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I. Probability space 2 / 369

1.1 Introduction 3 / 369

Experiments, outcomes and events

Probability theory explores the experiments with non-predictable
outcomes.
We say, that the outcomes of these experiments are random.
It is usual to denote the set of all possible outcomes of the experiment
(the sample space) by Ω and the specific outcomes by ω, ω1, ω2, . . .

4 / 369

Toss of a coin

Example 1. Toss of a coin
The experiment: we toss a coin. The are two possible outcomes: H
(head) and T (tail).

Indeed, there are more possible outcomes: the coin can remain standing
on the edge or can be lost. Because these outcomes are rare we
suppose they never happen.

The sample space is Ω = {H,S}.
N

5 / 369
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Three tosses

Example 2. Three tosses of a coin
If we perform three tosses of a coin, the outcome of the experiment will
be a string of three symbols corresponding to the results of the tosses.
The sample space

Ω = {HHH,HHT,HTH, THH,HTT, THT, TTH, TTT}.

N
6 / 369

Up to the first success

Example 3. Up to the first success
Suppose the head in the throw of a coin means success. We perform the
throwing of a coin up to the first success. It can appear in the first toss, in
the second, ... It can never occur (at least theoretically).
The sample space of this experiment is infinite:

Ω = {H,TH, TTH, TTTH, . . . , TTTT...}.

N
7 / 369
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Braking the car

Example 4. Braking the car
Our experiment – braking the car. We are interested in the braking
distance. The outcomes can be denoted by non-negative numbers.
The sample space Ω = (0;+∞).
Of course, the breaking distance can’t be very large for the usual car. But
suppose we are breaking the space shuttle!

N
8 / 369

The very beginning

We start exploring the experiment as follows:

• define the sample space Ω of the experiment;
• associate all other events related to the experiment with the subsets

A ⊂ Ω of the sample space.

We shall call these subsets themselves the events.

9 / 369
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Some definitions

Definitions

Let Ω be a sample space of the experiment, and A ⊂ Ω some event
related to the experiment.
If A = Ω, we say, that the event A is certain.
If A = ∅, we say that A is impossible.
The event

Ā = {ω ∈ Ω : ω ̸∈ A}

is called the complement of A
The complement of the event A is the event, which occurs if and only if
A does not occur.

10 / 369

Quick exercises

Problem 1. Experiment - the exam in Probability theory. Which outcomes
of interest could be fixed? Propose at least two variants of possible sets
of outcomes.

11 / 369
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Quick exercises

Problem 2. Eight short distance runners will start in the semi-final. Four
of them with the best results will run in the final. We are interested only in
results of the runner R in the two final contests of the game. Define the
set of possible outcomes of interest.

12 / 369

1.2. The classical definition of the probability 13 /
369

The founders

The founders of probability computation: G. Cardano, B. Pascal, P. Fermat

14 / 369
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The classical definition of the probability

For a finite set B we denote its cardinality by |B|.
The classical definition

Definition 1. Consider the experiment with the finite set Ω of outcomes
which are equally likely. The probability of the event A ⊂ Ω is defined by

P (A) =
|A|
|Ω|

.

15 / 369

Simple properties of probability

Theorem 1. Let Ω consists of finite number of outcomes which are
equally likely. The probability has the following properties:
1. 0 6 P (A) 6 1.
2. P (∅) = 0, P (Ω) = 1;
3. for any event A ⊂ Ω we have

P (A) = 1− P (A).

16 / 369

16



1.3. Examples 17 / 369

The counting rule

The counting rule

Let the set U consists of M elements and the set V of N elements. Then
there are M ·N different pairs ⟨u, v⟩ where u ∈ U and v ∈ V.

18 / 369

The counting rule

The generalized counting rule

Let the sets U1, U2, . . . , Uk consist of N1, N2, . . . , Nk elements respec-
tively. Then there are N1 ·N2 · · ·Nk, different tuples ⟨u1, u2, . . . , uk⟩, where
u1 ∈ U1, . . . , uk ∈ Uk.

19 / 369
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Ordered selections with repetitions

Suppose U1 = U2 = . . . = Uk = U, |U | = N. Then there are

N ·N · · ·N︸ ︷︷ ︸
k

= Nk.

different tuples ⟨u1, u2, . . . , uk⟩, ui ∈ U. A tuple ⟨u1, u2, . . . , uk⟩ can be
considered as selection of copies of elements from U.

20 / 369

Example

Example 5.
A symmetrical dice is rolled four times. What is the probability to get the
faces with the odd, even, odd, even points respectively?

N
21 / 369
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Example

Example 6.
A symmetrical dice is rolled four times. What is the probability to get the
faces with six points at least once?

N
22 / 369

Example

Example 7. Random walk
Let A1, A2, . . . , An be some different points in the space. A particle
appears at a random point of this set and wanders from point to point
making a choice every second: whether it remains at the same point or
jumps to a different randomly chosen point.
What is the probability that in r seconds the particle will visit at least one
of the points A1, A2, . . . , Am(m < n)?
What is the probability that in r seconds the particle makes at least one
return to an already visited point?

N
23 / 369
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Permutations

Let us consider ordered selections of different elements from the set U.
Let there are N elements in the set U.
A row of k different elements from the set U is called
permutation of length k without repetition from N elements.
Denote the number of distinct permutations of length k by Ak

N .

A2
N = N · (N − 1), A3

N = N · (N − 1) · (N − 2), . . . ,

Ak
N = N · (N − 1) · (N − 2) · · · (N − k + 1)︸ ︷︷ ︸

k

.

24 / 369

Example

Example 8.
There are 52 playing cards. What is the probability that 5 randomly drawn
card will be all spades?

N
25 / 369
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Example

Example 9. Birthsday problem
What is the probability that in the group of r persons there are at least two
celebrating their birthsday at the same day of the year?
What is the smallest value of r such that the probability to find at least to
persons in the group of r persons having the same birthsday is larger
than 1

2? N
26 / 369

Combination

A subset of k elements chosen from a set having n elements is called
combination of k elements from a set of n elements.

The number of distinct combinations Ck
n

Ak
n = Ck

n · k!,

Ck
n =

Ak
n

k!
=

k︷ ︸︸ ︷
n · (n− 1) · (n− 2) · · · (n− k + 1)

k · (k − 1) · (k − 2) · · · 1︸ ︷︷ ︸
k

.

27 / 369
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Example

Example 10.
From the set of 52 playing cards 5 cards were chosen randomly. What is
the probability to get exactly two hearts among them?

N
28 / 369

Example

Example 11.
There are N white and M black balls (N good and M defective articles
on the shelf). If k balls are chosen randomly, what is the probability to get
this way exactly n white balls?

N
29 / 369
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Random walk

Example 12. Random walk of a particle
A particle starts at the point O(0; 0) and travels to the point (n;n). It
choses one of the shortest paths: i.e. from the point (a; b) moves to either
the point (a+ 1; b) or (a; b+ 1). What is the probability that the particle
visits the point A(x, y) (x, y < n)?

N
30 / 369

Example

Example 13. Random walk
A particle starts at the point O(0; 0). It choses direction randomly and
moves either to the point (1; 1) or (1,−1). It proceeds in the same way:
from the point (u, v) it jumps to either the point (u+ 1, v + 1) or
(u+ 1, v − 1). What is the probability that after n steps it occurs at the
point (n;x)?

N
31 / 369

23



Problems

Problem 3. The are n musical songs in the playlist, they are played in
random order. The same song can be played repeatedly. What is the
probability that the first song will be played exactly after m other songs?

32 / 369

Problems

Problem 4. There are n musical songs in the playlist, they are played in
random order with the exception that the same song can not be played
again if it was just finished to play. What is the probability that the first
song will be played exactly after m other songs?

33 / 369
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Problems

Problem 5. The game with a symmetrical coin: if it lands on the head,
the first player gets one point, if the coin lands on the tail, the second
player gets the point. What is the probability that after 4 tosses both
players will have 2 points each? What is the probability that after five
tosses the first player will be ahead with one point?
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Problems

Problem 6. There are n photos selected for the exposition, m of them are
landscapes. The photos will be exposed in random order. What is the
probability that all landscapes will be hang up ir a successive row?

35 / 369
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Problems

Problem 7. The same set of n messages was sent to m persons. Each of
them deleted one messeage randomly. What is the probability that the
same message was deleted at least twice?
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Problems

Problem 8. There are n floors in the building, there are m men in the
elevator. Each of them can get out in each floor. What is the probability
that exactly two men will go out in the same floor and all other men will go
out alone in different floors?

37 / 369
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1.4 Geometrical probabilities 38 / 369

Example

Example 14. When the clock stops?
When the batteries will run down, the clock will stop. What is the
probability that this occurs between 2 and 3 PM?

N

The sample space Ω is the circle. The event of interest is an arc A.

P (A) =
length of the arcA

length of Ω
=

1

12
.
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Definition of geometrical probability

Definition

Let the outcomes of the experiment are represented by the points of
some geometrical area Ω, all outcomes are equally likely and the ge-
ometrical measure of Ω is positive. Then the probability of the event
A ⊂ Ω is

P (A) =
geometrical measure of A
geometrical measure of Ω

.

Note that only this definition implies a restriction to the the events under
consideration: the corresponding sets should be measurable.
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Example

Example 15. Phone calls
Two friends promised to call to the third between the 2 and 3 PM o’clock.
What is the probability that the interval between two calls will not exceed
15 minutes?

N
41 / 369

Solution

0 2 xA

2

xB

0 2 xA

2

xB

xA − xB = 0.25

xB − xA = 0.25

Hence,

P (U) =
22 − 1, 752

22
=

15

64
≈ 0, 234.

42 / 369
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Example

Example 16. Constructing a triangle
The lengths of three randomly chosen sides of a triangle are the numbers
from the interval [0; 1]. What is the probability that the triangle with the
chosen sides exist?

N

Let the lengths of the sides be x1, x2, x3. For a triangle to exist it is
necessary and sufficient that the triangle inequalities hold:

x1 + x2 > x3, x1 + x3 > x2, x2 + x3 > x1.

43 / 369

Solution

x2

1

x3 1

x1

1

x2

1

x3 1

x1

1

O

A

B

x2

1

x3 1

x1

1

O

A

B

D

E

P (T ) =
volume of OABDE

volume of the unite cube
.

How to compute the volume of the solid? Substract from the volume of
the cube the volumes of three pyramids which are cut off:

P (T ) =
1− 3 · 1

6

1
=

1

2
.
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The Buffon’s problem

Example 17. Buffon’s problem
An infinite system of parallel lines is drawn on the plane. The distance
between any neighouring lines is equal to 1. A needle of length l (l < 1) is
thrown on the plane. What is the probability that the needle intersects
some line?

N

ϕ
ϕ

ϕ
ϕh h

h h
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Bertrand’s problem

Example 18. Bertrand’s problem
In the unite circle a chord is randomly chosen. What is the probability that
the length of the chord exceeds the length of the equilateral triangle
inscribed into circle?

N

The answer depends on the interpretation of random choice!
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Thick coin

Example 19. Landing on the edge
Radius of the symmetrical coin is r, thickness is h. What is the probability
that if we toss this coin it will land on the edge?

N

47 / 369

Thick coin
C

O

E

A B

P =
2π ·OC · CE

2π ·OC2
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1.5. Algebra of the events 49 / 369

Representation of events

Events are represented by subsets of the set of outcomes. The
operations with the subsets are interpreted as operations with events.
Let Ω be the set of all outcomes and A the system of events associated
with the experiment, i.e. some system of subsets of Ω.
Every event A in the family has its complement A.

A

A

50 / 369

Intersection and union of events

Definition 2. Let A and B are two events related to the same
experiment, i.e. they are represented by the subset of the same sample
space. The event, represented by the outcomes, which belong to both
events A,B, is called intersection and denoted by A ∩B.
The event represented by the outcomes, which belong to at least one of
the events A,B, is called union and denoted by A ∪B.

51 / 369
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Intersecion and union

The events and the operations with them are clearly illustrated by the
diagrams.

A B

A ∩ B

A ∪ B

If all outcomes from A belong to B too, then we shall write A ⊂ B.

A ⊂ A ∪B, A ∩B ⊂ A, A ∩B ⊂ B.

52 / 369

Properties of operations with the events

Theorem 2. Let A,B,C be the events related to the same experiment, Ω
is the certain, ∅ the impossible event. The following statesments are true:

1. ∅ = Ω, Ω = ∅, A = A;
2. ∅ ∪ A = A, Ω ∪ A = Ω, ∅ ∩ A = ∅, Ω ∩ A = A;
3. A ∪ A = A, A ∩ A = A;
4. A ∩ A = ∅, A ∪ A = Ω;
5. (A ∪B) ∩ C = (A ∩ C) ∪ (B ∩ C);
6. A ∪B = A ∩B, A ∩B = A ∪B.

53 / 369
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Example

Example 20.
Using the properties of operations we can simplify the complicated
expressions. For example,

D = (A ∪B) ∪ C = (A ∪B) ∩ C = A ∩B ∩ C.

N
54 / 369

The probabilistic model of the experiment

The probabilistic model (the probabilistic space) consists of

• the sample space Ω ̸= ∅;
• system of events A related to experiment;
• definition of probability P : A → [0; 1].

What requirements should be set on A and P?

55 / 369

34



Algebra of random events

It is quite natural to consider the system of events A having the following
properties

• ∅ ∈ A, Ω ∈ A,
• for each A ∈ A we have also A ∈ A,
• for any sequence of events (finite or infinite) A1, A2, . . . ∈ A we have

∩iAi,∪iAi ∈ A.

These conditions are not independent: some of them follow from other
ones.

56 / 369

σ-algebra of events

Definition 3. Let Ω be non-empty set. A system of subsets A is called
σ-algebra, if the following conditions are satisfied:

• Ω ∈ A;
• if A ∈ A, then A ∈ A;
• if Ai ∈ A, i = 1, 2, . . . , then

∞∪
i=1

Ai ∈ A.

57 / 369
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Further properties

Theorem 3. Let A be some σ-algebra of subsets of the set Ω. The
following propositions are true:
• if Ai, i ∈ I, is some countable system (finite or infinite) of sets from A,

then ∩i∈IAi ∈ A;
• if A,B ∈ A, then A\B ∈ A.

Here A\B = A ∩B; this set is called the difference of A and B.
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Example

Example 21.
Let Ω = {1, 2, 3, 4, 5}, and we are especially interested in the events
{1, 2, 3}, {3, 4, 5}.
The smallest σ-algebra, which includes these events is:

A =
{
∅, {1, 2, 3}, {3, 4, 5}, {3}, {4, 5}, {1, 2}, {1, 2, 4, 5},Ω

}
.

N
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Generated σ-algebra

Definition 4. Let S be some system of subsets of the non-empty set Ω.
If a σ-algebra A satisfies the condition S ⊂ A and has the property: for
any σ- algebra A′, S ⊂ A′, we have A ⊂ A′, then σ- algebra A is called σ-
algebra, generated by S and denoted by A = σ(S).

Think about σ(S) as a smallest σ-algebra, which covers the system S.
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Generated σ-algebra

Theorem 4. For any system of subsets S σ(S) exists.

61 / 369
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Important example

Example 22. Borelian σ-algebra
Let S be the system of intervals [a, b) ⊂ R.
Then σ(S) is called Borelian σ-algebra. We shall denote it by B.

If S is the system of all n-dimensional intervals [a1, b1)× . . .× [an, bn), then
σ(S) is called Borelian σ-algebra of the space Rn. Notation: Bn.

N

The sets from the Borelian σ-algebra are called Borelian. All "good" sets

are Borelian!
There are a lot of non-Borelian sets, but we do’nt encounter them in
practice. Think for analogy about the rational and irrational numbers!

62 / 369

1.6. Probability 63 / 369

Definition of probability

Definition 5. Let A be a σ-algebra of the subsets of the sample space
Ω. A function P : A → [0, 1] is called probability (or probabilistic
measure), if
• P (Ω) = 1;
• if Ai ∈ A, Ai ∩ Aj = ∅ (i, j = 1, 2, . . . , i ̸= j), then

P (
∞∪
i=1

Ai) =
∞∑
i=1

P (Ai).

The second condition in the definition of P is called σ-additivity.
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Probabilistic space

Definition 6. The triple ⟨Ω,A, P ⟩, where A is a σ-algebra of subsets of
the sample space Ω and P – probability, is called probabilistic space.

65 / 369

Discrete probabilistic space

Constructing the discrete probabilistic space

Let Ω be a discrete sample space, i.e. it is finite or infinite but countable,
Ω = {ω1, ω2, . . .}.
The σ-algebra A of events may be taken consisting of all subsets A ⊂ Ω.
We need to define the probabilities of the outcomes

P (ω1) = p1, P (ω2) = p2, . . . (0 < pi < 1)

p1 + p2 + . . . = 1.

Then the probability of an arbitrary event A ⊂ Ω is defined by

P (A) =
∑
ω∈A

P (ω).

66 / 369
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Example

Example 23. Blossoms of a plant
We wait for the blossoms of some plant. Hence, the experiment is
growing of the plant. The outcomes we have chosen are:

ω0 = {there will no blossoms},
ω1 = {the plant will have exactly one blossom},
ω2 = {the plant will have exactly two blossoms},
ω3 = {the plant will have exactly three blossoms},
ω4 = {the plant will have at least four blossoms}.

How to define the probabilities? No recipes. An advice: consult the
botany books. May be you shall find some statistical data from the
previous observations?

N
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Example

Example 24.
The experiment – journey down from the point O choosing the directions
at all crossroads randomly.

A B C D

O
•

• •

• •

• • • •

The sample space Ω = {ωA, ωB, ωC , ωD}, here the outcome ωX means
that we arrived to point X.
The probabilities are

P (ωA) =
1

6
, P (ωB) =

3

6
, P (ωC) =

2

6
, P (ωD) =

1

6
.

N
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1.7. Some properties of probability 69 / 369

Some equalities

Suppose that the probabilistic space ⟨Ω,A, P ⟩ is given.

Theorem 5. The following statements are true:
1. P (∅) = 0;
2. for any countable system (finite or infinite) of disjoint events Ai (i ∈ I)

we have

P (
∪
i∈I

Ai) =
∑
i∈I

P (Ai),

3. P (A\B) = P (A)− P (A ∩B); in particular
P (A) = 1− P (A);

4. P (A ∪B) = P (A) + P (B)− P (A ∩B);
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Inequalities

Theorem 6. Let Ai (i ∈ I) be some countable set of events and A be
some event such that A ⊂ ∪iAi. Then

P (A) ≤
∑
i∈I

P (Ai).

In particular case for A = ∪iAi,

P (
∪
i∈I

Ai) ≤
∑
i∈I

P (Ai).

71 / 369

41



Optimal choice

Example 25. The problem of optimal choice
There are n objects of different quality, they appear in random order. We
would like to choose the best object. The procedure of choice has a
constraint: if we did’nt chosen an object it disappears forever.

N

The strategy of choice: at the beginning the number m, 0 6 m 6 n is
fixed and the decision taken not to choose any of the first m objects, only
evaluate their "quality". Thereafter we choose the first object which is
better than all m objects observed.
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Optimal choice

What is the probability to choose the best among all n objects? What is
the probability to choose the second, the third, the fourth ... in the "quality
row"? What is the probability not to choose anything?

73 / 369
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Optimal choice

Denote the probability to choose the best object by pm, and let
pm(m+ 1), pm(m+ 2), . . . , pm(n) be the probabilities that the best object
appears in the row at m+ 1,m+ 2, ..., n place, respectively. Hence

pm = pm(m+ 1) + pm(m+ 2) + · · ·+ pm(n).

74 / 369

Optimal choice

pm(m+ 1) =
(n− 1)!

n!
=

1

n

pm(m+ 2) =
m · Cm+1

n−1 ·m! · (n−m− 2)!

n!
=

m

n
· 1

m+ 1

pm(m+ j) =
m

n
· 1

m+ j − 1

The probability to get the best object with the strategy parameter m is

pm =
m

n

( 1

m
+

1

m+ 1
+ · · ·+ 1

n− 1

)
=

m

n

n−1∑
j=m

1

j
.
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The practical question

If we have to choose one from, say, n = 10, 20 objects, which value of m
guarantees the largest probability to get the best one?
Let mn is the value of m, which maximizes pm.
Computational results:

n = 5 10 15 20 25 30
mn = 2 4 5 7 9 11
pmn

= 0, 433 0, 398 0, 389 0, 384 0, 381 0, 379

mn

n
→ 1

e
, pmn

→ 1

e
, n → ∞.
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1.8. Simple random variables and probabilities 77
/ 369

Simple random variables

A random variable is a function assigning numbers to outcomes

Definition 7. A function ξ : Ω → R is called simple random variable, if ξ
takes the values from the finite set and for each value x

ξ−1(x) = {ω : ξ(ω) = x} ∈ A.

It follows from the definition that the probabilities P (ξ = x) can be found!

78 / 369
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Indicators

Let A ∈ A be some random event, then the function

IA(ω) =

{
1, if ω ∈ A,

0, if ω ̸∈ A.

is a simple random variable. We call this variable indicator of event A. It
indicates whether the event A occured or not.

IA∪B = IA + IB − IA∩B, IA · IB = IA∩B.
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Simple random variables

Simple random variables via the indicators

If ξ is a simple random variable with the values xi, let Hi = ξ−1(xi). Then

ξ(ω) =
∑
i

xiIHi
(ω).
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Sum of variables

Theorem 7. Let ξ, η be the simple random variables and a, b some real
numbers. Then ζ = aξ + bη is also a simple random variable.

The statement is true in the general case: a linear combination of finite
set of simple random variables is a simple random variable, too.
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Expected value of random variable

Definition 8. Let ξ be a simple random variable with the values xi. Let
Hi = ξ−1(xi) (i = 1, . . . , n). The expected value of the random variable ξ is
defined by

E[ξ] =
n∑

i=1

xiP (Hi) =
n∑

i=1

xiP (ξ = xi).

E[IA] = 0 · P (IA = 0) + 1 · P (IA = 1) = P (A).
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Additivity of the expected value

Theorem 8. Let ξ, η be simple random variables and a, b real numbers.
If ζ = aξ + bη, then

E[ζ] = aE[ξ] + bE[η].

Theorem 9. Let ξ1, . . . , ξn be simple random variables and a1, . . . , an
some real numbers. Then

E[a1ξ1 + · · ·+ anξn] = a1E[ξ1] + · · ·+ anE[ξn].
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Probability of the union of events

Method of proof: start with

IA∪B = IA + IB − IA∩B,

apply the additivity property of expected value and use the equality
P (C) = E[IC ] which holds for every event C. We get then

P (A ∪B) = P (A) + P (B)− P (A ∩B).

84 / 369
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Probability of the union of events

The method of proof just outlined works in the general setting.

Theorem 10. For arbitrary random events Ai (i = 1, . . . , n) we have

P
( n∪
i=1

Ai

)
=

n∑
r=1

(−1)r−1Sr,

where
Sr =

∑
1≤i1<...<ir≤n

P (Ai1 ∩ . . . ∩ Air).

A different formula

P
( n∪
i=1

Ai

)
= 1− P (A1 ∩ A2 ∩ . . . An).
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Exactly k events

Theorem 11. Let Ai (i = 1, . . . , n) be arbitrary random events and
Bk (k = 0, 1, . . . , n) is the event which means that exactly k events from
the system Ai occured. Then

P (Bk) =
n∑

r=k

(−1)r−kCk
rSr,

where the quantities Sr are defined in the previous theorem.
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Example

Example 26. Pack of cards
Let the pack having N different cards is thoroughly shuffled. What is the
probability that in the shuffled pack atl least one card will remain in the
same place? Exactly m (m = 0, 1, . . . , N) cards will be in their places?

N

Let q(N), pm(N) be the probabilities of events we are interested in. Let Ai

is the event, that the ith card of the pack remains in its place after
shuffling. We have

P (Ai1 ∩ . . . ∩ Air) =
(N − r)!

N !
, Sr =

Cr
N(N − r)!

N !
=

1

r!
.
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Example

q(N) = P (
N∪
i=1

Ai) =
N∑
n=1

(−1)n−1 1

n!
= 1−

N∑
j=0

(−1)j
1

j!
,

pm(N) =
1

m!

N−m∑
n=0

(−1)n
1

n!
.

q(N) → 1− e−1, pm(N) → e−1/m!, as N → ∞, here e is the basis of the
natural logarithm.
We can interpret this problem as problem of letters dropped randomly into
the boxes. What is the probability that at least one letter will be dropped
correctly?
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1.9. The monotonicity of probability 89 / 369

Growing events

Theorem 12. Let Ai (i = 1, . . .) be a sequence of growing events:

A1 ⊂ A2 ⊂ . . . , A =
∞∪
i=1

An.

Then P (An) → P (A), as n → ∞.
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Decreasing events

Theorem 13. Let Ai (i = 1, . . .) be a sequence of decreasing events:

A1 ⊃ A2 ⊃ . . . , A =
∞∩
i=1

An.

Then P (An) → P (A), as n → ∞.
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1.10. Conditional probability 92 / 369

Example

Example 27.
Suppose that you and and two friends of yours have to draw lots. There
are three balls in the urn: the black, the blue and the white one. Each
person draws one ball. The winner wil be who gets the white ball.

The probability to win for the first player is 1
3. Are the second and the third

in the worse situation?
N
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Example

Example 28.
Let there are in the urn n = 5 black and m = 4 white balls. Three balls are
drawn randomly without replacement. What are the probabilities of the
events Ai = {ith drawn ball is white}, i = 1, 2, 3,?

N
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Recalculation of probability

Suppose you decided to draw the second ball and the trial started. If the
first ball is white, then you can recalculate the probability to get the white
ball. It is equal to 3

8 .

Initially the probability was calculated before the trial. The second
probability was calculated using the knowledge supplied by the event A1.

We say, that the first probability is unconditional, and the second one –
conditional with the condition that the event A1 occurred.
We shall denote the probabilities by

P (A2) =
4

9
, P (A2|A1) =

3

8
.
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The conditional probability

Definition 9. Let A,B are two random events related to the same
experiment, P (B) > 0. The conditional probability of the event A with the
condition that B occurred is the number

P (A|B) =
P (A ∩B)

P (B)
.
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The same properties

Theorem 14. Let A,B,C be the random events, P (C) > 0. Then
1. P (Ω|C) = 1, P (∅|C) = 1;
2. P (A|C) = 1− P (A|C);
3. if A,B are disjoint, then

P (A ∪B|C) = P (A|C) + P (B|C).
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Example

Rewrite the equality of definition as

P (A ∩B) = P (B)P (A|B)

Example 29.
Let there are n = 5 blacks and m = 4 white balls in the urn. Two balls are
drawn randomly without replacement. What is the probability that both
balls will be white? That at least one ball will be white?

N
98 / 369
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Example

Example 30.
Let there are n = 5 black and m = 4 white balls in the urn. Two balls are
drawn randomly. After the first ball is drawn three balls of the same color
are put back in the urn. What is the probability that two balls drawn
randomly from the urn will be white? That at least one will be white?

N
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Multiplication rule

Theorem 15. Let A1, A2, . . . , An be arbitrary random events,
P (A1 ∩ A2 ∩ . . . ∩ An) > 0. The following equality holds

P (A1 ∩ . . . ∩ An) = P (A1)P (A2|A1) · · ·P (An|A1 ∩ . . . ∩ An−1).
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Example

Example 31.
The game is as in the previous example, but three balls are randomly
drawn. What is the probability that all three will be white? At least one of
them will be white?

N
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Interrupted game

Example 32. Interrupted game
Two gamblers paid to game’s bank 5 euros each and start playing with
the symmetrical coin. If the tossed coin falls on the head, the first gambler
gets a point. If the coin falls on the tail, the second gambler gets a point.
The gambler who gets three points first gets all the bank. Let A1 and A2,
denote the events that the first and the second wins respectively.
Because both have the same chances, P (A1) = P (A2) =

1
2 . N
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Interrupted game

Suppose in the first toss the first gambler has got a point and is ahead by
1 : 0.
If the game will be interrupted because of force majore how to share the
bank fairly?
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1.11. Properties of the conditional probabability
104 / 369

Examples

Example 33. Doors and keys
We have to unlock the doors. In one pocket there are three identical keys
suitable to the lock, in the second one unsuitable key, in the third – two
unsuitable keys. The pocket and the key from that pocket are chosen
randomly. What is the probability that we unlock the door in the first trial?

N
105 / 369
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Examples

Example 34. Doors and keys
Suppose now that in the first pocket there is one suitable key only, in the
second – one suitable and one unsuitable key, in the third – one suitable
and two unsuitable keys. What is the probability that we unlock the door
in the first trial?

N
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Partition rule

Theorem 16. Let H1, H2, . . . be the disjoint events with positive
probabilities and

Ω = H1 ∪H2 ∪ . . . .

Then for an arbitrary event A

P (A) = P (H1)P (A|H1) + P (H2)P (A|H2) + · · ·

Note. The sequence of events Hi may be finite or infinite.
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Example

Example 35. Exam
There are four questions and four answers on the test sheet. It is required
to join the questions and answers correctly. There were prepared 25 test
sheets. A student prepared for the exam: he found all the correct pairs of
the two first sheets, he found the correct answers to the first two
questions on the 3-5 test sheets, found how to answer correctly to the first
question of the 6-19 test sheets, and left the remaining test sheets without
correct pairs. The exam is passed if all four question-answer pairs will be
correct. What is the probability that this student will pass the exam?

N
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Bayes’ rule

Theorem 17. Let the random events H1, H2, . . . be disjoint, their
probabilities positive, Ω = H1 ∪H2 ∪ . . . , A be an arbitrary event,
P (A) > 0. Then for each Hi we have

P (Hi|A) =
P (Hi)P (A|Hi)

P (A)
,

here P (A) = P (H1)P (A|H1) + P (H2)P (A|H2) + · · ·
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Example

Example 36. Monty Hall problem
There are three closed envelopes before you. Two envelopes are empty,
one of them contains a prize. You are allowed to choose one. After you
choose the closed envelope the organizer opens that one of the
remaining envelopes which is empty. Now there are two closed
envelopes. If you want, you can change your envelope to the one on the
table. Makes this change any sense? Find the probability to win the prize
if you don’t change and if you change.

N
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Example

Example 37.
There are four closed envelopes, three of them are empty, one contains a
prize. You are allowed to choose two of them. After you make a choice
the organizer opens the empty envelope. You can change your envelope
for one on the table. What is the probability that you get a prize if you
don’t change and if you change?

N
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Example

Example 38. Coffee automats
There are three automatic coffee machines in the row. It is known that
one of them does’nt operate at all, one sells coffee in approximately 50%
cases, and one always operates correctly. Suppose that the randomly
chosen machine gave to you coffee two times in succession. What is the
probability that you have chosen an automatic coffee machine which
always operates perfect?

N
112 / 369

Gamblers ruin

Example 39. Game with the coin
Two gamblers play with the symmetric coin. If the flipped coin is a head,
the second gambler pays to the first one euro, if the flipped coin is a tail,
the first one pays to the second one euro. At the beginning the first
gambler has x euro, the second is infinitely wealthy. The first gambler will
stop playing if he loses all his money or reaches the amount equal to a
euros. What is the probability that the first gambler will be ruined?

N
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1.12. Independent events 114 / 369

Example

Example 40.
There are two white balls and one black ball in the urn. Two players draw randomly one
ball each. The white ball means a prize. Let A1 = {the first player won a prize} and
A2 = {the second one won a prize}. The events are not disjoint. Before the trial we
compute

P (A1) = P (A2) =
2

3
.

Suppose that the event A1 occurred. Then

P (A2|A1) =
1

2
.

N

Consequently the event are dependent. How the computation will change if the first
player drops his ball into the urn back?
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Independent events

Definition 10. The random events A1, A2 are called independent, if

P (A1 ∩ A2) = P (A1)P (A2).

The certain and the impossible events do not depend on any other event.

Example 41.
Are the random events

A = {in the family with three children there are daughters and sons },
B = {in the family with three children there is at least two sons}

independent?
N
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Independent events

Theorem 18. If the events A1 and A2 are independent, then the events
in the pairs A1 and A2, A1 and A2, A1 and A2 are independent as well.
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How to define a larger system of independent events?

There are four balls in the urn with the numbers 0, 1, 2, 3. There are three
players but only one ball is randomly drawn from the urn. If the number
on this ball is 0, all three players win a prize. If the number is 1, 2 or 3 only
the first, the second and the third player wins, respectively. Let us denote
the events Ai = {the ith player won}. Evidently, if i ̸= j, then

P (A1) = P (A2) = P (A3) =
1

2
, P (Ai∩Aj) =

1

4
, P (Ai∩Aj) = P (Ai)P (Aj).

Hence Ai and Aj are independent. For example, A1 does not depend
either on A2, or A3. But what about the dependence on both events
simultaneously, i. e. on A2 ∩ A3?
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Sequence of independent events

Definition 11. We say that the events in the sequence A1, A2, . . . , An are
independent, if with all values of i1, i2, . . . , in ∈ {0, 1} the equalities

P (Ai1
1 ∩ Ai2

2 ∩ . . . ∩ Ain
n ) = P (Ai1

1 ) · P (Ai2
2 ) · · ·P (Ain

n ),

holds; here A0
i = Ai, A

1
i = Ai.

Note, that not all equalities in the definition are independent.
The independence of the system of events can be also defined using an
equivalent requirement: each event Ai and any intersection of finite
subsystem (not including Ai) are independent events.
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Quick exercise

Example 42. Two dices
Experiment – rolling two symmetrical six-sided dices. Are the events

A = {the sum of the points is even},
B = {the sum of the points exceeds 6}.

independent?
N
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Quick exercise

Example 43.
Experiment – rolling two symmetrical six-sided dices. Consider two
events: A = {the first dice rolled 3 or 4 points},
B = {the sum of the points is less than 8}. Prove, that these events are
independent.

N
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System of independent events

Definition 12. We say that the events of the infinite system
S = {Aλ : λ ∈ Λ} are independent, if events in any finite subsystem are
independent.
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Borel-Cantelli lemma

Theorem 19. Let the events in the system A1, A2, . . . be independent,
pn = P (An),∑

n

pn = ∞.

Then the probability that an infinite number of events of the system An

occur is equal to 1.
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1.13. Independent trials 124 / 369

Bernoulli trials

Consider the experiments with two outcomes denoted by 0 (failure) and 1
(success). We call them Bernoulli trials. Let the probability of success be
p, and probability of failure be q = 1− p.
We have a simple probabilistic space

Ω = {0, 1}, P (1) = p, P (0) = q = 1− p.
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Independent Bernoulli trials

Suppose the homogeneous Bernoulli trials are repeated n times and the
outcomes of the trials are independent. If n = 3, then the set of outcomes
of the series of trials is

Ω3 = {000, 001, 010, 100, 011, 101, 110, 111}.

The probabilities:

P (000) = q · q · q = q3, P (001) = P (010) = P (100) = q · q · p = pq2,

P (011) = P (101) = P (110) = p2q, P (111) = p3,

P (ω1ω2ω3) = pmq3−m, m = 0, 1, 2, 3,

here m = ω1 + ω2 + ω3 is the number of successes in the series.
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Bernoulli model

The sequence consists of n homogeneous and independent Bernoulli
trials. Let the set of all possible outcomes of the sequence be Ωn,

Ωn = {ω1ω2 . . . ωn : ωi = 0, 1}.

The probability of the outcome ω = ω1ω2 . . . ωn is defined by

P (ω) = pmqn−m, m = the number of successes = ω1 + . . .+ ωn.

P (A) =
∑
ω∈A

P (ω).

We call this probabilistic space the Bernoulli model.
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Probability of m successes

Theorem 20. Let the probability of success in the Bernoulli model be
p (0 < p < 1), and n the number of trials. Let Sn be the number of
successes. Then

P (Sn = m) = Cm
n pmqn−m, q = 1− p, m = 0, 1, . . . , n.
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Examples

Simulations
Bernoulli model
Bernulli model
Random walk
The Galton experiment
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Most likely number of successes

Let us denote

Pn(m) = Cm
n pmqn−m,m = 0, 1, . . . , n.

Which probability is the largest? The number of successes m, maximizing
Pn(m), is called the most likely number of successes.
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Most likely number of successes

Pn(m)

Pn(m− 1)
=

Cm
n pmqn−m

Cm−1
n pm−1qn−m+1

=
p

q
· n−m+ 1

m

= 1 +
p(n+ 1)−m

mq
= 1 + λm

Theorem 21. The largest integer m with the condition m < (n+ 1)p is
the most likely number of successes. If (n+ 1)p is an integer, then Pn(m)
is maximal as m = (n+ 1)p and m = (n+ 1)p− 1.

131 / 369

68



Estimation of probability

Let m > (n+ 1)p, we estimate P (Sn ≥ m) from above

1 > 1 + λm+1 > 1 + λm+2 > . . .

Pn(m+ 1) = (1 + λm+1)Pn(m),

Pn(m+ 2) = (1 + λm+2)Pn(m+ 1) < (1 + λm+1)
2Pn(m),

P (Sn > m) = Pn(m) + Pn(m+ 1) + . . .

P (Sn > m) < Pn(m)(1 + ρ+ ρ2 + . . .), ρ = 1 + λm+1,

P (Sn > m) ≤ Pn(m)
1

1− ρ
= Pn(m)

mq

m− (n+ 1)p
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1.14. The polynomial model 133 / 369

The polynomial model
Let the sample space of the experiment consists of r outcomes. The outcomes will be
denoted by numbers 1, 2, . . . , r. The probabilities of the outcomes are given:

Ω = {1, 2, . . . , r}, pi = P (i), 0 < pi < 1, p1 + p2 + . . .+ pr = 1.

The sample space of the series of n independent homogeneous experiments is

Ωn = {ω1ω2 . . . ωn : ωi = 1, 2, . . . , r}.

If the numbers of outcomes 1, 2, . . . , r in the sequence ω = ω1ω2 . . . ωn are m1, . . . ,mr

(m1 +m2 + . . .+mr = n), then

P (ω) = pm1
1 pm2

2 · · · pmr
r .

The probabilities of other events are defined by sums of the probabilities of appropriate
sequencies ω.
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The probabilities in the polynomial model

Theorem 22. Let Ω = {1, 2, . . . , r} be a sample space of the
experiment, P (i) = pi, i = 1, 2, . . . , r be the probabilities of outcomes, Si

n

– the number of the outcome i in the series of n independent trials, mi

some non-negative integers, m1 +m2 + . . .+mr = n. Then

P (S1
n = m1, S

2
n = m2, . . . , S

r
n = mr) =

n!

m1!m2! . . .mr!
pm1

1 pm2

2 · · · pmr
r .
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Quick exercises

Example 44.
Two coins are tossed. The probabilities of the head are equal to 0.4, and
0.6, respectively. What is the probability that in n = 6 tosses we shall get
exactly twice two heads and exactly twice two tails?

N

Example 45.
In the rectangle ABCD n = 5 points are chosen randomly. What is the
probability that the side AB will be nearest one to the three of them, BC
and CD to exactly one point.

N
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1.15. The limit theorem
in the Bernoulli model 137 / 369

The first example

Example 46. Small drops, the large net
Suppose the stream consists of n = 1000 drops falling on the net made
up of 100cm × 100cm squares. A drop is a ball with radius r = 0, 1 cm. If a
drop touches a side of the net, it falls to pieces. What is the probability
that exactly m = 5 drops will disappear?

N
This drop will survive!
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The second example

Example 47. Large drops, the small net
Let now suppose that the drops are balls with the radius r = 0, 5 cm, and
there are n = 10000 drops in the stream. The net is made up of
10cm × 10cm squares. A lot of drops vanish flying through the net. What
is the probability that the number of drops falling into pieces will be at
least 1900 but will not exceed 2000?

N
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The Poisson theorem

Theorem 23. Let n be the number of trials in the Bernoulli model, the
probability of success depends on the number of trials, let us denote it by
pn. Suppose that n growing unboundedly, pn vanishes, but there exist a
number λ > 0, such that npn → λ. Then for an arbitrary m we have

P (Sn = m) = Cm
n pmn (1− pn)

n−m → λm

m!
e−λ, n → ∞,

here e ≈ 2, 71828 is the basis of the natural logarithm.
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The Moivre-Laplace theorem

Theorem 24. Let p be the probability of success in a Bernoulli trial, n be
the number of experiments, and Sn – the number of successes in the
sequence of n independent trials. Then as n → ∞ we have for any
numbers a < b

P
(
a <

Sn − np√
np(1− p)

< b
)
→ Φ(b)− Φ(a),

Φ(v) =
1√
2π

∫ v

−∞
e−x2/2dx.
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The function Φ(x)

Geometrically the difference Φ(b)− Φ(a) is equal to the area under the
graph of function

p(x) =
1√
2π

e−x2/2

restricted by the lines y = 0, x = a, x = b,.

x

p
(x

)

a b

S = Φ(b) − Φ(a)
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Computing the function in Excel
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Examples

Example 48.
The bear factory announces the lottery: two specially marked corks from
the bottles are exchanged for a prize. There were 4% of the bottles were
marked at the factory. What is the probability to win at least one prize
buying n = 50 bottles?

N
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Example

Example 49.
The test of the exam consists of 10 questions, the possible answers are
yes and no. The grade is equal to the number of correct answers. The
students use the "probabilistic method": they choose the answers
randomly. What is the probability that among n = 700 students using this
method exactly three of them will get grade "8"?

N
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Example

Example 50.
The probability that the student will finish the studies successfully is equal
to 0, 6. What the smallest numbers of students should be such that with
the probability equal to 0, 8 at least 200 students will be successful?

N

Example 51.
What is the smallest number of rolls of the symmetrical dice, such that the
probability to get at least 100 sixies should be larger than 0, 7?

N
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2.1. Random variables 147 / 369

Examples

Let X be the distance from the point chosen randomly in the circle with
radius r = 5 to its center, and Y – the distance rounded to the integer.

0 1 2 3 4 5

Y

ΩΩ

X

P (X < 3) =
π · 32

π · 52
= 0, 36, P (Y < 3) =

π · 2, 52

π · 52
= 0, 25,

P (X = 3) = 0, P (Y = 3) =
π · (3, 52 − 2, 52)

π · 52
= 0, 24.

148 / 369

75



Definition

Definition 13. A function ξ : Ω → R is called random variable if for every
Borelian set B ∈ B

{ω : ξ(ω) ∈ B} = ξ−1(B) ∈ A.

149 / 369

The random vectors

Definition 14. A function ξ : Ω → Rn

ξ(ω) = ⟨ξ1(ω), ξ2(ω), . . . , ξn(ω)⟩,

where ξi are random variables is called a random vector.
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Without Borelian sets

Theorem 25. A function ξ : Ω → R is a random variable if and only if for
every number x

{ω : ξ(ω) < x} ∈ A.
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Functions of random variables

Definition 15. A function f : R → R is called Borelian if for any Borelian
set B ∈ B

f−1(B) ∈ B.

Theorem 26. Let ξ : Ω → R be some random variable and f : R → R
some Borelian function. Then η = f(ξ) is a random variable too.
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Algebraic operations with random variables

Theorem 27. Let ξ, η : Ω → R be the random variables. Then
ξ ± η, ξ · η, ξ/η (if η ̸= 0) are random variables too.
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Analytic operations with random variables

Theorem 28. Let ξn : Ω → R (n = 1, 2, . . .) be the random variables.
Then the functions

η1 = inf
n
ξn, η2 = sup

n
ξn,

η3 = lim inf
n

ξn, η4 = lim sup
n

ξn

are also the random variables.
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2.2 Cumulative distribution function 155 / 369

Distribution function

Definition 16. Let ξ : Ω → R – be a random variable.
The function Fξ : R → [0, 1],

Fξ(x) = P (ξ < x)

is called (cumulative) distribution function of the random variable ξ.

Definition 17. Let ξ : Ω → Rm – be a random vector, ξ = ⟨ξ1, . . . , ξm⟩.
The function Fξ : Rm → [0, 1],

Fξ(x1, . . . , xm) = P (ξ1 < x1, . . . , ξm < xm).

is called the distribution function of the random vector.
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Example

Let the radius of the circle be r = 5. A point of the circle is chosen
randomly. Let X be a distance from the point chosen to the center of the
circle. The random variable X takes the values in the interval [0; 5].

FX(x) =


0, if x ≤ 0,
x2

25 , if 0 < x < 5,

1, if x ≥ 5.

x

F
X

(x
)

1

0 5
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The second example

Suppose now that we measure the distance between the point randomly
chosen in the circle and the the center and round the result to the whole
number according to custom rule of rounding. We get this way a random
variable Y, which can take six different values.

y = 0 1 2 3 4 5
P (Y = y) = 0, 01 0, 08 0, 16 0, 24 0, 32 0, 19

x

F
Y
(x

)

0 1 2 3 4 5

1
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The properties of distribution function

Theorem 29. Let Fξ be the distribution function of the random variable
ξ. Then :
• Fξ is non-decreasing function;
• Fξ is left-continuous;
• lim

x→−∞
Fξ(x) = 0, lim

x→∞
Fξ(x) = 1.
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2.3. Discrete random variables 160 / 369

Discrete random variables

Definition 18. If a random variable (vector) ξ takes the values from the
finite or infinite but countable set, it is called discrete random variable
(vector).

Let X takes the values from the finite set. The information on the
probabilities can be displayed in the table:

x = x1 x2 x3 . . .
P (X = x) = p1 p2 p3 . . .

, pi = P (X = xi).
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Discrete random variable

Theorem 30. The distribution function of the random variable ξ has
jumps at points corresponding to the values of random variable.
If x is a value of the discrete random variable, then at this point the
distribution function has a jump equal to Fξ(x+ 0)− Fξ(x) = P (ξ = x).
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Degenerated random variable

Definition 19. If there exist a value a, such that for a random variable X
we have P (X = a) = 1, then X is called degenerated random variable.

x

F
X

(x
)

1

0 a

We may wonder whether such a variable is not "random" at all; but there
are some subtleties here: the variable can take some values with zero
probability. Example: integer part of the distance from the point randomly
chosen in the unit circle to its center. The value will always be zero,
except as we choose the point on the circumference.
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Binomial random variable

Let n be the number of trials in the
Bernoulli model, p – the probability of
success, ξn – number of successes in
the series of n trials. The variable takes
the values in the set {0, 1, . . . , n},

P (ξn = m) = Cm
n pm(1− p)n−m.

We shall denote ξn ∼ B(n, p).
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Binomial variable

Let us associate with the ith trial of Bernoulli model the random variable:

Xi =

{
1, if there will be success in the ith trial,
0, if the ith trial is unsuccesful.

Then

X = X1 +X2 + . . .+Xn.
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Geometrical random variable

Definition 20. A random variable X taking the values m = 1, 2, . . . with
the probabilities

P (X = m) = qm−1p, m = 1, 2, . . . , 0 < p < 1, q = 1− p,

is called geometrical. We shall write X ∼ G(p).
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Pascal’s random variable

The Bernoulli trials are repeated until n
successes are obtained. Let θn be the
number of trials, ηn = θn−n. Then ηn – is
a number of failures in the series of trials.

Values and probabilities:

P (ηn = s) = Cs
n+s−1p

n(1− p)s.

We say that ηn is a Pascal’s random variable and write ηn ∼ B−(n, p).
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Poisson’s random variable

Let a random variable ξ takes the non-
negative integer values with the proba-
bilities

P (ξ = m) =
λm

m!
e−λ,

here λ > 0. The random variable ξ is
called Poisson’s random variable with
the parameter λ. We write ξ ∼ P(λ).
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Poisson’s theorem

Theorem 31. Let n denote the number of Bernoulli trials with the
probability of success equal to pn and Sn be the number of successes in
the series of trials. If there exists a positive number λ, such that npn → λ,
as n → ∞, then for every m = 0, 1, . . .

P (ξn = m) = Cm
n pmn q

n−m
n → P (X = m), X ∼ P(λ).

here qn = 1− pn.
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Hypergeometrical random variables

Let there are n white and m black balls in the urn and u (u < n+m) balls
are drawn randomly. Denote by X the number of white balls in the drawn
set. Then X is a discrete random variable taking values with the
probabilities

P (X = v) =
Cv

nC
u−v
m

Cu
n+m

,

max(u−m, 0) ≤ v ≤ max(u,m).

The random variable X is called hypergeometrical.
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Hypergeometrical random variables

Suppose the balls are drawn in succession and

Xi =

{
1, if the ith ball is white,
0, if the ith ball is black,

i = 1, 2, . . . , u.

Then

X = X1 +X2 + . . .+Xu.
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2.3. Absolutely continuous
random variables 172 / 369

Continuous random variables

Definition 21. If the distribution function Fξ of the random variable
(random vector) ξ is continuous, we call the random variable (random
vector) continuous.
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Uniformly distributed random variable

+
+

+

+

X 1

1

0

The value of X equals to the abscissa of the point randomly chosen in
the unite square. It takes values in the interval [0; 1]. All values are
„equally likely".
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Absolutely continuous random variables

X0

+
++ +

+
+

u

The value of X equals to the abscissa of the point randomly chosen in
the figure restricted by the graph of function p(x) and the abscissa axis.
The area of the figure is equal to 1.

P (X < u) =

∫ u

−∞
p(x)dx

87
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Absolutely continuous random variables

Definition 22. The random variable ξ is called absolutely continuous if
there exists an integrable non-negative function pξ(s), such that

Fξ(x) =

∫ x

−∞
pξ(s)ds.

The function pξ(s) is called density function of random variable ξ.
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Absolutely continuous random vectors

Definition 23. The random vector ξ : Ω → Rm is called absolutely
continuous if there exists an integrable non-negative function
pξ(s1, . . . , sm), such that

Fξ(x1, . . . , xm) =

∫
{s1<x1,...,sm<xm}

pξ(s1, . . . , sm)ds1 · . . . · dsm.

The function pξ(s1, . . . , sm) is called density function of the random vector
ξ.
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Properties of density functions

• pξ(x) ≥ 0.
• At almost all points F ′

ξ(x) = pξ(x).
• ∫ ∞

−∞
pξ(u)du = 1.
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Uniformly distributed random variables

Definition 24. We say that the random variable ξ is uniformly distributed
in the interval [a; b], if it has the density function pξ(x) equal to 0 if
x ̸∈ [a; b], and for all x ∈ [a; b] pξ(x) takes the same value, i.e. pξ(x) = c.

Because of the integral of the density function is equal to 1, we get

1 =

∫ ∞

−∞
pξ(x)dx = c

∫ b

a

dx = c(b− a), c =
1

b− a
.
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Exponential random variables

Example 52.
Suppose a fly flew in the room and seeks desperately for the open
window to exite. Denote by X the time necessary to find the way. What is
the probability that at least t seconds a fly will stay in the room, i.e. what
is the value of P (X > t)?

N
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Exponential random variables

Definition 25. If the density function of the random variable X is

pX(x) =

{
0, if x < 0,

λe−λx, if x > 0,

where λ > 0, we say that X is an exponential random variable.
We shall write X ∼ E(λ).
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Exponential random variables

Graphs of distribution and density functions of exponential random
variables

F
X

(x
)

x0
p

X
(x

)
x0
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Example

Example 53.
The surviving time of a soap bubble is an exponential random variable.
There were created 1000 soup bubbles and after one minute only 450
were not blown up. What is the probability that a soap bubble survives
two minutes? What the smallest number of soap bubbles should be that
with probability 0, 9 after three minutes we would have at least 300
bubbles survived?

N
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The Poisson process

Suppose you turned on your phone and wait for the first message. Let T1

be the waiting time. What is the probability P (T1 > t) i.e. what is the
probability that you should wait at least t seconds?

Let us divide the time interval [0; t] into the small and equal pieces and
make a conjecture that in a short interval of length 1/n we can receive
only one message with the probability pn, where pn, npn → λ, as n → ∞.
We derive then that

P (T1 > t) = e−λt, i.e. T1 ∼ E(λ).
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The Poisson process

Let us denote by Xt the number of messages received in the time interval
[0; t]. Then Xt is a discrete random variable and we know only the
probability:

P (Xt = 0) = P (T1 > t) = e−λt.

We can find also

P (Xt = m) =
(λt)m

m!
e−λt, m = 0, 1, 2, . . . .

Xt ∼ P(λt). We have an infinite system of Poisson’s random variables. It
is called the Poisson process.
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The Poisson process

We considered the random value T1 – the moment when the first
message arrives. Let now for k > 1, the random value Tk means the
moment, when the kth message is received.

T1 6 T2 6 T3 6 . . . 6 Tk−1 ≤ Tk.

P (Tk > t) = P (Xt < k)

= P (Xt = 0) + . . .+ P (Xt = k − 1)

= e−λt +
(λt)1

1!
e−λt + . . .+

(λt)k−1

(k − 1)!
e−λt.
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Poisson process

The random variable Tk has the distribution function

FTk
(t) = 1− e−λt − (λt)1

1!
e−λt + · · ·+ (−1)k−1 (λt)

k−1

(k − 1)!
e−λt, t > 0.

The density function

pTk
(t) = F ′

Tk
(t) = λ · (λt)

k−1

(k − 1)!
e−λt =

λktk−1

(k − 1)!
e−λt.
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Gamma random variable

Definition 26. If the density function of the random variable X is

pX(t) =

0, if t < 0,

λktk−1

(k − 1)!
e−λt, if t > 0,

here λ > 0, k ≥ 1, then X is called gamma random variable.
We shall write X ∼ Γ(k, λ).
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Gamma random variable

The gamma random variable Tk can be expressed via more simple
random variables.
Let us denote by T0|1 the waiting time of the first message, T1|2 – the
waiting time of the second message an so forth. Then

Tk = T0|1 + T1|2 + . . .+ Tk−1|k.

T0|1 ∼ E(λ), . . . , Tk−1|k ∼ E(λ).
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Pareto random variables

Definition 27. Let the density function of the random variable X be

pX(x) =

{
0, if x < 1,
α

xα+1 , if x ≥ 1,

here α > 0. The random variable X is called Pareto random variable.
We shall write X ∼ Par(α).
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Standard normal variable

Definition 28. The random variable X with the density function

p(x) =
1√
2π

e−x2/2

is called standard normal variable. We shall write X ∼ N (0, 1).
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The normal random variables

Definition 29. The random variable X with the density function

pX(x) =
1√
2πσ2

e−(x−µ)2/2σ2

,

is callled normal random variable. We shall denote X ∼ N (µ, σ2).
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The normal variables

x

p
X

(x
)

0

The graphs of density functions of normal random variables
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The Moivre-Laplace theorem

Theorem 32. Let the probability of success in the Bernoulli model be p,
and Sn denote the number of successes in the sequence of n trials. Then
for every x, as n → ∞, we have

P

(
ω :

Sn(ω)− np√
np(1− p)

< x

)
→ 1√

2π

∫ x

−∞
e−t2/2dt.

This statement is called the integral Moivre-Laplace theorem.
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The normal random vector

Definition 30. We say that the random vector ξ : Ω → Rn is standard
normal, if it has the density function

pξ(x1, . . . , xn) =
1

(2π)n/2
exp

{
− 1

2

n∑
k=1

x2k
}
.
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Quantiles and the critical values

Definition 31. Let the random variable X be continuous and 0 < α < 1.
The smallest solution of the equation

FX(x) = α

is called α-quantile of the random variable X; we denote it by uα. The
quantity uα is also called (1− α)-critical value.
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Quantiles

If the random variable X has the density function p(x), and uα is the
α-quantile, then the area below the graph of the density function (and
above the abscissa axis) to the left of the line x = uα is α, and to the right
is 1− α.

F
X

(x
)

x0

F
X

(x
)

x0

α

xα

p
X

(x
)

xα

S = α

x0
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Quick exercises

Example 54.
The random variable X is exponential, X ∼ E(λ). Its 0, 5-quantile is equal
to 3. Find the value of λ.

N

Example 55.
Find the 0.5-quantile and 0, 2-critical value of the random variable
X ∼ Par(3).

N

Example 56.
The random variable X is standard normal,
FX(0, 5244) = Φ(0, 5244) = 0, 7. What should be the value of a, such that
the 0, 7-quantile of the random variable Y = 2X + a would be equal to 3?

N
198 / 369

2.4. Probabilities and
the density functions 199 / 369

Computing probabilities

Let ξ be an absolutely continuous random variable having the density
function pξ. If B is a Borelian set, then

P (ξ ∈ B) =

∫
B

pξ(u)du.

Let ξ = ⟨ξ1, . . . , ξm⟩, ξ : Ω → IRm, be an absolutely continuous random
vector with the density function pξ. Then for any Borelian set B ∈ Bm

P (ξ ∈ B) =

∫
B

pξ(u1, u2, . . . , um)du1du2 . . . dum.
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Density function of a random vector

Theorem 33. Let the absolutely continuous random vector
ξ = ⟨ξ1, . . . , ξm⟩ has the density function pξ(u1, . . . um). Then the random
vector ξ′ = ⟨ξ1, . . . , ξm−1⟩ is also absolutely continuous and its density
function is

pξ′(u1, . . . , um−1) =

∫ ∞

−∞
pξ(u1, u2, . . . , um)dum.
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The density function of the random variable η = f (ξ)

Theorem 34. Let ξ : Ω → R be an absolutely continuous random
variable and f : R → R some monotone and differentiable function. Then
the random variable η = f(ξ) has the density function

pη(t) = pξ(f
−1(t)) · |f ′(ϕ−1(t))|−1.

Note that in practice we can find the density function computing Fη(x) and
differentiating this function.
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The normal variables

Let ξ ∼ N (0, 1), and η = a+ σξ, σ ̸= 0. Then the density function of the
random variable η is

pη(x) =
1√
2πσ2

exp
{
− 1

2σ2
(x− a)2

}
.

We say that η is the normal random variable with parameters a, σ2 and
write η ∼ N (a, σ2).
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2.5. Independent random variables 204 / 369

Independent random variables

Definition 32. The random variables ξ1, ξ2 are independent if with any
Borelian sets B1, B2

P (ξ1 ∈ B1, ξ2 ∈ B2) = P (ξ1 ∈ B1)P (ξ2 ∈ B2).

How to define the system of independent random variables?
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Independent random vectors

Definition 33. The random vectors ξ1, ξ2 : Ω → Rn are independent if
with any Borelian sets B1, B2 ∈ B(Rn)

P (ξ1 ∈ B1, ξ2 ∈ B2) = P (ξ1 ∈ B1)P (ξ2 ∈ B2).

206 / 369

Distribution functions

Theorem 35. The random variables ξ, η : Ω → R are independent if and
only if

P (ξ < u, η < v) = P (ξ < u)P (η < v).

Theorem 36. The random variables ξ, η : Ω → R are independent if and
only if the distribution function of the random vector ζ = ⟨ξ, η⟩ satisfies

Fζ(u, v) = Fξ(u)Fη(v),

here ζ = ⟨ξ, η⟩.
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The discrete random variables

Theorem 37. The discrete random variables ξ, η : Ω → R are
independent if and only for all values of x, y

P (ξ = x, η = y) = P (ξ = x)P (η = y).
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Absolutely continuous random variables

Theorem 38. Let ξ, η : Ω → R be the absolute continuous independent
random variables with the density functions pξ, pη. Then the random
vector ζ = ⟨ξ, η⟩ is also absolutely continuous and

pζ(u1, u2) = pξ(u1)pη(u2).

Let the random vector ζ = ⟨ξ, η⟩ be absolutely continuous with the density
function pζ .
If for densities of components pξ, pη the equality pζ(u1, u2) = pξ(u1)pη(u2)
is satisfied, then the random variables ξ, η are independent.
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Independent random variables and Borelian functions

Theorem 39. Let ξ1, ξ2 : Ω → Rn be independent random vectors and
f1, f2 : Rn → Rm two Borelian functions. Then the random vectors
η1 = f1(ξ1), η2 = f2(ξ2) are independent, too.
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Sum of independent random variables

Theorem 40. Let ξ1, ξ2 be continuous independent random variables
with the density function pξ1, pξ2. Then the random variable η = ξ1 + ξ2 is
also independent with the density function

pξ1+ξ2(u) =

∫ ∞

−∞
pξ1(v)pξ2(u− v)dv

=

∫ ∞

−∞
pξ2(v)pξ1(u− v)dv.
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2.6. Expected value of
the discrete random variables 212 / 369

Definition

Definition 34. Let ξ be a discrete random variable and the series∑
x

xP (ξ = x)

converges absolutely. We denote the sum of the series by E[ξ] and call
this number expected value (expectation) of the random variable ξ.
Note. If the discrete random variable ξ has the expected value, then the
expected value of the random variable |ξ| is also defined.
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Expectation of the bounded variable

If the values of the discrete random variable ξ are bounded by some
constants from above and below, then the expected value of the random
variable exists.

The following statement can also be proved.

Theorem 41. Let ξ and η be two discrete random variables, |ξ| ≤ η and
for the random variable η the expected value exists. Then the expected
value exists also for the random variable ξ.
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Expected value as center of gravity

m1

m2

l1 l2

C

The point C is the center of gravity of the system consisting of two bodies.
Suppose the bodies are put on the real line at the points with the
coordinates x1, x2. Let c be the coordinate of the center of gravity.
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Expected value as center of gravity

m1

m2

l1 = c − x1 l2 = x2 − c

c

x1 x2

m1(c− x1) = m2(x2 − c), (x1 − c)m1 + (x2 − c)m2 = 0,

c =
x1m1 + x2m2

m1 +m2
.
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Properties of the expectation

Theorem 42. Let X be a discrete random variables with the values
x1, x2, . . . , and Y = f(X) is the new random variable. If the expected
value of Y exists, then

E[Y ] =
∑
i

f(xi)P (X = xi).

Theorem 43. Let X be a discrete random variable having the expected
value and a is an arbitrary number. Then for the random variable Y = aX
we have:

E[a ·X] = a · E[X].
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Additivity of expectation

Theorem 44. Let X and Y be the discrete random variables having the
expected values. Then for the sum X + Y we have:

E[X + Y ] = E[X] + E[Y ].

Theorem 45. Let X1, X2, . . . , Xn be the discrete random variables
having the expected values. Then

E[X1 +X2 + . . .+Xn] = E[X1] + E[X2] + . . .+ E[Xn].
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Independence and expectation

Theorem 46. Let X and Y be independent discret random value
having the expected values. Then for the product X · Y we have:

E[X · Y ] = E[X] · E[Y ].
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Expected value of the binomial random variable

If X ∼ B(n, p), then E[X] = np.

220 / 369

109



Expected value of the Poisson random variable

If X ∼ P(λ), then E[X] = λ.
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Expected value of the geometrical random variable

If X ∼ G(p), then E[X] =
1

p
.
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Expected value of the Pascal random variable

If X ∼ B−(n, p), then

P (X = m) = Cm
n+m−1p

nqm,

E[X] = n
q

p
.
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Expected value of the hipergeometrical random variable

Let there are m whites and n black balls in the urn. We draw randomly
and without replacement u (u ≤ m+ n) balls. The value of the variable X
is the number of white balls in the set of balls drawn from the urn.
The expected value of the random variable is:

E[X] =
∑
v

v · C
v
mC

u−v
n

Cu
m+n

= u · m

m+ n
.

Note. The simplest way to compute the expectation X: use the
expression and additivity property

X = X1 +X2 + . . .+Xu,

where the random variable Xi takes the value 1, if the ith ball is white and
0 otherwise.
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2.7. Expected value of continuous random vari-
ables 225 /
369

Expectation as center of gravity

The expected value of the discrete random variable X can be interpreted
as the coordinate of the center of gravity.

E[X] xi

pi

pi
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Expectation as center of gravity

Let X be a continuous random variable with the density function pX(x).
Suppose that on the real line was put not the single weights but a figure,
restricted from above by the graph of density function.
Where should be placed a support point for to keep the figure in balance?
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Expectation as center of gravity

p
X

(x
)

x0 xi

E[X] ≈
∑
i

xipX(xi)(xi+1 − xi) →
∫ ∞

−∞
xpX(x)dx.
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Definition

Definition 35. Let the absolutely continuous random variable X has the
density function pX(x). The expected value of the random variable X (if it
exists), is the number

E[X] =

∫ ∞

−∞
xpX(x)dx.

Note. For the existence of the expectation it is necessary that the integral
converges absolutely.
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Expected value of the uniformly distributed variable

Let the random variable X is uniformly distributed in the interval [a; b], i.e.
X ∼ T ([a, b]). Then

pX(x) =

{
1

b−a , if x ∈ [a; b];

0, if x ̸∈ [a, b].

If X ∼ T ([a, b]), then E[X] =
a+ b

2
.
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Expected value of the exponential random variable

The exponential random variable X ∼ E(λ) has the density function

pX(x) =

{
λe−λx, jei x ≥ 0,

0, jei x < 0.

If X ∼ E(λ), then E[X] =
1

λ
.
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Gamma random variables

Definition 36. If the random variable X has the density function

pX(t) =

0, if t < 0,

λktk−1

(k − 1)!
e−λt, if t > 0,

here λ > 0, k ≥ 1, then X is called gamma random variable. We denote it
by X ∼ Γ(k, λ).
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Expected value of the gamma variable

Let Tk be the gamma random variable, Tk ∼ Γ(k, λ). It can be interpreted
as the waiting time for k phone calls or messages.
Let T0|1 be the waiting time of the first message, T1|2 – the waiting time of
the second message, and so forth. Then

Tk = T0|1 + T1|2 + · · ·+ Tk−1|k.

T0|1 ∼ E(λ), . . . , Tk−1|k ∼ E(λ).
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Expected value of the normal random variables

Let X ∼ N (0, 1), then the density function and expected value is:

pX(x) =
1√
2π

e−x2/2, E[X] = 0.

Let Y = σX + µ, then Y is a normal random variable too: Y ∼ N (µ, σ2).
The expected value is

E[Y ] = E[σX + µ] = E[σX] + E[µ] = σE[X] + µ = µ.
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Computing the expected value

Theorem 47. Let the random variable X has the density function pX(x),
and let f(x) be a Borelian function. The random variable Y = f(X) has
the expected value if and only if the integral∫ ∞

−∞
|f(x)|pX(x)dx

converges. Then

E[Y ] =

∫ ∞

−∞
f(x)pX(x)dx.
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Generalized theorem

Theorem 48. Let X = ⟨X1, X2, . . . , Xm⟩ be a random vector with the
density function pX(x1, x2, . . . , xm), and f(x1, x2, . . . , xm) – a Borelian
function with real values. The random variable Y = f(X) has the
expected value if and oly if the integral∫ ∞

−∞
. . .

∫ ∞

−∞
|f(x1, x2, . . . , xm)|pX(x1, x2, . . . , xm)dx1 . . . dxm

converges. Then

E[Y ] =

∫ ∞

−∞
. . .

∫ ∞

−∞
f(x1, . . . , xm)pX(x1, . . . , xm)dx1 . . . dxm.
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Example

Example 57.
The durations of the phone conversations of two people are the random
variables X1 ∼ T ([0; a]), X2 ∼ T ([0; b].) Find the expected values of the
random variables

E[min(X1, X2)],E[max(X1, X2)],

E[min(X1, X2) ·max(X1, X2)].

N
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2.8. Outline of
the general theory of expectation 238 / 369

Uniform convergence

Definition 37. Let ξn, ξ : Ω → R be the random variables. If for every
δ > 0 there exists some number n(δ), such that the inequality

|ξn(ω)− ξ(ω)| < δ

holds as n > n(δ) for all ω ∈ Ω, then we say that ξn converges uniformly to
ξ.
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Sequences of converging random variables

Let ξ be a random variable and ϵ > 0. Define the discrete random variable
ξϵ(ω) as follows:

if ξ(ω) ∈ [nϵ, nϵ+ ϵ), then ξϵ(ω) = nϵ.

Then

ξ(ω)− ϵ ≤ ξϵ(ω) ≤ ξ,

P (ξϵ = nϵ) = Fξ(nϵ+ ϵ)− Fξ(nϵ).
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Definition

If the discrete random variables ξn have their expected values and
converge uniformly, then it can be proved that the limit limn→∞E[ξn] exists.

Definition 38. If the discrete random variables ξn have the expected
values and converge uniformly to the random variable ξ, then the limit
value of the expected values is called the expected value of the random
variable ξ :

E[ξ] = lim
n→∞

E[ξn.]
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Expectation via the integral

If the random variable ξ has the expected value, then

E[ξ] = lim
ϵ→0+

E[ξϵ] = lim
ϵ→0+

∑
x

xP (ξϵ = x)

= lim
n→∞

n∑
m=−n

(mϵ)(Fξ(mϵ+ ϵ)− Fξ(mϵ)).

The notation:

E[ξ] =

∫ ∞

−∞
xdFξ(x).
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The properties are the same!

Theorem 49. Let ξ1, ξ2 be arbitrary random variables having the
expected values. Then
1. with arbitrary numbers c1, c2 we have E[c1ξ1 + c2ξ2] = c1E[ξ1] + c2E[ξ2];
2. if ξ1 ≤ ξ2, then E[ξ1] ≤ E[ξ2];
3. if ξ1, ξ2 are independent random variables, then

E[ξ1 · ξ2] = E[ξ1] · E[ξ2].
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2.9. The variance 244 / 369

Three random variables

P (X0 = 0) = 1;

P (X1 = x) =
1

2
, x = ±1;

P (X2 = x) =
1

4
, x = ±1

2
, ±1;

P (X3 = x) =
1

6
, x = ±1

4
, ±1

2
,±1.

Which random variable has the largest dispersion of its values?
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Definition

Definition 39. Let X be a random variable having the expected value.
The number

D[X] = E[(X − E[X])2]

(if it exists) is called the variance of the random variable X. The number
σ(X) =

√
D[X] is called standard deviation (from the expected value) of

X.
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The properties of variance

Theorem The following statements are true:
1. if for the random variable X the variance exists then D[X] ≥ 0;

D[X] = 0 if and ony if P (X = E[X]) = 1;
2. D[X] = E[X2]− E[X]2;
3. with any number c we have D[cX] = c2D[X];
4. if X, Y are independent random variables having the variances, then

D[X + Y ] = D[X] +D[Y ].

.
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The additivity property of the variance

Additivity property
Let X1, X2, . . . , Xn be the independent random variables having the
variances. Then

D[X1 +X2 + · · ·+Xn] = D[X1] +D[X2] + · · ·+D[Xn].
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Binomial random variable

If X ∼ B(n, p), then

P (X = m) = Cm
n pm(1− p)n−m, m = 0, 1, . . . , n,

E[X] = np, D[X] = np(1− p).
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Poisson random variable

If X ∼ P(λ), then

P (X = m) =
λm

m!
e−λ, m = 0, 1, 2, . . . ,

E[X] = D[X] = λ.
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Geometrical random variable

If X ∼ G(p), then P (X = m) = qm−1p, m = 1, . . . , q = 1− p,

E[X] =
1

p
, D[X] =

q

p2
.
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Geometrical random variables

If we succeed in the first trial (this happens with probability p), then
X2 = 1. If we get failure in the first trial, then we start from the beginning,
and X2 = (1 + Y )2, here Y ∼ G(p) is a geometrical random variable
again. Hence, we may suppose that

E[X2] = p · 12 + q · E[(1 + Y )2].

Let us denote a = E[X2] = E[Y 2], E[Y ] = 1/p :

a = p+ qE[1 + 2Y + Y 2] = p+ q + 2qE[Y ] + qE[Y 2] =

1 +
2q

p
+ qa,

(1− q)a = 1 +
2q

p
, a = E[X2] =

1

p
+

2q

p2
,

D[X] = E[X2]− E[X]2 =
1

p
+

2q

p2
− 1

p2
=

q

p2
.
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Pascal’s random variable

If X ∼ B−(n, p), then

P (X = m) = Cm
n+m−1p

nqm,

E[X] = n
q

p
, D[X] =

nq

p2
.
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The uniformly distributed random variable

If X ∼ T ([a, b]), then

pX(x) =

{
1

b−a , if x ∈ [a; b]

0, if x ̸∈ [a, b],

E[X] =
a+ b

2
, D[X] =

(b− a)2

12
.
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Exponential random variable

If X ∼ E(λ), then

pX(x) =

{
0, if x < 0,

λe−λx, if x ≥ 0,
,

E[X] =
1

λ
, D[X] =

1

λ2
.
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Gamma random variable

If X ∼ Γ(k, λ), then

pX(t) =

0, if t < 0,

λktk−1

(k − 1)!
e−λt, if t > 0,

E[X] =
k

λ
, D[X] =

k

λ2
.
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Normal random variable

If X ∼ N (µ, σ2), then

pX(x) =
1√
2πσ2

e−(x−µ)2/(2σ2),

E[X] = µ, D[X] = σ2.
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Quick exercises

Example 58.
There are two symmetrical dices. The sides of the first one are marked by
numbers 1, 1, 3, 4, 5, 6, and of the second 1, 2, 3, 4, 6, 6. The values of the
random variables X1, X2 are the numbers on the sides of rolled dices.
Which of two random variables has the larger dispersion of the values,
i.e. which has the bigger variance?

N

Example 59.
The value of the random variable X is equal to the point on the side of
rolled conventional dice, the value of random variable Y equals to the
number chosen from the interval [0; a] at random. What should be the
value of constant a, such that the variances of both random variables be
equal?

N
258 / 369

2.10. The law of large numbers 259 / 369

Why we repeat the measurements?

Trying to get more exact value of the quantity, we measure it repeatedly
and having the values x1, x2, . . . , xn take the arithmetical mean value

yn =
x1 + x2 + . . .+ xn

n
.

We suppose that xn ≈ a.
What is this opinion based on?
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The Chebyshev inequality

Theorem 50. Let X be a random variable having the expected value
and variance. Then for any ϵ > 0 we have

P (|X − E[X]| > ϵ) 6 D[X]

ϵ2
.
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The law of large numbers

Theorem 51. Let X1, X2, X3, . . . be the independent random variables
having the same expected value E[Xj] = a and the same variance. Then
for each ϵ > 0

P
(∣∣∣X1 +X2 + . . .+Xn

n
− a

∣∣∣ > ϵ
)
→ 0, n → ∞.
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The Monte-Carlo method

Let K be a unite square and S ⊂ K some region with the complicated
boundary. We have to compute the area of this region.
Our experiment: we choose the points A1, A2, . . . , An in the square
randomly and define the random variables

Xi =

{
1, if x ∈ Ai ∈ S;

0, if x ̸∈ S.

Let x1, x2, . . . , xn be the values of Xi obtained from the experiment. Then

area(S) ≈ (x1 + x2 + . . .+ xn)/n.
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Generalization of
the law of large numbers

Theorem 52. Let X1, X2, X3, . . . be independent random variables
having the variances and satisfying the condition

1

n2

n∑
m=1

D[Xm] → 0, n → ∞.

Let

Sn = X1 + · · ·+Xn, En = (E[X1] + · · ·+ E[Xn])/n.

Then for any ϵ > 0

P
(∣∣Sn/n− En

∣∣ > ϵ
)
→ 0, n → ∞.
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2.11. The moments of random variables 265 / 369

Definition

Definition 40. Let ξ be a random variable, k > 0. If the expected values
E[ξk],E[|ξ|k] exist, then these values are called the moments of kth order;
the second one - the absolute moment of kth order of the random
variable ξ.

Note. If E[|ξ|k] exists, then E[ξk] exists too. If the moment of random
variable ξ of kth order exists, then for every 0 < r < k the expected value
E[|ξ|r] exists too.
If there exists the moment of ξ of the kth order, then for any a the
expected value E[|ξ − a|k] exists as well.
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The central moments

Definition 41. Let for the random variable ξ the moments of the kth
order exist (k > 1). Then the expexted values

E[(ξ − E[ξ])k], E[|ξ − E[ξ]|k]

are called the central moments of kth order; the second one is called the
absolute central moment of order k.

Note. The variance is the central moment of the second order.
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Mixed moments

Theorem 53. Let the random variables ξ1, ξ2 have the moments of
second order. Then the expected value E[ξ1ξ2] exists and

E[|ξ1 · ξ2|] ≤
√
E[ξ21 ] · E[ξ22 ].

Note. If the random variables ξ1, ξ2 have their variances, then the
expected value E[(ξ1 − E[ξ1]) · (ξ1 − E[ξ1])] exists and

E[|(ξ1 − E[ξ1])(ξ1 − E[ξ1])|] ≤
√

D[ξ1]D[ξ2].

268 / 369

The variance of the sum

Let ξ1, ξ2 be independent random variables having their variances. Then

D[ξ1 + ξ2] = D[ξ1] +D[ξ2].

Suppose that ξ1, ξ2 can be dependent. Then for the sum we have

D[ξ1 + ξ2] = E[(ξ1 + ξ2 − E[ξ1]− E[ξ2])
2] =

E[(ξ1 − E[ξ1])
2 + 2(ξ1 − E[ξ1])(ξ2 − E[ξ2]) + (ξ2 − E[ξ2])

2] =

D[ξ1] +D[ξ2] + 2E[(ξ1 − E[ξ1])(ξ2 − E[ξ2])].
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The covariance between the random variables

Definition 42. Let ξ1, ξ2 be the random variables having the variances.
The number

cov(ξ1, ξ2) = E[(ξ1 − E[ξ1]) · (ξ2 − E[ξ2])]

is called the covariance between the random variables ξ1, ξ2.

Theorem 54. For the random variable ξ1, ξ2 having the variances we
have

cov(ξ1, ξ2) = E[ξ1 · ξ2]− E[ξ1] · E[ξ2].
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Example

Three white balls in the urn are marked with numbers 1, 0, 0 and two black
ones with number 1, 1. Two balls are drawn randomly without
replacement. The value of X is equal to the number of white balls, the
value of Y is equal to the sum of numbers on the balls drawn from the
urn. Compute the covariance between X,Y.
The table of probabilities P (X = x, Y = y) is very helpful:

X = 0 X = 1 X = 2
Y = 0 0 0 0, 1 0, 1
Y = 1 0 0, 4 0, 2 0, 6
Y = 2 0, 1 0, 2 0 0, 3

0, 1 0, 6 0, 3
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Correlated random variables

Definition 43. Let ξ1, ξ2 be the random variables. If cov(ξ1, ξ2) > 0, then
the random variables are called positively correlated, if cov(ξ1, ξ2) < 0, we
say that the random variables are negatively correlated. If cov(ξ1, ξ2) = 0,
the random variables are uncorrelated.
Note. Independent random variables having the variances are
uncorrelated.
If the random variables are uncorrelated, they are not necessarily
independent.
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The correlated random variables

Let an experiment was repeated n times and the pairs of values of
random variables X,Y were obtained

(x1, y1), (x2, y2), . . . , (xn, yn).

The data can be represented by the points on the plain.

xi

yi

xi

yi
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Uncorrelated random variables

If cov(X, Y ) = 0, the points representing the data resemble a cloud,
without any grouping tendency along some line.

xi

yi
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The correlation coefficient

Definition 44. Let ξ1, ξ2 be the random variables and
D[ξ1] > 0,D[ξ2] > 0. The number

ρ(ξ1, ξ2) =
cov(ξ1, ξ2)√
D[ξ1]D[ξ2]

is called the correlation coefficient of the random variables ξ1, ξ2.
If for at least one random variable D[ξi] = 0, we set ρ(ξ1, ξ2) = 0.
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The correlation coefficient

Theorem 55. Let ξ1, ξ2 be the random variables and
D[ξ1] > 0,D[ξ2] > 0. Let a1, a2, b1, b2 be arbitrary numbers, a1, a2 ̸= 0. Then

ρ(a1ξ1 + b1, a2ξ2 + b2) =

{
ρ(ξ1, ξ2), if a1a2 > 0,

−ρ(ξ1, ξ2), if a1a2 < 0.
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The properties of the correlation coefficient

Theorem 56. Let ξ1, ξ2 be the random variables with non-zero
variances. The following statements are true

1. −1 ≤ ρ(ξ1, ξ2) ≤ 1;
2. if ξ2 = aξ1 + b, here a, b are some numbers, then ρ(ξ1, ξ2) = 1, as a > 0

and ρ(ξ1, ξ2) = −1, as a < 0;
3. if ρ(ξ1, ξ2) = ±1, then there exist some numbers a ̸= 0, b, such that

P (ξ2 = aξ1 + b) = 1.
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2.12. The convergence of random variables 278 /
369

Convergence almost surely

Definition 45. Let ξ and ξ1, ξ2, . . . be the random variables, defined on
the same probabilistic spece. We say that ξn converges almost surely (or
with probability 1) to ξ, if

P (ω : ξn(ω) −−−→
n→∞

ξ(ω)) = 1.

The notation: ξn
1−→ ξ.
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Example

Ω = [0; 1], P is geometrical length, Xn(ω) = 1/n, X(ω) = 0, then

Xn
1−→ X

The limit random variable is not uniquely defined. Let X∗(ω) = 0, if ω is an
irrational number and X(ω) = ω, if ω is a rational number. Then

Xn
1−→ X∗.
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Convergence in probability

Definition 46. Let ξ, ξn : Ω → R be the random variables, n = 1, 2, . . .
We say that the sequence of random variables ξn converges in probability
to the random variable ξ , if for any ϵ > 0

P (ω : |ξn(ω)− ξ(ω)| > ϵ) → 0, n → ∞.

The notation: ξn
P−−−→

n→∞
ξ.
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Example

A sequence of random variables Xn can be constructed such that

Xn
P−−−→

n→∞
X

but all sequences of numbers Xn(ω) diverge!
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The weak convergence

Definition 47. Let ξn, ξ be the random variables and Fn, F the
distribution functions of the random variables, respectively. We say that
the sequence ξn converges weakly to the random variable ξ, if for any
continuity point x of F (x) we have

Fn(x) → F (x), n → ∞.

The notation for the weak convergence: ξn ⇒ ξ. We can also say, that the
sequence of distribution functions Fn converges to the limit distribution
function F.
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The weak convergence

FXn
(x)

1

2

1

n
−

1

n

FYn
(x)

1

n
−

1

n

FZn
(x)

1

n
−

1

n

FV (x) (

The sequences of distribution functions FXn
, FVn

, FZn
converge weakly to

the distribution function FV .
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Converges but not always to the distribution function

Theorem 57. Let Fn be a sequence of distribution functions of some
random variables. Then there exists a subsequence Fnm

and a function
G(x) which is non-decreasing and continuous from the left, such that we
have Fnm

→ G(x), as m → ∞ in all continuity points of G(x).

285 / 369

Question

How to investigate the weak convergence of given sequence of
distribution functions?
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2.13. The characteristic functions 287 / 369

The complex random variables

Definition 48. Let ⟨Ω,A, P ⟩ be a probabilistic spece, C the set of
complex numbers. A function ξ : Ω → C is called complex random
variable, if

ξ = ξ1 + iξ2,

where ξ1 = Re ξ, ξ2 = Im ξ are real valued random variables.
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Independent random variables

Definition 49. The complex random variables

ξ = ξ1 + iξ2, η = η1 + iη2

are called independent, if the random variables in all pairs {ξi, ηj} are
mutually independent.
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Expectation

Definition 50. Let the real valued random variables ξ1, ξ2 have their
expected values. Then the expected value of the complex random
variable

ξ = ξ1 + iξ2

is the complex number

E[ξ] = E[ξ1] + iE[ξ2].
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Properties of expectation

Theorem 58.
1. Let ξ1, ξ2 be the complex random variables having the expected

values, and a, b some complex numbers. Then the random variable
ξ = aξ1 + bξ2 has its expected value and E[ξ] = aE[ξ1] + bE[ξ2].

2. Let the complex random variable ξ has the expected value, then

|E[ξ]| ≤ E[|ξ|].

3. Let ξ1, ξ2 be independent complex random variables having the
expected values. Then the random variable ξ = ξ1 · ξ2 has the
expected value and E[ξ] = E[ξ1] · E[ξ2].
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Characteristic function

Definition 51. Let ξ be a real-valued random variable. The function
defined on the real line by

ϕξ(t) = E[eitξ] = E[cos(tξ)] + iE[sin(tξ)].

is called the characteristic function of the random variable ξ.
Let ξ = ⟨ξ1, . . . , ξn⟩ be a random vector. The function

ϕξ(t1, . . . , tn) = E[eit1ξ1+...+itnξn].

is called the characteristic function of random vector ξ.
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The properties of characteristic function

Theorem 59. The following statements are true:
1. The characteristic function is continuous in all points of definition.
2. Let ξ be a random variable and a, b some fixed numbers, η = aξ + b.

Then
ϕη(t) = eitbϕξ(at).

3. Let ξ1, ξ2 be two independent random variables, ξ = ξ1 + ξ2. Then

ϕξ(t) = ϕξ1(t)ϕξ2(t).
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Important examples

If ξ ∼ B(n, p), then ϕξ(t) =
(
peit + q

)n
.

If ξ ∼ P(λ), then ϕξ(t) = exp{λ(eit − 1)}.

If ξ ∼ N (0, 1), then ϕξ(t) = e−t2/2.
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Characteristic function and the moments

Theorem 60. Let for the random variable ξ the moment of the mth order
exists. Then at every point t there exists the mth derivative of
characteristic function ϕξ(t) and

ϕξ(t)
(m) = E[(iξ)meitξ].

For the characteristic function the following asymptotic expansion holds:

ϕξ(t) =
m∑
l=0

E[ξl]
(it)l

l!
+ rm(t)

(it)m

m!
;

here rm(t) → 0, t → 0.
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Uniqueness theorem

Theorem 61. If the distribution functions of two random variables are
different, then the characteristic functions are different too.

Applications: The sum of independent Poisson random variables is a
Poisson random variable.
The sum of independent normal random variables is a normal random
variable.
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Continuity theorem

Theorem 62. The sequence of distribution functions Fn converge
weakly to some limit distribution function F , if and only if the sequence of
corresponding characteristic functions ϕn(t) converge at every point to
some continuous at the point t = 0 function ϕ(t).
The function ϕ(t) is the characteristic function corresponding to the
distribution function F.
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2.14. The limit theorems 298 / 369

The Poisson theorem

Theorem 63. Let ξn be the random variables, ξn ∼ B(n, pn) and
npn → λ, as n → ∞, here λ > 0. Then the distribution functions of the
random variables ξn converge weakly to the distribution function of the
Poisson random variable ξ ∼ P(λ).
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The law of large numbers

Theorem 64. Let ξ1, ξ2, . . . be independent random variables having the
same distribution function and the expected value a. Then for an arbitrary
ϵ > 0

P
(∣∣ξ1 + ξ2 + . . .+ ξn

n
− a

∣∣ > ϵ
)
→ 0, n → ∞.

300 / 369

145



The central limit theorem

Theorem 65. Let ξm be independent random variables having the same
distribution function, the expected value E[ξm] = a and the variance
D[ξm] = σ2. Then the distribution functions

Fn(x) = P
( n∑

m=1

ξm − a

σ
√
n

< x
)

converge weakly to the distribution function of the standard normal
variable Φ(x), i. e. for all x

Fn(x) →
1√
2π

∫ x

−∞
e−u2/2du, n → ∞.
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III. The mathematical statistics 302 / 369

3.1. Descriptive statistics 303 / 369

Example

Example 60.
You have to share the dewy matches with your friend. A dewy match
strikes with the probability p = 0, 6. How many dewy matches you should
give to your friend for he could put on fire with the probability no less then
0,9?

N

Important question: from where we know the value of probability p?
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Gathering data

Some subset of objects are chosen from the general set for investigation.
On the basis of data obtained the conclusions are made about the
general set of objects.

How this practise should by described mathematically?
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The population

Suppose that the property we are interested in are expressed using the
random variable X.

The values of X are numbers or symbolic strings. The experiment
consists of choosing the object and obtaining the value of X. Suppose
that the objects are chosen independently.

The random variable associated with the first choice we denote by X1,
with the second choice – X2 and so forth.
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The population

The mathematical concept, corresponding to the model of gathering data
by random choice is
the sequence of independent identically distributed random variables

X1, . . . , Xn.
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Random sample

Definition 52. The sequence of independent identically distributed
random variables

⟨X1, X2, . . . , Xn⟩

is called the random sample.
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Random sample and its realization

From the actual measurements we get the values of the elements of
random sample.

Definition 53. Let ⟨X1, X2, . . . , Xn⟩ be the random sample. A sequence
of values of the elements ⟨x1, x2, . . . , xn⟩ is called realization of the
random sample, or simply the sample.
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The first problem

The aim of descriptive statistics – to arrange, systematize and visualize
the data collected from the experiments.
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Frequencies

Data x1 x2 x3 . . . xm
Frequencies ni n1 n2 n3 . . . nm

Relative frequencies fi n1/n n2/n n3/n . . . nm/n
Cummulative frequencies

∑
j<i fj 0 f1 f1 + f2 . . . f1 + . . .+ fm−1

311 / 369

Tables and diagrams

J M R Ž
ni 3 6 4 2
fi 3/15 6/15 4/15 2/15∑
j<i fj 0 3/15 9/15 13/15

J M R Z

fi
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The grouped data and histogram

Data intervals I1 I2 I3 . . . IN
Numbers of data in the intervalsIj n1 n1 n2 . . . nN

Relative frequencies pj n1/nd n2/nd n3/nd . . . nN/nd
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Histograms

0

0.4

fi

−5 −4 −3 −2 −1 0 1 2 3 4 5

xi

0
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xi

0

0.5

fi

−5 −4 −3 −2 −1 0 1 2 3 4 5

xi
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Histograms

Three histograms of the same data set with n = 1000 data: N = 5, 10, 30.
Recommended parameter for the number of intervals

N ≈ 1 + 3, 3 lg n.
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Ordered list

Let x1, x2, . . . , xn be the numerical dataset. Let us put them in order. We
call this new arranged dataset

x(1) 6 x(2) 6 . . . 6 x(n)

the ordered list of the sample. The elements x(k) are called the order
statistics.
For example, the orderd list of the sample

2; 1,5; 3, 1,5; 2, 3; 1,7; 2

is 1,5; 1,5; 1,7; 2; 2; 2; 3; 3, x(1) = x(2) = 1,5;x(8) = 3.
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The empirical distribution function

Let the observed random variable X takes the numerical values, and
x1, x2, . . . , xn is a sample of this random variable. We construct the
empirical distribution function based on this dataset.
Let n(x) be the number of data in the dataset less than x.

Then the empirical distribution function is defined by

F ∗
X(x) =

n(x)

n
.
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The empirical distribution function

The empirical distribution function based on the sample
2; 1,5; 3, 1,5; 2,3; 1,7; 2 is

F ∗
X(x) =



0, if x ≤ 1, 5;
2
8 , if 1,5 < x ≤ 1,7;
3
8 , if 1,7 < x ≤ 2;
6
8 , if 2 < x ≤ 3;

1, if x > 3;
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The quantiles of the sample

Let us denote by n(x) the number of data in the sample x1, x2, . . . , xn not
exceeding x (i. e. satisfying xi 6 x), and by n(x) the number of data no
less than x (i. e. satisfying xi > x). Then n(x) + n(x) > n.

We want to define the qth empirical vq in a way that the following property
should be satisfied:

q 6 n(vq)

n
,

n(vq)

n
> 1− q.
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The quantiles of the sample

Definition 54. The qth quantile of the sample x1, x2, . . . , xn is a number
vq, defined by:

vq =

{
x([qn]+1), if qn is not an integer,
(x(qn) + x(qn+1))/2, if qn is an integer,

here 0 < q < 1, and [qn] means the integer part, x(i) is the ith order
statistics of the sample.
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The quartiles and median

The mostly used qth quantiles are for q = 1
4 ,

2
4 ,

3
4 . They are called quartiles

and denoted by Q1, Q2, Q3.

The quartile Q2 is called median.
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The expectation and variance of the sample

Definition 55. Let ⟨x1, x2, . . . , xn⟩ be a sample corresponding to the
random variable X. The expectation and variance of the sample are
defined by

x =
x1 + x2 + · · ·+ xn

n
,

and

s2 =
1

n− 1

n∑
i=1

(xi − x)2.
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Visualization of the numerical characteristics

+

+

x(1)

x(n)

Q1

Q2

x

Q3

Several numerical characteristics of the sample in one diagram. Useful
for comparing different samples.
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Quick exercises

Problem 9. The expenses of the buyers at the check are:

27, 20, 12, 20, 15, 20, 45, 10, , 15, 10, 15, 30, 25, 20, 12.

Find the order statistics of the sample x(5), x(11). Find the quartiles.
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Quick exercises

Problem 10. The score of mid-term exam of the students are presented
in the table of frequencies:

xi = 1 2 3 4 5 6 7 8 9 10
ni = 0 1 2 4 3 5 3 5 5 4

Find the median and the quartiles of the sample. Find the expectation
and variance.
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Quick exercises

Problem 11. The grades of nine students are

7, 6, 7, 10, 6, 5, 5, , 9, 8.

Find the median and expectation of the sample. The grade of the tenth
student is unknown, but it is known that it will be at least 1. What is the
largest possible decrease of the expectation? What is the largest possible
increase? Can the value of expectation remain the same as the tenth
grade will be available? When is it possible? If the expectation will remain
the same, how the variance will change? How the median depends on
the tenth grade: when it will change, when not?
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Quick exercises

Problem 12. The durations of N phone talks of some person are:

3, 5, 4, 3, 4, 2, 4, 7.

How many jumps the empirical distribution function of this sample will
have? What is the value of the largest jump? Draw the graph of the
empirical distribution function.
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3.2. Estimators 328 / 369

The estimators

Suppose that the distribution of values of the random variable observed
depends on some parameter θ.
How we could find (approximate) value of θ?

Having a sample we compute the value of some function

θ∗ = h(x1, x2, . . . , xn),

which (as we believe on the basis of some arguments) give the value of θ.
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Statistics of the random sample

Definition 56. Let ⟨X1, X2, . . . , Xn⟩ be a random sample. The random
variable

T = h(X1, X2, . . . , Xn)

is called statistics of the sample, here h is some function.
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Unbiased estimator

Definition 57. We say that statistics θ∗ = h(X1, X2, . . . , Xn) is an
unbiased estimator of the parameter θ, if

E[θ∗] = E[h(X1, X2, . . . , Xn)] = θ.
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Expectation and variance

Theorem 66. Let the expectation of the random variable X is a
parameter a and the variance σ2. Let ⟨X1, X2, . . . , Xn⟩ be the random
sample of X. Then the statistics

X =
X1 +X2 + . . .+Xn

n
, S2 =

1

n− 1

n∑
i=1

(Xi −X)2

are unbiased estimators of the parameters a and σ2.
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Empirical moments

Definition 58. Let the kth moment of the random variable X exists,
αk = E[Xk]. The estimator

ak =
Xk

1 +Xk
2 + · · ·+Xk

n

n

is called the kth empirical moment of the random variable; here
⟨X1, X2, . . . , Xn⟩ is the random sample of X.
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The method of moments

Suppose the distribution of the random variable depends on the
parameters θ1, θ2, . . . , θr and the first r moments of the random variable
exist.
Solve the system of equations

α1(θ1, θ2, . . . , θr) = a1,

α2(θ1, θ2, . . . , θr) = a2,

. . .

αr(θ1, θ2, . . . , θr) = ar.

and find the estimators of θ1, θ2, . . . , θr.
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Example

Example 61.
How many shots and what the accuracy?
The number of targets is n, to each of them k shots were fired. We know
the number of hits of each target x1, x2, . . . , xn. Find the estimator of the
number of shots n and the probability to hit the target by one shot.

N
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Example

Example 62. Being late from the school
The time to come back from the school is 15 minutes, but usually the pupil
is late. The time of being late is the random variable X, which is made up
from two independent components:

X = X1 +X2,

here X1 ∼ T ([0, a]) is the additional time of delay on the road, and
X2 ∼ P(λ) the time of talk with the schoolfriend before saying farewell.
The times of being late are known for n days: ⟨x1, x2, . . . , xn⟩. We need to
compute the estimated values of a and λ.

N

Numerical data:

8, 07; 16, 53; 12, 63; 11, 57; 12.16; 4, 49; 7, 39; 13, 73; 13, 78; 16, 83.
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3.3. The confidence intervals 337 / 369

The confidence intervals

Definition 59. Let ⟨X1, X2, . . . , Xn⟩ be the random sample of the variable
X, and θ some parameter related to the distribution of X. Let

θ(X1, X2, . . . , Xn) 6 θ(X1, X2, . . . , Xn)

be two estimators of the parameter θ and Q is some number 0 < Q < 1.
The interval

I = (θ(X1, X2, . . . , Xn), θ(X1, X2, . . . , Xn))

is called a Q confidence interval for θ, if

P (θ ∈ (θ(X1, X2, . . . , Xn), θ(X1, X2, . . . , Xn)) > Q.
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Wormy mushrooms

Example 63.
Let p be the probability that a mushroom found is wormy. It is unknown.
There were 1000 mushrooms found, 470 of them were wormy. Construct
the Q confidence interval for the unknown probability if Q = 0, 9.

N
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The normal random variables

The random variable X is called standard normal (X ∼ N (0, 1)), if its
density function is

pX(x) =
1√
2π

e−x2/2.

We know that E[X] = 0,D[X] = 1. If X ∼ N (0, 1), then with the arbitrary
numbers σ ̸= 0, µ, the random variable Y = σX + µ also is a normal
random variable

Y ∼ N (µ, σ2), E[Y ] = µ, D[Y ] = σ2.

Let us choose arbitrary numbers a ̸= 0 and b and define the new random
variable Z = aY + b. This random variable will be also normal.
Any linear transform of the normal variable gives the new normal variable
again.
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The normal random variables

Theorem 67. Let X1, X2 be two independent normal random variables.
Then the sum X = X1 +X2 will be the normal random variable, too.

Theorem 68. Let X1, X2, . . . , Xn be the independent normal random
variables and a1, a2, . . . , an, b arbitrary numbers not all equal to zero. Then
the random variable

Y = a1X1 + a2X2 + · · ·+ anXn + b

will also be normal.
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The normal random variables

Theorem 69. Let Xi ∼ N (µ, σ2) (i = 1, 2, . . . , n) be indepenent normal
random variables. Then the random variable

Z =
X − µ

σ/
√
n
, X = X1 +X2 + · · ·+Xn,

is standard normal, i. e. Z ∼ N (0, 1).
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The confidence interval for expectation

The confidence interval for the expectation of X ∼ N (µ, σ2), if σ2 is
known
The Q confidence interval for the expectation is(

X − z(1+Q)/2
σ√
n
;X + z(1+Q)/2

σ√
n

)
,

here 0 < Q < 1, and z(1+Q)/2 is the solution of the equation
Φ(z) = (1 +Q)/2.
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Example

Example 64.
The sample of the random variable X ∼ N (µ, 1) consists of 10 entries:

5.26, 4.80, 4.91, 4.98, 4.79, 4.99, 3.81, 5.29, 6.15, 4.21.

The expected value of the sample is X = 4.919. Construct the confidence
intervals for the expectations for some values of Q. Compute and
compare the lengths of the intervals.

N
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New random variables

Definition 60. Let X0, X1, X2, . . . , Xn be independent standard normal
random variables. Let us define

χ2
n = X2

1 +X2
2 + · · ·+X2

n, Tn =
X0√
χ2
n/n

.

We say that the random variable χ2
n has the chi-square distribution with n

degrees of freedom and denote χ2
n ∼ χ2(n). The random variable Tn has

t-distribution (or Student distribution) with n degrees of freedom, the
notation is Tn ∼ St(n).
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The graphs of density functions

n = 1

n = 3

n = 5

x

y

The graphs of density functions of the random variables χ2
n.

If n = 1, the density function grows unboundedly in the zero
neighbourhood.
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The graphs of density functions
n = 1

n = 3

n = 5

x

y

The graphs of density functions of random variables Tn ∼ St(n).
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Computing the values of distribution function

The values of χ-square distribution function using Excel.
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Computing the quantiles

The values of χ-square distribution function and quantiles using Excel.
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The main theorem

Theorem 70. Let X ∼ N (µ, σ2), and let ⟨X1, X2, . . . , Xn⟩ be the random
sample of this random variable. Then

T =
X − µ

S/
√
n

∼ St(n− 1).
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The confidence interval

The confidence interval for expectation of X ∼ N (µ, σ2) as σ2 is
unknown
The Q confidence interval is(

X − t
S√
n
;X + t

S√
n

)
,

here 0 < Q < 1, t = t(1+Q)/2(n− 1) is the solution of the equation
FTn−1

(t) = (1 +Q)/2, Tn−1 ∼ St(n− 1),

X =
X1 + · · ·+Xn

n
, S =

√
S2 =

√√√√ 1

n− 1

n∑
i=1

(Xi −X)2.
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Example

Example 65. A sample with ten entries
The sample of X ∼ N (µ, σ2) consists of the following numbers

4.19, 4.20, 5.12, 6.11, 4.37, 5.50, 4.81, 4.44, 4.17, 5.91.

The expectation of the sample is X = 4.88, the variance and standard
deviation equal to s2 = 0.544, s = 0.738 respectively. The Q confidence
intervals are given in the table.

Q = 0, 6 0, 7 0, 8 0, 9 0, 95
z = 0.883 1.10 1.38 1.83 2.26
µ = 4.67 4.62 4.56 4.45 4.35
µ = 5.09 5.14 5.20 5.31 5.41

length = 0.411 0.512 0.645 0.853 1.06

N
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The confidence interval for the probability

Example 66. The wormy mushrooms
Among n = 1000 mushrooms m = 470 were wormy. Construct the
confidence intervals for the probability that a mushroom is wormy using
the Chebyshev inequality and the central limit theorem with
Q = 0, 6; 0, 7; 0, 8.

N
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The confidence interval for variance

The confidence interval for the variance if the expectation is known
Let X ∼ N (µ, σ2), and let ⟨X1, X2, . . . , Xn⟩ be the random sample with the
known expectation µ. The Q confidence interval for the variance σ2 is(nS2

0

v
;
nS2

0

u

)
here u, v are the quantiles of the random variable χ2

n ∼ χ2(n) of orders
(1−Q)/2, (1 +Q)/2 respectively, and

S2
0 =

1

n

n∑
i=1

(Xi − µ)2.
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The confidence interval for the variance

The confidence interval for variance if the expectation is unknown
Let X ∼ N (µ, σ2), and let ⟨X1, X2, . . . , Xn⟩ be the random sample, the
expectation µ is unknown. The Q confidence interval for the variance σ2 is((n− 1)S2

v
;
(n− 1)S2

u

)
;

here u, v are the quantiles of the random variable χ2
n ∼ χ2(n− 1) of order

(1−Q)/2 and (1 +Q)/2 respectively, and

S2 =
1

n− 1

n∑
i=1

(Xi −X)2, X =
X1 +X2 + · · ·+Xn

n
.
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The confidence interval for the probability of success

P (X = 1) = p, P (X = 0) = q, q = 1− p.

The expected value is E[X] = p, and the sample is a sequence of zeroes
and ones ⟨x1, x2, . . . , xn⟩. The estimator of probability is the first empirical
moment

X =
X1 +X2 + · · ·+Xn

n
=

number of successes
n

.
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The confidence interval for the probability of success

The sense of central limit theorem informally can be formulated as
follows: let ⟨X1, . . . , Xn⟩ be the random sample of random variable of
interest. Then for large values of n the values of statistics

Z =
X1 +X2 + · · ·+Xn − np√

np(1− p)
=

X − p√
p(1− p)/n

are distributed approximately as the values of standard normal variable.
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The confidence interval for the probability of success

Let 0 < Q < 1 and z(1+Q)/2 is the (1 +Q)/2 quantile of the standard normal
variable. Then we believe (on the basis of central limit theorem) that

P (−z 1+Q
2

< Z < z 1+Q
2
) = P

(
− z 1+Q

2
<

X − p√
p(1− p)/n

< z 1+Q
2

)
≈ Q.

This equality can be rewritten as:

P
(
X − z

√
p(1− p)√

n
< p < X + z

√
p(1− p)√

n

)
≈ Q, z = z 1+Q

2
.
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3.4. Statistical hypothesis 359 / 369

Statistical hypothesis

Two hypothesis related to the distribution of the random variable observed
are formulated : the null hypothesis H0 against the alternative hypothesis
H1. Using the data of the sample we decide which one should be
accepted. There are two possibilities: H0 is true or wrong and there are
two possible decisions: to accept H0 or reject it. Then we have four cases

H0 true H0 wrong
H0 accepted true decision error of II type
H0 rejected error of I type true decision
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The statistical hypothesis

Usually the model is formulated in a way that the error of I type is more
important, i.e. should be controlled. For to control it let us choose some
small number 0 < α < 1 and create the decision procedure which ensures
that

P (error of I type) = P (H0 rejected|H0 true) 6 α.

The number α is called significance level of testing. There are however
many criteria with the same significance level. If we always accept the
hypothesis H0, then the inequality is also satisfied. In the set of all criteria
with the same significance level one tries to choose that one which
minimizes the probability

P (error of II type) = P (H0 accepted|H0 false).
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Hypothesis about the expectation of the normal random
variable

Hypothesis about the expectation of the normal random variable,
if the variance is known
The random variable observed is X ∼ N (µ, σ2), the variance σ2 is known,
⟨X1, X2, . . . , Xn⟩ is the random sample of X.
Hypotheses:

H0 : µ = µ0,

H1 : µ ̸= µ0,

α is the significance level, z – solution of the equation Φ(z) = 1− α/2, i.e.
the α/2 critical value of the standard normal random variable,

Z =
X − µ0

σ/
√
n
.

Decision: if |Z| > z, the hypothesis H0 is rejected, if |Z| ≤ z, hypothesis
H0 is accepted.
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Hypothesis about the expectation of the normal random
variable

Hypothesis about the expectation of the normal random variable,
if the variance is unknown
The random variable observed is X ∼ N (µ, σ2), the variance σ2 is
unknown, ⟨X1, X2, . . . , Xn⟩ is the random sample.
Hypotheses:

H0 : µ = µ0,

H1 : µ ̸= µ0,

α is the significance level, t – solution of the equation

FTn−1
(t) = 1− α/2, Tn−1 ∼ St(n− 1),

i.e. α/2 critical value of t-distribution with n− 1 degrees of freedom,

T =
X − µ0

S/
√
n
.
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Hypothesis about the expectation of the normal random
variable

Decision: if |T | > t, hypothesis H0 is rejected, if |T | 6 t, hypothesis H0 is
accepted.

p T
n
−
1
(x
)

x

Tn−1 ∼ St(n− 1)FTn−1
(z) = 1− α/2

t−t

H0 : µ = µ0

H1 : µ 6= µ0

T

H0 rejected

T

H0 rejected
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Hypothesis about the probability of success

The random variable X takes the value 1 if the trial is successful, and the
value 0 if one gets a failure. Let ⟨X1, X2, . . . , Xn⟩ be the random sample,
the number of trials n is large, α is the significance level,

P (X = 1) = p, P (X = 0) = 1− p, Z =
X − p0√

p0(1− p0)/n
.

Hypotheses about the probability of success p:

H0 : p = p0,

H1 : p ̸= p0.

If |Z| > z, where z is the α/2 critical value of the standard normal
variable, the null hypothesis H0 is rejected, if |Z| < z, the null hypothesis
is accepted.
If the alternative hypothesis is H1 : p > p0 or H1 : p < p0, the α critical
value of the standard normal random variable is used. In the first case the
null hypothesis is rejected if Z > z, in the second case – if Z 6 −z.
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Hypothesis about the probability of success

The random variable X takes the value 1, if the trial is successful and the
value 0, if one gets a failure. Let ⟨X1, X2, . . . , Xn⟩ be the random sample,
the number of trials n is small, α – the significance level,

P (X = 1) = p, P (X = 0) = 1− p.

Hypotheses about the probability of success p:

H0 : p = p0,

H1 : p ̸= p0

.
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Hypothesis about the probability of success

Let the value of statistics Sn = X1 +X2 + · · ·+Xn is u. Compute the
probabilities

t1 = P (Sn ≥ u|H0) =
n∑

i=u

C i
np

i
0(1− p0)

n−i,

t2 = P (Sn ≤ u|H0) =
u∑

i=0

C i
np

i
0(1− p0)

n−i.

If the alternative hypothesis is H1 : p ̸= p0, then it is accepted (the null
hypothesis rejected), if at least one of probabilities t1, t2 is less than α/2.
If the alternative hypothesis is H1 : p > p0, then it is accepted, if t1 < α.
If the alternative hypothesis is H1 : p < p0, then it is accepted, if t2 < α.
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Example

Problem 13. Two sacks contain the barley grain with admixture of oat.
The percentage of out in the sacks is 20%, and 30%. We have to choose
the sack with smaller percentage of oat. For to decide wich one of the
sacks should be chosen, we took from one sack n = 758 grains and found
among them m = 166 grains of oat. Test the hypothesis than the sack with
smaller percentage of oat was chosen, if the significance level is α = 0, 2
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Example

Problem 14. If the coin is symmetrical anybody can guess approximately
on half of results of tosses. The magician claims that he can guess more
than a half of results of tossing a symmetrical coin. We want to test the
hypothesis that his capability to guess is as of ordinary people against the
claim that he can guess better. Let the significance level be α = 0, 1. If the
number of tosses is n = 15, how many times the magician should guess
correctly for to convince the audience to accept the alternative
hypothesis?
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