

Number of Fisher Scoring iterations: 4

plot (alter,predict (c.cut, type="response"),ylab="P(y=1|alter)")

Pazymésime, kad c.cut deviacija yra pati maZziausia i§ kol kas nagrinéty (tai galima paais-
kinti ir tuo, kad $is modelis yra pats lanksciausias (turi daugiausiai parametry)). Antra vertus,
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AIC koeficientas, kuris atsizvelgia ne tik j paklaidy diduma, bet ir j parametry skaiciy, $j kartg
pats didZiausias. NeZitrint to, skaidymas i grupes daznai padeda atskleisti netiesinius efektus.

Iki Siol nagrinéjome defolto tikimybés priklausomybe tik nuo alter. Dabar | model; itrauk-
sime ir paskolos dyd] hoehe. Nagrinésime keturis logitinius modelius.

e Tiesinis be sgveikos
logit (P(y=1lalter,hoehe))=c(l)+c(2)alter+c(3)hoehe:
c.alt.ho=glm(y~alter+hoehe, family=binomial, data=credit)

e Tiesinis su sgveika
logit (P(y=1lalter,hoehe))=c(l)+c(2)alter+c(3)hoehe+c(4)alter-hoehe:
c.alt.ho.int=glm(y~alter*hoehe, family=binomial,data=credit)

e Kvadratinis be sgveikos

logit(P(y=1lalter,hoehe))=c(l)+c(2)alter+c(3)alter*2+c(4)hoehe+c(5)hoehe”2:

c.alt2.ho2=glm(y~alter+I(alter”2)+hoehe+I (hoehe”2),family=binomial,data=cre
dit)

e Kvadratinis su sgveika

logit (P(y=1lalter,hoehe))=c(l)+c(2)alter+c(3)alter”2+c(4)hoehe+c(5)hoehe”2+

+c(6)alter-hoehe:

c.alt2.ho2.int=glm(y~alter*hoehe+I(alter”2)+I (hoehe”2), family=binomial, data
= credit)

Nesunku jsitikinti, kad geriausi3 modeliai yra du paskutiniai:

summary (c.alt2.ho?2)

Coefficients:
Estimate Std. Error z value Pr(>|z])

(Intercept) 1.181e+00 7.085e-01 1.668 0.09539 .

alter -1.012e-01 3.658e-02 -2.768 0.00564 **
I(alter”"2) 9.856e-04 4.378e-04 2.251 0.02436 *

hoehe -7.289e-06 7.455e-05 -0.098 0.92211

I (hoehe”2) 1.048e-08 5.979e-09 1.753 0.07958

(Dispersion parameter for binomial family taken to be 1)
Null deviance: 1221.7 on 999 degrees of freedom
Residual deviance: 1180.2 on 995 degrees of freedom

AIC: 1190.2

summary (c.alt2.ho2.int)

Jy AIC ir deviacijos maziausios.
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Coefficients:

Estimate Std. Error z value Pr(>]|z])
(Intercept) 1.486e+00 7.393e-01 2.010 0.04438
alter -1.083e-01 3.715e-02 -2.915 0.00355 **
hoehe -1.178e-04 1.054e-04 -1.117 0.26385
I(alter”2) 9.322e-04 4.441e-04 2.099 0.03579 *
I (hoehe”2) 9.513e-09 5.972e-09 1.593 0.11119
alter:hoehe 3.372e-06 2.172e-06 1.552 0.12055

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1221.7 on 999 degrees of freedom
Residual deviance: 1177.7 on 994 degrees of freedom
AIC: 1189.7

Kiek geresnis yra pats paskutinis, ta¢iau LR (=Likelihood Ratio) testas teigia, kad jis néra
reikSmingai geresnis uZ modelj be sgveikos:

anova(c.alt2.ho2,c.alt2.ho2.int)
Analysis of Deviance Table

Model 1: y ~ alter + I(alter”2) + hoehe + I(hoehe”2)

Model 2: y ~ alter * hoehe + I(alter”2) + I(hoehe”"2)
Resid. Df Resid. Dev Df Deviance

1 995 1180.22

2 994 1177.71 1 2.51

l-pchisg(2.51,1)
[1] 0.1131259

Kitaip sakant, i§ visy aptartyjy modeliy vertéty rinktis c.alt2.ho2. Antra vertus, mes dar
nenagrinéjome modeliy su visais prognoziniais kintamaisiais. Vartosime S$iuos kintamuosius
(ranginiy kintamyjy skales apibrézé patyr¢ banko specialistai: Zemas rangas — blogai, aukstas
rangas - gerai):

moral kliento patikimumas (nustatomas pagal tai, kaip grazino ankstes-
nius kreditus) - 0- mazas, ..., 4 — labai didelis
beszeit 1 — bedarbis, ..., 5 — toje pacioje vietoje dirba ne maziau kaip 7 me-

tus (81 kintamajj perkoduosime: kintamasis dirba bus =0, jei kli-
entas nedirba ir =1, jei turi darba)

laufzeit kredito trukmé ménesiais (kuo ilgesné, tuo geriau) — §j kintamajj

sudiskretinsime, t.y., ji paversime faktoriaus lygiais
laufzeit<=9 jet kreditas iSduotas ne daugiau kaip 9 ménesiams (baziné grup¢)
laufzeit (9,12] trukme tarp 9 ir 12 ménesiy

laufzeit (12,18] trukme tarp 12 ir 18 ménesiy
laufzeit (18, 24] trukmé tarp 18 ir 24 ménesiy

laufzeit>=24 trukme ilgesné nei 24 ménesiai
sparkont santaupos: 1 — santaupy neturi, 5 — didelés santaupos
verw paskolos tikslas: 0 — kiti tikslai, 1 — naujas automobilis, 2 — naudo-

tas automobilis, 3 — baldai, ..., 10 — verslas
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verm kliento vertingiausias turtas: 1 — néra arba nezinomas, 2 — automo-
bilis, 3 — gyvybés draudimas, 4 — namas ar Zemés sklypas (5] kin-
tamgjj perkoduosime: kintamasis namas bus lygus 1, jei -
verm=4 ir =0 kitais atvejais)

Pirmiausiai jvesime papildomus kintamuosius.
dirba=ifelse (beszeit==1,0,1)

d.laufzeit=cut (laufzeit,c(0,9,12,18,24,80))
namas=ifelse (verm==4,1,0)

Nagrinésime du modelius.

e Modelis su visais kintamaisiais

c.visi = glm(y ~ alter*hoehe + I(alter”2) + I(hoehe”2) + moral + dirba +
d.laufzeit + sparkont + verw + namas,family = binomial,data = credit)

summary (c.visi)

Coefficients:

Estimate Std. Error z value (>1z])
(Intercept) 2.560e+00 8.558e-01 2.991 0.002782 **
alter -8.950e-02 .005e-02 -2.235 0.025426
hoehe —-2.984e-04 .267e-04 -2.355 0.018506
I(alter”2) 8.389e-04 .828e-04 1.738 0.082295 .
I (hoehe”2) 2.219e-08 .450e-09 2.978 0.002898 **
moral —-4.558e-01 .433e-02 -6.133 8.65e—-10 ***
dirba -2.794e-01

d.laufzeit (9,12] 5.735e-01
d.laufzeit (12,18] 9.212e-01

( .896e-01 1.980 0.047699 =
(

d.laufzeit (18,24] 1.043e+00
(

Pr

0

0

0

0

0

8
.084e-01 -0.906 0.365016

0
.975e-01 3.097 0.001956 **

0

1

2

0

0

0

DN WNDNDDNDWIJ P

.986e-01 3.493 0.000478 ***
d.laufzeit (24,80] 1.625e+00 .326e-01 4.887 1.02e—-06 **x*
sparkont -3.060e-01 .465e-02 -5.600 2.15e-08 ***
verw -3.489e-02 .834e-02 -1.231 0.218324
namas 6.501e-01 .140e-01 3.038 0.002384 *~*
alter:hoehe 1.460e-06 .355e-06 0.620 0.535384

(Dispersion parameter for binomial family taken to be 1)
Null deviance: 1221.7 on 999 degrees of freedom

Residual deviance: 1063.1 on 985 degrees of freedom
AIC: 1093.1

e IS modelio pasalinsime tris maziausiai reikSmingus narius: dirba, verw ir sgveikos
narj alter :hoehe.

c.visi.fin = glm(y ~ alter + hoehe + I(alter”2) + I(hoehe”2) + moral +
d.laufzeit + sparkont + namas,family = binomial,data = credit)

summary (c.visi.fin)

Coefficients:

Estimate Std. Error z value Pr(>]|z])
(Intercept) 2.119e+00 7.928e-01 2.673 0.007526 **
alter -9.097e-02 3.950e-02 -2.303 0.021296
hoehe -2.398e-04 9.852e-05 -2.434 0.014953
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I(alter”2) 9.203e-04 4.740e-04 1.942 0.052173 .

I (hoehe”2) 2.215e-08 7.473e-09 2.964 0.003040 **
moral -4.505e-01 7.368e-02 -6.115 9.66e-10 ***
d.laufzeit (9,12] 5.752e-01 2.890e-01 1.990 0.046545 *

d.laufzeit (12,18] 9.239e-01 2.965e-01 3.116 0.001834 *x*
d.laufzeit (18,24] 1.020e+00 2.978e-01 3.427 0.000611 ***
d.laufzeit (24,80] 1.560e+00 3.296e-01 4,733 2.21e=06 ***
sparkont -3.039e-01 5.446e-02 -5.580 2.40e-08 ***
namas 6.854e-01 2.111e-01 3.247 0.001168 *x*

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1221.7 on 999 degrees of freedom
Residual deviance: 1065.9 on 988 degrees of freedom
AIC: 1089.9

Galutinis modelis (pagal Residual deviance, AIC ir koeficienty reikSmingumg) neabe-
jotinai geriausias. PaZymeésime taip pat, kad beveik visi koeficientai turi ,,teisingus® Zenklus.
Pvz., defolto tikimybé sumaZ¢ja (nes koeficiento Zenklas neigiamas), jei kliento moral di-
desnis arba jo santaupos sparkont didesnés. d.laufzeit koeficientai (taigi ir defolto
tikimybe) didé¢ja kartu su paskolos trukme, kas irgi suprantama. Keistokas koeficiento prie
namas Zenklas — iSeity, kad namo tur¢jimas padidina defolto tikimybe (antra vertus, tai gali-
ma paaiskinti papildomais finansiniais jsipareigojimais).

4.2 exercise. Import to GRETL the cross-sectional data set Davis.txt:

Nr male weight height

1 1 77 182
2 0 58 161l
3 0 53 lel
4 1 68 177
5 0 59 157
6 1 76 170

Can you, using height and, probably, weight to predict person‘s gender? Use three model —
linear, logit with height only, and logit with height and weight. Decorate your report with so-
me graphs. Which model is best? Here is some help:

davis.glml=glm(male~height, family=binomial (1ink="1logit"),data=davis)
summary (davis.glml)

attach (davis)

plot (height,male)

points (height, predict (davis.glml, type="response"), col=2)

4.3 exercise. Import to GRETL or R the data set CPS5_n.txt where

ED education (in years, 13 groups from 6 to 18)

SO region of residence (coded 1 if South, O otherwise)
BL (coded 1 if nonwhite and non-Hispanic, O otherwise)
HP (coded 1 if Hispanic, O otherwise)
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4. Discrete Response Models

FE gender (coded 1 if female, O otherwise)

MS marital status (coded 1 if married, O otherwise)
EX potential labor market experience (in years)

UN union status (coded 1 if in union job, 0 otherwise)
WG hourly wage (in dollars)

1) Estimate the OLS model WG = 3, + SIED + ¢ . Plot respective scatter diagram and the reg-
ression line.

2) We could improve the model but we take another stand. Call a person poor or "economi-
cally disadvantaged* (Y=1) if his or her salary is less than $5 per hour (they constitute roughly
1/5 of the whole population). Create a logit model P(Y =1) = A(f, + SED) and compare the

curve with the conditional expectation of Y in every group of ED. How much one extra year of
education diminishes the probability of getting to the ,,poor* group? Compare the classifica-
tion tables of the OLS and logit models.

3) Create a logit model with the ED, FE, and EX variables on the rhs. What is the estimated
probability that a male with 10 years of education and 12 years of experience will find himself
in a little paid group? Verify that the same probability for females is much bigger. Assume
that a male studied two years more. How, on average, this probability will change?

4) Estimate the probability to be a union member (UN=1) (include EX, FE, EX, EX"2 to your
model). What number would you report if asked for an estimate of how much the probability
of being in a union job falls per year of additional education? Using the ,,predict UN=1 if

UN>1/ 2, predict UN=0 otherwise‘ rule, it turns out that the estimated logit model correctly
predicted union status for fully 82% of the individuals in the sample. Are you impressed?
Hint. What proportion of the individuals are union members?
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